Background Papers—Suramin, the Cell Danger Response, Autism Spectrum Disorder, Purinergic Signaling, and Healing

Robert K. Naviaux, MD, PhD
Professor of Medicine, Pediatrics, Pathology, and Genetics
University of California, San Diego School of Medicine
IRB Project #150134, IND #118212
Email: maviaux@health.ucsd.edu

Paper Title or Topic

<table>
<thead>
<tr>
<th>Paper</th>
<th>Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>Background and Review Papers—Purines, the CDR, ASD, and Healing</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Nyhan. Autism caused by a purine overproduction disorder</td>
<td>1969</td>
</tr>
<tr>
<td>2</td>
<td>Mitochondria and autism spectrum disorder—book chapter</td>
<td>2012</td>
</tr>
<tr>
<td>3</td>
<td>Oxidative shielding or oxidative stress?</td>
<td>2012</td>
</tr>
<tr>
<td>4</td>
<td>Metabolic features of the cell danger response</td>
<td>2014</td>
</tr>
<tr>
<td>5</td>
<td>Antipurinergic therapy for autism—introducing M0, M1, and M2 mitochondrial differentiation required for healing</td>
<td>2017</td>
</tr>
<tr>
<td>6</td>
<td>Metabolic features and regulation of the healing cycle—a new model for chronic disease pathogenesis and treatment</td>
<td>2018</td>
</tr>
<tr>
<td>7</td>
<td>Incomplete healing as a cause of aging</td>
<td>2019</td>
</tr>
</tbody>
</table>

Mitochondrial and Environmental Triggers of the CDR

8 Mitochondrial responses to environmental pollution—the chronic disease problem 2020 100

Rodent Experimental Studies

9 Juvenile treatment with suramin—the MIA mouse model of autism 2013 106
10 Adult treatment with suramin—the MIA mouse model of autism 2014 128
11 Juvenile treatment with suramin—the Fragile X mouse model of autism 2015 150
12 Horváth. Confirmation of purinergic pathogenesis in the MIA mouse model 2019 193
13 Fan/Jin. CD4+ T cells cause generalized anxiety by releasing purines 2019 213
14 Hirsch/Gottfried. Suramin corrects ASD-like symptoms in the valproate rat model 2020 249

Human ASD Studies

15 Gevi/Persico. Urinary metabolomics in an Italian cohort of ASD supports the CDR 2016 260
16 Low-dose suramin in autism spectrum disorder—the SAT-I trial 2017 271

Historical Suramin and Purinergic Signaling Papers

17 Hawking. Suramin use in onchocerciasis and trypanosomiasis 1978 314
18 Chen. Medium-dose suramin as a cancer chemosensitizer 2006 348
19 McGeeary. Suramin structure activity studies 2008 358
20 Cheffer/Burnstock. Purinergic signaling in psychiatric illness 2018 370
A new disorder of purine metabolism with behavioral manifestations

Hyperuricemia has been observed in a 3-year-old boy with mental retardation, dysplastic teeth, failure to cry with tears, absence of speech, and unusual, autistic behavior. Increased synthesis of purines de novo was documented by a rate of conversion of glycine to uric acid that was seven times that of control. The activity of the enzyme hypoxanthine guanine phosphoribosyl transferase was normal, while that of adenine phosphoribosyl transferase was increased. These observations are interpreted to reflect a distinct disease productive of hyperuricemia very early in life.

William L. Nyhan, M.D., Ph.D., John A. James, M.D., Annabel J. Teberg, M.D.,
Lawrence Sweetman, B.S., and Leslie G. Nelson, M.D.

MIAMI, FLA., AND LOS ANGELES, CALIF.

A disorder of purine metabolism has recently been reported in which overproduction of uric acid has accompanied a severe disturbance in cerebral function. Involved patients have had mental retardation, athetoid cerebral palsy, and aggressive, self-mutilating behavior. The disease is transmitted as an X-linked recessive trait. Activity of the enzyme, hypoxanthine guanine phosphoribosyl transferase, has been found to be absent in this condition, and this enzyme defect has been thought to be responsible for the disordered purine metabolism observed.

We have recently studied a boy in whom hyperuricemia was documented early in infancy. He lacked most of the features of the children studied previously but had mild developmental retardation, dysplastic teeth, and absence of tears when he cried. He was found to have marked overproduction of uric acid. The activity of hypoxanthine guanine phosphoribosyl transferase in his erythrocytes was normal. The findings in this patient appear to represent an inborn error of purine metabolism responsible for hyperuricemia in childhood distinct from
those in which hypoxanthine guanine phosphoribosyl transferase is abnormal.

CASE REPORT

S. M. was born after an uneventful 36 week gestation. The delivery, labor, and neonatal course were unremarkable. The birth weight was 5 pounds, 8 ounces; the length was 20 3/4 inches. A glandular hypospadias was present. The infant fed poorly and gained weight slowly during the first 3 months.

First admission. When the patient was 2 months old, it was noted that his urine was persistently pink. He was admitted to the hospital at the age of 4 months for investigation of hematuria and correction of hypospadias. Physical examination revealed an irritable, rather poorly nourished infant, weighing 10 pounds, 10 ounces. The liver and spleen were palpable 3.5 cm. below the costal margins. The developmental progress was considered slow for a 4-month-old infant; he had head lag, general irritability, and muscular hypertonicity. Roentgenograms of the skull, chest, and extremities revealed no abnormalities, nor did an intravenous pyelogram and a voiding cystogram. Electroencephalography revealed generalized slowing with spindle activity over the right hemisphere.

The hemoglobin was 14.5 Gm. per 100 ml. The urine contained a trace of protein, 30 to 35 red cells per high-power field, and many crystals with the appearance of uric acid. The bone marrow was normal. The bladder was normal in tone and capacity, but full of golden-yellow crystals. A first-stage hypospadias repair was carried out and an indwelling Foley catheter inserted. The concentration of uric acid in the serum on the day after the operation was 23.5 mg. per 100 ml. After cystoscopy, the fever rose to 102°F.; 200 mg. of tetracycline was given daily for 19 days.

After the baby had been discharged from the hospital, intermittent hematuria and uricauria persisted. Sodium bicarbonate was given (3 mEq. per kilogram per day). Weight gain remained slow.

Second admission. The patient was readmitted for evaluation at 8 months of age. At this time the weight was 15 pounds, 10 ounces; the length was 26 inches. There were 2 maxillary and 6 mandibular teeth; the latter were small and dysplastic. The liver was palpable 1 cm. below the right costal margin; the spleen was not palpable. The concentration of uric acid in the serum ranged from 8.5 to 11.4 mg. per 100 ml. It decreased to a range of 5.4 to 6.2 mg. per 100 ml. during treatment with probenecid in a dose of 270 mg. daily for 3 days. Uric acid excretion increased from a mean of 43 mg. per kilogram to 69 mg. per kilogram during this period. The patient was discharged without treatment.

Third admission. The baby was readmitted for study at the age of 16 months (Fig. 1). In the interim he had continued to pass blood and crystals intermittently in the urine. It was noted by his foster mother that he never shed tears when he cried. Erupting teeth had continued to be hypoplastic and had a yellow discoloration which appeared fluorescent under ultraviolet illumination. The concentration of uric acid in the plasma was 11.6 mg. per 100 ml. The cerebrospinal fluid concentration of uric acid was 0.14 mg. per 100 ml. Treatment was begun with 50 mg. of allopurinol* twice daily.

The subsequent clinical course has been relatively uneventful. The dose of allopurinol was lowered to 50 mg. a day until the boy was 3 1/2 years old, after which the serum concentration of uric acid increased and the dose was raised to

Fig. 1. S. M. at 3 years of age. His general appearance and characteristic odd grin are illustrated.

Allopurinol (Zyloprim) was obtained through the courtesy of Drs. George Hitchings and Stanley Bloomfield of Burroughs-Wellcome and Co., Tuckahoe, N. Y.
No toxic effects of the drug have been observed. He still has no tears when he cries. Intradermal injection of 0.3 ml. of 1:1000 histamine resulted in a wheal and flare. Methacholine, 2.5 per cent instilled into the conjunctival sac, did not result in pupillary constriction. Normal numbers of fungiform papillae were present over the tip of the tongue. Sweat chloride concentration was 28 mEq. per liter. Growth has been steady along the third percentile for both height and weight. At the time of report at 3 years and 7 months, he was 37½ inches tall and weighed 28 pounds.

Family history. The mother was a 21-year-old unmarried Caucasian primigravida. Both the mother and father were in good health. Nothing is known of their previous medical or family history.

Developmental evaluations. At 8 months of age, the baby was alert and responsive, and he performed within the lower limits of normal when allowance was made for his gestational age. He had smiled at 6 weeks, cooed at 8 to 9 weeks, and reached for and grasped objects at 6 months. He had been placed at 5 days of age with a foster mother, who seemed genuinely interested in his well-being. There were no other children in the home. There was generalized muscular hypotonia (in contrast to the hypertonia noted at 4 months of age), but no evidence of neurologic abnormality.

At 16½ months of age, he appeared frail, irritable, and mildly apprehensive. His performance seemed mechanical and his manner apathetic. No language was noted; the nurses reported that he would say “mama” and “dada,” but these sounds were not felt to be specific words. He was generally hypotonic. His developmental quotient (D. Q.) was estimated at 70 to 75.

By 2½ years of age, his foster home situation had been changed, and he had been in a family with 3 natural children for a year. The social worker felt this to be a good placement. At this time, his behavior seemed very disturbed and autistic. He seemed totally oblivious to people around him. He hummed and growled as he manipulated toys, making no contact with the examiner. He had no understandable speech but had a D. Q. of 60 to 65 when all language items were excluded.

At 34 months of age, his performance was characterized by wide and inappropriate mood swings—from giddy behavior to inconsolable frustration. He was able to relate to persons in his environment. Language consisted of growling and humming.

At 42 months, his over-all behavior and performance remained much the same. When frustrated, he was noted to pick at his eyes and cheeks and to tear up laundry. He was in a new foster home with a placid, kindly appearing woman who attempted to frustrate him as little as possible. He still had no speech but followed simple directions. His developmental level remained at 60 to 65.

MATERIALS AND METHODS

Metabolic studies were carried out in the Clinical Research Center of the Los Angeles County–University of Southern California Medical Center. During this period the patient was fed a diet virtually free of exogenous purine. Methods employed for the assay of uric acid and the other oxypurines and for the incorporation of 14C-labeled glycine into uric acid have been described previously. The method for hypoxanthine guanine phosphoribosyl transferase and that for adenine phosphoribosyl transferase were modifications of the method described by Flaks, which will be published elsewhere.

RESULTS

Concentrations of uric acid in the plasma and its excretion in the urine. Increased concentrations of uric acid in the plasma were documented repeatedly from the age of 6 weeks. Values obtained at the age of 16 months during a period of rigid restric-

<table>
<thead>
<tr>
<th>Table I. Uric acid in the plasma and urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine (mg./24 hr.)</td>
</tr>
<tr>
<td>Mg./24 hr.</td>
</tr>
<tr>
<td>Day</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
tion of purine intake varied from 9.5 to 11.6 mg. per 100 ml. (Table I). The excretion of uric acid in the urine was also markedly increased. Variations encountered in the total amounts of uric acid in the urine were interpreted to reflect variation in the completeness of 24 hour collections, because the urine volume and excretion of creatinine varied concomitantly. There was much less variation in the uric acid/creatinine ratio. The 24 hour uric acid excretion appeared to approximate 200 mg. per 24 hr. The patient weighed 9 kilograms at the time of the study. The mean excretion of uric acid during days of complete collection was 25 mg. per kilogram of body weight. The mean uric acid/creatinine ratio for the 9 days of study was 2.75. These values are similar to those of patients with the syndrome previously described. They are considerably larger than those of controls, who seldom exceed 10 mg. per kilogram per 24 hr. or 1.0 mg. per milligram of creatinine.

Conversion of 14C-labeled glycine to uric acid. The synthesis of purine de novo was studied by the injection of 2 μC per kilogram of glycine-U^{-14}C on the third day of the study (illustrated in Table I). The specific activities of the uric acid isolated from the urine are shown in Fig. 2. The shape of the curve indicates the very rapid conversion of glycine to uric acid with a peak in the first 12 hours after injection. This was earlier than in patients with the self-destructive syndrome previously studied, in whom peak specific activities were found in the second 24 hours; distinct peaks were not obtained in controls. Peak specific activities were similar to those of hyperuricemic children studied previously.

The cumulative percentage of the isotope of administered glycine that was recovered as uric acid is illustrated in Fig. 3. In the patient this value approximated 0.7 per cent in the studied 7 day period. In contrast, those of controls approximated 0.1 per cent. These observations clearly indicate an over-production of purine.

The effect of allopurinol. The response to administration of 100 mg. of allopurinol a day is shown in Fig. 4. The excretion of uric acid in the urine fell within the first 24 hours of treatment to 0.52 mg. per milligram of creatinine, and was maintained in this range. The concentration of uric acid in the plasma varied from 2.4 to 3.1 mg. per 100 ml.

The patient has been treated with allopurinol for the past $2\frac{1}{2}$ years. During most
of this period he has been given 50 mg. a day. Plasma concentrations have been maintained between 3.9 and 7.5 mg. per 100 ml., and usually within the range of 5.5 to 6.0 mg. per 100 ml.

The influence of the drug on the excretion of xanthine and hypoxanthine is indicated in Table II. The total quantities of purine excreted as xanthine, hypoxanthine, and uric acid were relatively constant in the absence of treatment, amounting to over 3 mg. per milligram of creatinine excreted. Most of this was excreted as uric acid. The administration of allopurinol increased the amounts of the other oxypurines in the urine while decreasing the amounts of uric acid; however, the total amounts of oxypurines excreted after treatment were definitely decreased.

The data in Table II were obtained by the enzymatic method, which gives the sum of xanthine and hypoxanthine as milligrams of uric acid formed in the presence of xanthine oxidase and subsequently assayed spectrophotometrically with uricase. The purine from samples 9 and 17 were also separated by cation exchange chromatography and assayed individually. In the absence of treatment, the patient excreted 4.9 mg. of hypoxanthine and 1.9 mg. of xanthine. With treatment, he excreted 16.2 mg. of hypoxanthine and 52.8 mg. of xanthine. Expressed as milligrams of uric acid for comparison with the data of Table II, the total of xanthine plus hypoxanthine was 8.1 mg. before treatment and 78.3 mg. after, demonstrating close agreement between the values obtained by the two different methods. The molar ratio of hypoxanthine to xanthine was 2.9 in the control state and 0.34 in the presence of 100 mg. per day of allopurinol.

Enzyme activity. Assays of the activity of enzymes in erythrocytes which form nucleotides from free purines are indicated in Table III. One enzyme catalyzes the reaction of 5-phosphoribosyl-1-pyrophosphate with hypoxanthine or guanine to yield inosinic acid or guanylic acid (E.C. 2-4-2-8). A separate enzyme catalyzes the formation of adenylic acid from adenine and 5-phosphoribosyl-1-pyrophosphate (E.C. 2-4-2-7). Hypoxanthine guanine phosphoribosyltransferase, the former enzyme, was tested with both substrates. In the human erythrocyte, the activity of this enzyme with guanine was considerably greater than with hypoxanthine. Heat stability of this enzyme was tested in patient S. M. and in a control (L. S.) by carrying out the reaction at 37°C as well as at 60°C, and by preheating the enzyme preparation for 5 minutes at 80°C before assaying for enzyme activity at 60°C. No differences were found between patient and control.

The activity of adenine phosphoribosyl transferase is increased to approximately 170 per cent in patients with defective hypoxanthine guanine phosphoribosyl transferase activity. The activity of this enzyme was found to be increased to the same degree in patient S. M.

DISCUSSION

Hyperuricemia is an essential feature of gout. If present over a number of years, it leads to acute attacks of arthritis, tophaceous deposits, and nephropathy. Patients who ex-
Table II. Effect of allopurinol on the excretion of oxypurines

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Allopurinol (mg./day)</th>
<th>Xanthine plus hypoxanthine (mg./24 hr.)</th>
<th>Uric acid (mg./24 hr.)</th>
<th>Creatinine (mg./24 hr.)</th>
<th>Total oxypurines (mg./mg. creatinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>12.3</td>
<td>204.5</td>
<td>68.9</td>
<td>3.15</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>7.6</td>
<td>111.5</td>
<td>36.8</td>
<td>3.24</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>40.7</td>
<td>19.5</td>
<td>53.0</td>
<td>1.14</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>76.8</td>
<td>30.7</td>
<td>41.7</td>
<td>2.58</td>
</tr>
</tbody>
</table>

*The oxypurines hypoxanthine plus xanthine are expressed in milligrams of uric acid equivalents, which permits summation of the total oxypurines in the presence and absence of allopurinol.

Table III. Phosphoribosyl transferase activity in erythrocytes

<table>
<thead>
<tr>
<th>Subject*</th>
<th>Hypoxanthine</th>
<th>Guanine</th>
<th>Adenine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient S. M.</td>
<td>24,642</td>
<td>64,764</td>
<td>26,144</td>
</tr>
<tr>
<td>Control G. A.</td>
<td>23,592</td>
<td>69,680</td>
<td>15,502</td>
</tr>
<tr>
<td>Control L. S.</td>
<td>26,364</td>
<td>70,266</td>
<td>15,332</td>
</tr>
<tr>
<td>Patient R. S.</td>
<td>0</td>
<td>32</td>
<td>26,977</td>
</tr>
</tbody>
</table>

*S. M. was the subject of this report. R. S. was a patient with hyperuricemia and cerebral dysfunction previously reported. In each instance, the reaction was run for 20 minutes at 60 °C. The concentration of each substrate tested was 1.8 x 10^-4 M, containing 0.4 μc, or 888,000 d.p.m., of 14C.

The patient described in this report differs in a number of respects from those studied previously and is felt to represent a distinct disease which causes hyperuricemia very early in life. Clinical characteristics include below-average growth in length and weight, dysplastic teeth, failure to produce tears with crying, and mild mental retardation. In the absence of similar cases, it is not possible to decide whether or not these clinical characteristics are related to the metabolic abnormality. Fluorescent staining was noted on the teeth, but the dysplasia of the teeth appeared out of proportion to that seen with tetracycline and the period of known tetracycline administration was not consistent with the abnormalities seen. Undocumented tetracycline administration during pregnancy is of course possible, but there was no history that was even suggestive of this possibility. The association between abnormal behavior and abnormal purine metabolism in hypoxanthine guanine phosphoribosyl transferase deficiency suggests the possibility that the unusual behavior observed in this patient may also be related to a metabolic abnormality. His behavior has not been unusually aggressive. He has appeared autistic and at almost 4 years of age has still had no speech. These features could, of course, be related to his environment, but they have not been observed in others in the same homes and they are certainly out of proportion to his degree of retardation. Failure to produce tears may occur with absence of or infiltration in the lacrimal glands or with lesions of the facial nerve. However, the eyes were normally moist. These features are virtually pathog-
nomonic of dysautonomia. However, such patients, unlike ours, have a marked miotic response to conjunctival methacholine, an absent flare response to intradermal histamine, and absence of visible fungiform papillae.

The amounts of uric acid produced in this patient appeared to be somewhat less than those observed previously in hyperuricemic children. Plasma concentrations were the same. Urinary excretion of uric acid is greater in younger than older children, whether expressed per kilogram of body weight or per milligram of creatinine excreted. Excretion of urate in the patient at a level of 25 mg. per kilogram per day is about twice that found in controls but less than the 45 mg. per kilogram per day or 58 mg. per kilogram per day reported in somewhat older hyperuricemic children with self mutilation. Similarly, studies of the cumulative formation of uric acid from 14C-glycine documented an overproduction of purine that was 7 times the rates observed in controls but about a third of the rates found in the previously studied group of children. These findings indicate the presence of a different metabolic defect and that is consistent with the results of enzyme assay.

The excretion of xanthine and hypoxanthine also revealed some distinctive features. In the untreated state there was more hypoxanthine than xanthine in the urine; a molar ratio of hypoxanthine/xanthine of 2.9 is similar to that found in other hyperuricemic children. Ratios of less than 1.0 found in control children and adults with gout have suggested the possibility that under ordinary conditions xanthine which is formed from sources other than hypoxanthine, such as guanine or xanthylic acid, is the major precursor of urinary urate. Allopurinol reduces this ratio in all patients. However, the magnitude of reduction in this patient to 0.34 reflected a pattern of urinary oxypurines similar to allopurinol-treated controls, whereas the ratio seldom decreased below 1.0 in hyperuricemic children.

The effect of allopurinol on the total excretion of oxypurines is a significant decrease in most individuals with or without gout. However, in patients with deficient activity of hypoxanthine guanine phosphoribosyl transferase, total excretion of oxypurine does not fall after allopurinol. The most likely explanation of these data is that, in the presence of normal activity of the enzyme, hypoxanthine is readily utilized by conversion to its nucleotide. Enhanced utilization of exogenous hypoxanthine with allopurinol in man and enhancement by allopurinol of incorporation of hypoxanthine into nucleic acids in mice are consistent with this hypothesis. The normal decrease in total oxypurine excretion with allopurinol in our patient is in keeping with the normal activity of hypoxanthine guanine phosphoribosyl transferase.

The activity of adenine phosphoribosyl transferase is regularly increased in patients with decreased activity of hypoxanthine guanine phosphoribosyl transferase. However, it was not found to be increased in four adults with overproduction of purine and normal activity of hypoxanthine guanine phosphoribosyl transferase. The elevation of this enzyme in our patient was to the same degree as that observed in patients with defective hypoxanthine guanine phosphoribosyl transferase. These observations suggest the existence of mechanisms of control over the synthesis of enzymes involved in purine utilization. These mechanisms are not dependent simply on elevated concentrations of uric acid, overproduction of purine, or the activity of one enzyme. Elucidation of the metabolic abnormality in this patient could contribute to understanding of these and other mechanisms of interrelations in purine metabolism.

SUMMARY

A 3-year-old boy was described in whom hyperuricemia has been associated with mild developmental retardation, dysplastic teeth, absence of tears with crying, no speech, and odd, autistic behavior. Increased amounts of uric acid were excreted in the urine, and the formation of uric acid from 14C-labeled
glycine was seven times that of controls. Treatment with allopurinol decreased the amounts of uric acid in the blood and urine. With allopurinol there was a concomitant increase in the excretion of hypoxanthine and xanthine but the total amounts of oxy-purine in the urine fell normally, as did the molar ratio of hypoxanthine to xanthine. The activity of the enzyme hypoxanthine guanine phosphoribosyl transferase in the patient's erythrocytes was normal, but that of adenine phosphoribosyl transferase was increased.

We acknowledge the assistance of Mrs. Goldie Lieberman, P.H.N., and Dr. Daniel Ivler in the completion of these studies.

REFERENCES

CHAPTER 2.5

Mitochondria and Autism Spectrum Disorders

Robert K. Naviaux

The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, Pathology, University of California, San Diego School of Medicine, San Diego, CA, USA

OUTLINE

The Birth of Mitochondrial Medicine 179
What is Definite Mitochondrial Disease? 179
Epidemiology of Mitochondrial Disease 181
Definite Mitochondrial Disease is a Rare Cause of Autism Spectrum Disorders 181
Mitochondrial Disease and Autism Respond Differently to the Same Treatments 182
Nuclear Mitochondrial Genocartography and CNVs 184
Mitochondria and the Control of CNVs, DNA Instability, and Repair 185
Mitocellular Hormesis 186
Mitochondrial Functions in Metabolism 186
Mitochondrial Functions in Innate Immunity 186
Regression 187
Storm, Flare, and Fade Responses 188
The Possible Role of Purinergic Signaling in Autism Spectrum Disorders 189
Summary 190
Acknowledgments 190

THE BIRTH OF MITOCHONDRIAL MEDICINE

The first clinical and biochemical description of mitochondrial disease was reported by Rolf Luft in 1962 (Luft et al., 1962). Only two patients with Luft disease have been described to date (DiMauro et al., 1976). Both were interesting examples of intellectually normal adults (both women) with a rare form of mitochondrial over-function associated with high oxygen consumption rates, hypermetabolism, heat intolerance, resting tachycardia, hyperhidrosis, and death in middle age from respiratory muscle failure. Although mitochondria were first reported to contain their own DNA in 1963 by Margit and Sylvan Nass (Nass and Nass, 1963), it was another 25 years before the first DNA mutations were found that caused mitochondrial disease. We date the dawn of the molecular age of mitochondrial medicine to 1988, when Doug Wallace and colleagues reported the first mitochondrial DNA (mtDNA) mutations that cause disease (Wallace et al., 1988a, b). In the same year, Holt (1988) and Zeviani (1988) and their colleagues reported the first disease-associated deletions in mtDNA. Today, we know of more than 300 clinically, biochemically, or molecularly distinct forms of mitochondrial disease (Naviaux, 2004).

WHAT IS DEFINITE MITOCHONDRIAL DISEASE?

Mitochondrial disorders are among the most difficult diseases to diagnose in all of medicine. They constitute a large group of clinically heterogeneous disorders that have defied all efforts to find a universal biomarker
or universal symptom. In most cases, a child with mitochondrial disease is completely healthy at birth, but develops symptoms in a step-wise fashion, weeks to years later. In rare cases, symptoms may not appear until 70 years of age (Weiss and Saneto, 2010). New symptoms typically appear over time, so that at any one time early in the disease, not all symptoms are present. This makes early diagnosis challenging or impossible. Mitochondrial diseases share the one fact that they are fundamentally bioenergetic and metabolic disorders that result from defects (under-function) in oxidative phosphorylation – the ability to make ATP in mitochondria from electrons, hydrogen, and oxygen. This clinical heterogeneity has led to the widely quoted axiom that mitochondrial disease can produce any symptom, in any organ, at any age (Munnich et al., 1996).

Mitochondrial under-function and over-function disorders are clinically distinct. Historically, the field of mitochondrial medicine has focused on the disorders of under-function. The disorders of over-function will be addressed later in this chapter. Mitochondrial under-function diseases can be divided into primary and secondary forms. Primary mitochondrial diseases are genetic disorders caused by mutations in either nuclear or mitochondrial DNA that affect the proteins of the mitochondrial respiratory chain. For this reason, they are sometimes called respiratory chain (RC) disorders. Secondary mitochondrial diseases are ecogenetic disorders that result from a combination of environmental and genetic factors. The distinction between primary and secondary mitochondrial disorders is clinically important because it carries implications for genetic counseling. Primary disorders are monogenic and carry recurrence risks associated with known Mendelian and maternal patterns of genetic transmission. Secondary disorders are rarely monogenic and require exposure to one or more environmental factors such as a drug, toxicant, or viral infection. Counseling for recurrence risks of secondary mitochondrial and other ecogenetic disorders is empiric.

When a single biomarker, sign, or symptom is unable to establish a disease diagnosis in a deterministic manner, medicine has historically developed probabilistic methods for diagnosis. The modified Walker criteria (Bernier et al., 2002) have been widely adopted to group or stratify patients according to the likelihood of genetic forms of mitochondrial disease. Using these criteria, patients are given a diagnosis of definite, probable, or possible mitochondrial disease (Table 2.5.1). If a causal DNA mutation is not found, a muscle biopsy is typically required to confirm a definite diagnosis of mitochondrial disease. The criteria for ‘definite’ mitochondrial disease have been used

<table>
<thead>
<tr>
<th>Mitochondrial disease diagnosis</th>
<th>Diagnostic requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite</td>
<td>≥ 2 major, or 1 major + 2 minor criteria</td>
</tr>
<tr>
<td>Probable</td>
<td>1 major + 1 minor, or ≥ 3 minor criteria</td>
</tr>
<tr>
<td>Possible</td>
<td>1 major, or 1 minor clinical + 1 other minor criterion</td>
</tr>
</tbody>
</table>

Major criteria

- Clinical: Classic multisystem mitochondrial phenotype with progressive clinical course, or positive family history
- Histology: ≥ 2% Ragged-red fibers (RRF)
- Enzymology: ≥ 2% COX-negative fibers if < 50 yrs old; or ≥ 5% COX-negative fibers if ≥ 50 yrs old; or < 20% any respiratory chain (RC) enzyme or polargraphic activity; or < 30% in cell culture, or 20–30% in ≥ 2 different tissues
- Functional: Fibroblast ATP synthesis ≥ 3 SD below the mean
- Molecular: Pathogenic mtDNA or nuclear DNA abnormality

Minor criteria

- Clinical: Incomplete mitochondrial phenotype
- Histology: 1–2% RRF if 30–50 years old, or any RRF if < 30 years, or widespread ultrastructural abnormalities
- Enzymology: Antibody-based demonstration of defective RC subunit expression, or 20–30% RC activity in a tissue, or 30–40% RC activity in a cell line, or 30–40% RC activity in ≥ 2 tissues
- Functional: Fibroblast ATP synthesis 2–3 SD below the mean, or unable to grow in galactose
- Molecular: mtDNA or nuclear DNA abnormality of probable pathogenicity
- Metabolic: ≥ 1 Abnormal metabolic indicator of RC function (e.g., lactate, 31P-MRS)

Tables summarized from Bernier et al., 2002.
to determine the epidemiology of mitochondrial disease.

EPIDEMIOLOGY OF MITOCHONDRIAL DISEASE

The epidemiology of mitochondrial disease has evolved rapidly over the past 15 years. The first estimates of its prevalence were as low as 1:33,000 (Applegarth et al., 2000). These lower estimates were hampered by the absence of consistent standards for diagnosis and early stages of the rapidly growing awareness of the clinical heterogeneity of mitochondrial diseases. Most children with mitochondrial disease before the year 2000 died without a proper diagnosis. The best figures now available are that 1 in 2,000 children born each year in the US will develop definite mitochondrial disease in their lifetimes. About half of these children (1:4,000) will develop symptoms in the first 10 years of life (Naviaux, 2004). The other half (1:4,000) will remain healthy, without any symptoms until after age 10. Many adult mitochondrial disorders do not manifest until 20–50 years of age, and in rare cases not until the 70s (Weiss and Saneto, 2010). About half of adult mitochondrial disease is caused by mtDNA mutations and half by nuclear DNA mutations. A recent study of mitochondrial disease among adults in the UK found about 1 in 4,000 nuclear DNA mutations. A similar study of mitochondrial disease in the US will develop definite mitochondrial disease in their lifetimes. About half of these children (1:4,000) will develop symptoms in the first 10 years of life (Schaefer et al., 2008). The growing awareness that mutations in nuclear DNA can lead to many different adult mitochondrial disorders with many different symptoms (Cohen and Naviaux, 2010; Saneto and Naviaux, 2010) means that the prevalence figures for adult mitochondrial disorders may continue to rise over the next few years.

About 15% of pediatric mitochondrial disease is caused by mtDNA mutations (Rotig et al., 2004) and 85% is caused by nuclear DNA mutations that are inherited in a Mendelian fashion. Most of these are inherited as autosomal recessive disorders, but X-linked and dominant forms are also well known. Over 200 point mutations and 400 deletion break points have been described in mitochondrial DNA that lead to disease (DiMauro et al., 2006) and over 60 nuclear genes have been identified with over 500 disease-causing mutations (Falk, 2010; Haas et al., 2008; Wong, 2010). Excellent diagnostic algorithms have recently been published to assist physicians in choosing which genes to select for DNA testing to best explain a particular clinical presentation (Wong, 2010; Wong et al., 2010). When an mtDNA mutation is suspected, full mitochondrial DNA sequencing by NextGen methods is now available and recommended (Kauffman et al., 2012). When a Mendelian pattern of transmission is identified in a pedigree and the probability of finding one of the more common nuclear gene causes is low, exome capture and NextGen sequencing of 362 to 524 nuclear mitochondrial genes is available (Shen et al., 2011; Vasta et al., 2009).

DEFINITE MITOCHONDRIAL DISEASE IS A RARE CAUSE OF AUTISM SPECTRUM DISORDERS

The first evidence of a mitochondrial DNA mutation that could cause autism spectrum disorders (ASD) was published in 2000 (Graf et al., 2000). In this report, the authors found a heteroplasmic point mutation in the mitochondrial tRNA for lysine (G8362A) that was the cause of Leigh syndrome in a 6-year-old girl with a history of normal development in the first year of life, with the onset of ataxia and myoclonus at 15 months of age. She had classic, symmetric T2 signal abnormalities in the basal ganglia and brain stem, characteristic of Leigh syndrome. Her speech and language were normal except for dysarthria and moderate intellectual impairment. The mtDNA mutation was associated with a respiratory chain defect in muscle complex IV. Her younger brother was diagnosed with ASD after developmental regression at 1.5–2 years of age. By 3.5 years of age, he had no functional speech or language, was hyperactive, and displayed bouts of self-injurious behavior. He carried the same tRNA lysine mutation as his older sister, but at lower level of heteroplasmy (61% vs. 86%). In sharp contrast to his older sister with Leigh syndrome, the muscle biopsy of the brother with autism showed a paradoxical hyperactivity in complex I that was 250% of normal (200.6 vs. 81; SD of 29.4; normalized for citrate synthase activity) (Graf et al., 2000). Recently, a group of children with hyperactivity of complex IV and autism has been described (Frye and Naviaux, 2011). Some patients with complex IV hyperactivity and autism have been found to have a mutation in the mitochondrial calcium-regulated aspartate-glutamate carrier (AGC1) (Palmieri et al., 2010).

In March 2008, the connection between mitochondria and autism was catapulted into the national spotlight when news media picked up the story of Hannah Poling (Stobbe, 2008; Wallis, 2008), a little girl who had mitochondrial disease and developed an ASD within weeks of receiving several immunizations at 1.5 years of age in 2000 (Poling et al., 2006). In June 2008, the US National Institute of Mental Health (NIMH), National Institute of Child Health and Human Development (NICHD), Centers for Disease Control and Prevention (CDC), and Food and Drug Administration (FDA) rapidly organized a public, special topic symposium on Mitochondrial Disease and Autism in Indianapolis, IN, in conjunction with many different symptoms (Cohen and Naviaux, 2008)
with the annual meeting of the United Mitochondrial Disease Foundation (UMDF) (Gorski, 2008). This case is unusual for definite forms of mitochondrial diseases, which typically do not show regression after routine immunizations (Verity et al., 2010; 2011).

Now, in 2012, the connection between mitochondrial dysfunction and ASD (Haas, 2010; Rossignol and Frye, 2011) remains one of the freshest new leads in nearly 70 years of autism research since autism was first identified as a childhood disease by Leo Kanner in 1943 (Kanner, 1943). However, as evidenced in an epidemiological study in mainland Portugal and the Azores, only 5% of children with ASD have definite forms of mitochondrial disease (Oliveira et al., 2007), and this estimate would benefit from replication in independent epidemiological cohorts. The classic forms of primary mitochondrial disease have a very different clinical character to that found in children with ASD. Mitochondrial disease patients often have devastating, multi-organ system disorders with mortalities as high as 10–50% per year after the onset of the first symptoms (Cohen and Navaiaux, 2010; Navaiaux, 1997; Rahman et al., 1996). This mortality far exceeds the rate of 0.2% deaths per year (26 of 342 ASD patients studied over 36 years) observed in ASD (Mouridsen et al., 2008). In addition, children with mitochondrial disease are often found to have decreased sensitivity to sound, touch, and light, decreased muscle strength, decreased activity, with normal social engagement. Hyperactivity and repetitive movements are rare in definite mitochondrial disease. These symptoms are in sharp contrast to those found in children with ASD.

The weight of the evidence collected since 2000 now points to a more subtle connection between mitochondrial function and ASD. Simple mitochondrial under-function does not cause either narrowly defined autism or ASD, with rare exceptions (Shoffner et al., 2010; Weissman et al., 2008). Several cases of mitochondrial respiratory chain over-function and ASD have now been described (Frye and Navaiaux, 2011; Graf et al., 2000). This is likely to be an under-reported phenomenon, since most specialists in mitochondrial medicine dismiss respiratory chain enzyme hyperactivity (> 165% of controls) as incidental, or as compensation for another, often unmeasured, defect. In either case, respiratory chain over-function is not a cause of primary mitochondrial disease. The relative proportions and overlaps between children with autism and mitochondrial disease are summarized in Figure 2.5.1.

MITOCHONDRIAL DISEASE AND AUTISM RESPOND DIFFERENTLY TO THE SAME TREATMENTS

If two diseases have the same cause, they should respond similarly to the same treatments. The fact that this is not the case with definite mitochondrial disease and ASD is further evidence that these disorders should not be lumped together. Table 2.5.2 lists four cases that distinguish mitochondrial disease on the one hand and ASD on the other. Valproic acid (depakote, divalproex) is an 8-carbon branched-chain fatty acid that is widely used to treat seizures and other disorders in ASD (Hollander et al., 2010), but is known to produce mitochondrial toxicity in the large majority of patients with mitochondrial disease (Saneto et al., 2010). The only case of mitochondrial disease in which valproic acid therapy is usually well tolerated and effective is in MERRF (myoclonus, epilepsy, with...
ragged-red fibers) when given with L-carnitine supplementation. This is a form of mitochondrial disease that is characterized by massive mitochondrial proliferation and may have some symptoms that result from an element of metabolic hyperfunction, in addition to the known oxidative phosphorylation deficiency.

The response to fever is also different in mitochondrial disease patients and most patients with ASD. Infections and fever caused over 70% of the neurodegenerative events observed in children with mitochondrial disease (Edmonds et al., 2002). However, in a prospective study of 30 children with autism and 30 controls, Andy Zimmerman and his colleagues at the Kennedy Krieger Institute found that 83% (25 of 30) of the children with ASD improved in at least one area related to hyperactivity, stereotypy, or speech, although lethargy scores were worse (Curran et al., 2007) (Table 2.5.2). The curious ‘awakening’ of ASD during fever is short-lived, as the children returned to their previous state with the resolution of the infection and fever. Infection and fever are also known to produce transient improvements in some patients with schizophrenia. The history of the role of fever, cytokines, and innate immunity in the pathogenesis of disease has been reviewed (Patterson, 2009). How can fever be involved both in the cause of autism and in its transient improvement? We will return to this question later in this chapter in the sections on innate immunity and mitochondrial hormesis.

Hyperbaric oxygen treatment was shown to have neutral (Jepson et al., 2011) or beneficial (Rossignol et al., 2009) effects on children with ASD. In contrast, most ASD is thought to be multifactorial, with genes of major and minor effect interacting with environmental and additional factors (see other chapters in this section). Where genes meet the environment is metabolism, and mitochondria are the hub of the wheel of metabolism. The remainder of this chapter focuses on the metabolic functions of mitochondria that are involved in innate immunity. Cellular defense is one of the most ancient functions of mitochondria. By considering the responses of genes and

TABLE 2.5.2 Definite Mitochondrial Disease and Autism Respond Differently to the Same Treatments

<table>
<thead>
<tr>
<th>Treatment or feature</th>
<th>Definite mitochondrial disease</th>
<th>Autism spectrum disorders</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproate</td>
<td>Deterioration (except MERRF)</td>
<td>71% improved</td>
<td>Hollander et al., 2010</td>
</tr>
<tr>
<td>Fever</td>
<td>Deterioration (fade response)</td>
<td>83% improved</td>
<td>Curran et al., 2007</td>
</tr>
<tr>
<td>Hyperbaric O₂</td>
<td>Deterioration</td>
<td>30–80% improved, or no net benefit</td>
<td>Jepson et al., 2011; Rossignol et al., 2009</td>
</tr>
<tr>
<td>Recovery (spontaneous or therapy-associated)</td>
<td>Very rare (LHON, reversible COX tRNA-Glu)</td>
<td>3–25%</td>
<td>Helt et al., 2008</td>
</tr>
</tbody>
</table>

LHON = Leber’s hereditary optic neuropathy.
metabolic processes to danger signals in the environment, we can get a little closer to understanding the complex link between mitochondria and ASD.

NUCLEAR MITOCHONDRIAL GENOCARTOGRAPHY AND CNVS

The mitochondrial proteome consists of about 1,500 proteins (Pagliarini et al., 2008) encoded by over 1,000 nuclear genes (Figure 2.5.2) and 13 proteins made by mtDNA. Every one of the 10^{14} cells of the body contains different mitochondria, that are specialized to meet the metabolic demands of that cell. Therefore, there is a different mitochondrial network, with a different proteome, with different post-translational modifications for every different cell in the body. This remarkable feat is accomplished by regulating both nuclear and mitochondrial gene expression in tissue-specific ways (Johnson et al., 2007), and by making dozens of post-translational modifications in proteins that fine-tune metabolism according to the time of day, availability of nutrients, toxin exposure, microbial infection, and even the season of the year (Staples and Brown, 2008; Zhao et al., 2011). The chromosomal location of each of these 1,500 proteins can be mapped. On average, each of our 23 chromosomes contains about 20–70 mitochondrial genes (Figure 2.5.2).

Recent studies have shown that about 4% of children with autism have rare DNA copy number variations (CNVs) that might contribute to disease, compared to just 2% of typically developing, age-matched controls (e.g., Pinto et al., 2010; see also Chapters 2.1 and 2.2). Most of these CNVs were duplications, not deletions, although there is good evidence that deletions are more likely associated with ASD and other neurodevelopmental disorders. Interestingly, the same CNVs found to be associated with ASD have also been found to be enriched in patients with schizophrenia (e.g., Guilmatre et al., 2009; see also Chapters 2.1 and 2.2), suggesting that disruption of brain development by CNV can contribute to a myriad of neurodevelopmental disorders, likely in concert with other genetic or environmental factors (see Chapter 2.1). Analysis of the genes affected by recurrent CNVs and single-gene defects in ASD highlights the complex etiology of ASD with

![Figure 2.5.2](https://example.com/figure2.5.2.png)

FIGURE 2.5.2 Mitochondrial genocartography. Each of the 23 human chromosomes illustrated is associated with four vertical bars (labeled 1–4 over chromosome 1). Bar #1 in blue illustrates the number and position of nuclear mitochondrial genes. Over 1,000 of these are known. Bar #2 illustrates the conventional G-banding pattern of each chromosome. Bar #3 illustrates the density of non-mitochondrial genes on the chromosome. Bar #4 illustrates the density of mitochondrial genes on the chromosome. Each chromosome contains 20–70 mitochondrial genes. When copy number variations (CNVs) occur, the mitochondrial genes in the affected areas are also varied, leading to gene dose effects that can alter any of over 500 bioenergetic and metabolic functions of mitochondria in the cell.

2. ETIOLOGY OF AUTISM SPECTRUM DISORDERS
multiple organelles and systems implicated (Chapter 2.1). The interpretation of duplication CNVs is complicated, because typically developing children can have the same CNVs, consistent with reduced impact and/or penetrance of duplications (Pinto et al., 2010).}

MITOCHONDRIA AND THE CONTROL OF CNVs, DNA INSTABILITY, AND REPAIR

Gene duplication and deletion events are regulated by cross-over events that lead to mitotic recombination (Matos et al., 2011). It is known that changes in mitochondrial DNA copy number have dramatic effects on nuclear DNA repair and genomic instability (Singh et al., 2005). What are some of the factors that control mtDNA copy number in cells? TLR4 signaling after LPS signaling associated with bacterial infection leads to mtDNA damage and depletion (Suliman et al., 2005). Significant amounts of free fatty acids can also act as endogenous ligands of the TLR4 receptor during periods of metabolic mismatch associated with disorders like diabetes (Schaefller et al., 2009). Interferon released during infections activates the cellular RNAse L that can traffic to mitochondria and destroy mitochondrial RNA (Chandrasekaran et al., 2004). Even certain viruses, like herpes simplex virus, encode a special DNAse (UL12.5) that travels to mitochondria and produces mitochondrial DNA damage and depletion (Corcoran et al., 2009). It turns out that many infectious agents target mitochondria in an effort to downregulate oxygen consumption, which inhibits DNA synthesis and replication.
A spectrum of environmental neurotoxicants such as bisphenol A (BPA), polychlorinated biphenyls (PCBs) (Jolous-Jamshidi et al., 2010), and certain polychlorinated diphenyl ethers (PBDEs) (Ashwood et al., 2009), known to cause autism-like behaviors in mouse and rat models, also can regulate mitochondrial function either directly or indirectly via alterations in cellular calcium handling (Coburn et al., 2008). Although it has not yet been experimentally verified, it seems plausible that infection, environmental neurotoxicants, and/or metabolic stress can each produce changes in mitochondrial function that might alter the somatic control of mitotic recombination and CNV formation rates during embryogenesis and early childhood development. Acutely this can produce a transient increase in somatic CNV formation.

MITOCELLULAR HORMESIS

Chronically, mitochondria are known to help the cell adapt to past metabolic stresses by producing long-term changes in cellular reactivity in a process called mitochondrial hormesis (Ristow and Zarse, 2010). When both mitochondrial and cellular mechanisms adapt, the result is mitocellular hormesis. Mitocellular hormesis in response to xenobiotics produces long-term up-regulation of cellular oxidation, inactivation, and excretion pathways like cytochrome P450, sulfation, and glucuronidation (Xu et al., 2005). Mitocellular hormesis in response to infectious or inflammatory agents activates innate immune pathways that increase reactive oxygen species (ROS) production, activate cell signaling and cytokine responses, alter folate, B12, and other vitamin metabolism, and change the gene expression and epigenetic programs of the cell. The response to cellular stress is invariably biphasic. First there is an acute inhibition, followed by long-term adaptation, much like the metabolic memory response associated with exercise (Ji et al., 2006). When the triggering stimulus is inhibitory, or surpasses the mitochondrial capacity to process the resulting metabolites, then mitochondrial proliferation and hyperfunction results (Sano and Fukuda, 2008). If proliferation and mitochondrial hyperfunction occur in neurons or microglia in the brain, then persistent low-level excitotoxicity and neuroinflammation can result. What is the final common denominator that maintains this cycle of metabolic innate immune activation, excitotoxicity, and inflammation?

MITOCHONDRIAL FUNCTIONS IN METABOLISM

Mitochondria are located at the hub of the wheel of metabolism. They perform over 500 different functions in the cell. Respiratory chain proteins constitute about 10–20% of the mitochondrial proteome (Pagliarini et al., 2008). The other 80–90% of mitochondrial proteins play roles in hundreds of other pathways, including in innate immunity, cellular defense, amino acid transport, calcium metabolism, iron metabolism, copper metabolism, reductive and oxidative stress metabolism, hydrogen sulfide and nitric oxide metabolism, fuel sensing, translation, protein folding and assembly, autophagy, microtubule association, folate metabolism, porphyrin metabolism, steroid metabolism, glycogen metabolism, and DNA repair. None of these non-oxidative phosphorylation functions is routinely measured when a child is evaluated for mitochondrial disease. Therefore, a large part of mitochondrial function has never been systematically measured in children with ASD because it relates to functions outside the respiratory chain, and produces symptoms that are not characteristic of definite mitochondrial disease.

It can be stated simply that metabolism is the language of the cell. Figure 2.5.2 illustrates some of the metabolic pathways that characterize a liver cell. The methods of mass spectrometry and metabolomics have allowed investigators to ‘eavesdrop’ on the collective conversation of cells in ASD. These early studies have identified abnormalities in glutathione (James et al., 2004), taurine, glutamate, hippurate (Yap et al., 2010), and polyunsaturated phospholipid metabolism (Pastural et al., 2009). The language of metabolism is spoken using small molecule metabolites as the words. This is a universal language of life on Earth, with many dialects that reflect the specialization of organisms adapting to their environment. Despite its universal usage, this language of metabolism is still largely untranslated. Future studies using the tools of mass spectrometry will help expand our lexicon of metabolites and their meanings, and help us to interpret the conversation of metabolism in children with ASD.

MITOCHONDRIAL FUNCTIONS IN INNATE IMMUNITY

One of the most ancient functions of mitochondria is in cell defense. I have called this the ‘secret life of mitochondria’ because it is largely separate from oxidative phosphorylation. When a cell is attacked by a virus, a cascade of events is initiated that is designed to protect the cell from injury, limit viral replication, and warn neighboring cells of the intrusion. Healthy cells can increase or decrease their response to a given infection or inflammatory stimulus by a process of priming. Primed cells have adopted a more defensive set-point,
sacrificing certain differentiated cell functions for the ability to respond rapidly to an attack. When this happens in the brain, excitotoxicity and inflammation can result. When it happens in gut-associated lymphoid tissue (GALT), then abnormally aggressive responses to the normal gut microbiome can result. If a cell is injured or broken in the attack, then a large number of molecules are released into the extracellular space as ‘danger’ signals. Many of these are present in high concentrations within mitochondria. These danger signals are collectively called damage-associated molecular patterns (DAMPs). ATP is a DAMP (Zhang et al., 2010). Inside the cell, ATP concentrations range from 1–5 mM depending on the cell type. Each cell maintains a pericellular halo of ATP in the 1–5 μM range that interacts with a family of ancient cell-surface proteins called purinergic receptors. The possible role of purinergic signaling in ASD will be discussed in a later section.

Another reason that a number of mitochondrial molecules act as DAMPs is the evolutionary origin of mitochondria as the ancestors of ancient, free-living gram-negative bacteria (Cavalier-Smith, 2006). Mitochondrial DNA itself contains unmethylated CpG dinucleotides that resemble bacterial DNA and activate TLR9. Proteins synthesized in mitochondria start with prepeptide receptor (FPR1, and FPRL1) and activate innate immunity (West et al., 2011). The regulation of intracellular calcium release from the endoplasmic reticulum to mitochondria through the IP3 receptor and ryanodine receptor channel is a crucial point of regulation of the metabolic response to infection and stress (Zecchini et al., 2007). Recent studies have suggested that abnormalities in mitochondrial calcium handling (Gellerich et al., 2010) may be a common denominator in ASD (Napolioni et al., 2011).

REGRESSION

Regression is common in mitochondrial disease in response to infection. The first report to quantify the risk of neurodegeneration with infection in definite mitochondrial disease was published in 2002 (Edmonds et al., 2002). The authors of this paper found that 60% of children with mitochondrial disease suffered neurodegenerative events (regressions). A total of 72% of the regression events were associated with infections that occurred within two weeks before the onset of regression. None of the regression events in children with mitochondrial disease were associated with childhood immunizations. A total of 28% of the regressions occurred spontaneously, with no identifiable trigger. Regressions occurred at any age, and were not confined to the first two to three years of life. The form of regression was one of a ‘fade’ response that occurred 2–10 days after the peak fever associated with the illness. Most often the neurodegeneration occurred during an otherwise normal recovery period after a common childhood infectious illness. Over a period of a few days, the child became obtunded or encephalopathic, or experienced a stroke-like episode, new-onset seizures, or lost the ability to walk or talk, lost vision, developed swallowing problems or gastrointestinal dysmotility, or lost other developmental milestones. In most cases, the child was able to make a slow and sometimes complete recovery over several months, but often there were residual deficits. In less common cases, there was a slow progression to encephalopathy, coma, and death over two to three months.

Regression is less common in ASD and more subject to large differences in estimates of its prevalence based on small differences in the definition of regression. Regression occurred in 15% of 333 children 2–5 years of age with ASD reported by Hansen et al. (2008). The criteria for regression were loss of both language and social skills. The loss of social skills was found to be a more sensitive indicator for regression and 26% of children had either language loss or loss of social skills. 59% percent of the 333 children in this CHARGE study had no history of regression. The severity of the neurological regressions in ASD was much less, and their character was different to those in mitochondrial disease. Strokes and permanent weakness are rare in ASD, and no deaths were reported.

The role of mitochondrial dysfunction as a risk factor for regression in a subgroup of children with ASD was recently highlighted in a paper by Shoffner et al. (2010). A group of 28 children with both mitochondrial respiratory chain disease and ASD were selected for retrospective analysis. The authors found that 61% had a history of a neurodegenerative episode that eventually grew into the features of ASD. 39% of children developed ASD gradually, without a history of regression. When regression occurred, 71% happened within two weeks of a fever of over 101°F. These proportions were similar to those originally reported by Edmonds et al. in children without autism (Edmonds et al., 2002). In four children (14% of the 28), the fever occurred after routine vaccination. In the remaining eight children, fever came with a routine infection or was a fever of unknown origin. This study emphasizes the fragile nature of children with mitochondrial disease. The observation that four children regressed after immunization is rare in mitochondrial disease in general. Most children with classic forms of mitochondrial disease tolerate immunization well.
STORM, FLARE, AND FADE RESPONSES

Careful attention to the timing and character of an adverse reaction to infection or immunization can provide crucial insight into the cellular mechanisms involved. Table 2.5.3 illustrates the three classes of adverse reaction. The cytokine ‘storm’ response requires prior immunization with the triggering antigen. Perhaps the most famous example is the tragic case of Jesse Gelsinger who developed a cytokine storm within hours of receiving gene therapy with an adenovirus vector and died two days later (Wilson, 2009). Another widely recognized example of a perfect storm of cytokines occurs with Dengue shock syndrome (Pang et al., 2007), in which a second exposure to Dengue virus produces a severe memory, or anamnestic, response that can lead to shock and death.

When children with the common forms of mitochondrial disease suffer a regression, it is most often a ‘fade’ response (Table 2.5.3). The fade response is typically delayed for 2–10 days after a fever resolves (Edmonds et al., 2002), similar to the time course found in Reye syndrome in the 1980s (Partin, 1994). In the case of Reye syndrome, the early metabolic profile of highly elevated short chain fatty acids that are normally fully metabolized in mitochondria is evidence that mitochondria are catastrophically downregulated early in the disease process. Recovery from Reye syndrome was associated with the removal of short chain fatty acids like propionate, isobutyrate, and isovalerate (Trauner et al., 1997) indicating that mitochondrial function was restored. Parents of children with mitochondrial disease will typically report that their child was getting better from their cold or flu, when, suddenly, their consciousness fades. The child can become difficult to fully awaken, or will stop walking, stop talking, stiffen or lose muscle tone, or have a seizure, or a stroke-like episode. The fade response involves an energy failure, and can lead to a series of neurodegenerative events and even death over the next two to three months, or to a self-limited event like a stroke-like episode that gradually gets better.

In contrast, autistic regression that is associated with unrecognized mitochondrial dysfunction appears to be more of a ‘flare’ response, similar to that suffered by Hannah Poling and described in the scientific literature (Poling et al., 2006). A flare response typically occurs early, at the peak of the fever and inflammatory response, within two to three days of infection (Table 2.5.3). During a flare response, there is a high fever, often over 102°F, with hyper-irritability, crying, incontinence, a disrupted sleep-wake cycle, and a refusal to walk in children who might otherwise appear to be physically able to walk, choosing rather to crawl (Poling et al.,

<table>
<thead>
<tr>
<th>Character of the adverse reaction</th>
<th>STORM</th>
<th>FLARE</th>
<th>FADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing</td>
<td>2–12 hrs, or 2–6 days after exposure</td>
<td>Peaks at 48–72 hrs ~ coincides with peak symptoms of infection</td>
<td>Peaks at 2–10 days after peak symptoms of infection</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Fever, HA, abd/low back pain, T-cell activation, widespread apoptosis, TNFα/IFNγ synergy, +/− ADCC, complement C5a, shock, histamine, DIC, hemorrhage</td>
<td>Stereotypical ‘sickness behavior’; or high fever ≥ 102°F, hyper-irritability, inconsolability, intermittent high-pitched screaming, delirium, opisthotonus, GI hypermotility with diarrhea</td>
<td>No fever or low-grade fever, ataxia, gastroparesis, aphasia or hypophasia, stroke-like episodes, change in muscle tone (hypo- or transient hypertonia 2 to CNS hypofunction)</td>
</tr>
<tr>
<td>Sequelae</td>
<td>Death in 4–14 days; or slow recovery over 2–6 months, sometimes with permanent disability</td>
<td>Self-limited course, normal vaccination conversion rate; or loss of milestones, with appearance of autism spectrum behaviors over 3–6 months. May improve transiently with fever later.</td>
<td>Self-limited neurodegeneration, poor vaccination conversion rate, slow recovery; or progressive complications and multi-organ system dysfunction, leading to death in 1–4 months</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Anamnestic response</td>
<td>Exaggerated innate immune response, possible mitochondrial hyperfunction</td>
<td>Mitochondrial failure</td>
</tr>
<tr>
<td>Examples</td>
<td>Jesse Gelsinger (Wilson, 2009); Dengue shock (Pang et al., 2007)</td>
<td>Hannah Poling (Poling et al., 2006)</td>
<td>Reye syndrome (Partin, 1994)</td>
</tr>
</tbody>
</table>

Abd = abdominal; CNS = central nervous system; GI = gastrointestinal; IFN = interferon; TNF = tumor necrosis factor.

TABLE 2.5.3 Careful Attention to the Timing and Symptoms of an Adverse Reaction After Infection or Immunization Provides Insights into the Underlying Cause
Following a flare response, there can be a gradual evolution of other problems from persistent gastrointestinal problems and diarrhea, a gradual loss of language over two to three months, with the onset of repetitive movements, to gaze and social avoidance (Poling et al., 2006). It must be emphasized that a flare response is not simply a high fever, or even a dramatic reaction to a high fever, like a febrile seizure. It is a multisystem inflammatory response that carries a risk of autistic regression in genetically susceptible children. Is it possible that an unusually high fever is because of a primed state of innate immunity associated with an element of mitochondrial hyperfunction? Mutations in the ryanodine receptor known to cause calcium release and mitochondrial heat production by uncoupling in malignant hyperthermia result from induction of primed mitochondria (Yuen et al., 2012). Systemic inflammation not only triggers calcium release, but is a known trigger of excitotoxic amounts of ATP in the brain (Gourine et al., 2007).

THE POSSIBLE ROLE OF PURINERGIC SIGNALING IN AUTISM SPECTRUM DISORDERS

How might all of the facts about the complex connection between mitochondria and ASD be integrated into a unified theory of pathogenesis? One possibility might be called a purinergic theory of autism. The metabolism of a child adjusts dynamically during development to match the changing environment by the process of metabolic matching. Changes in nutrition, infectious agents, environmental toxicants, and activity each cause metabolic mismatch that permits the cells and tissues to adapt to the current environment, and to strengthen the response to future encounters. Rebound growth after transient metabolic inhibition can result in changes in the time-dependent choreography of brain development. Mitocellular hormesis to severe stress can produce a chronic and pathological increase in many components of mitochondrial metabolism, and to an increase in extracellular ATP (eATP). eATP is a damage-associated molecular pattern (DAMP) that binds to purinergic receptors (P2X and P2Y) on all cells, triggering innate immunity and inflammation, alters brain synapse formation, and contributes to neurochemically mediated excitotoxicity. When this happens during vulnerable periods of brain development, between the late first trimester and the first two years of life, the risk of ASD might be increased.

Several excellent reviews on extracellular nucleotide signaling via purinergic receptors have recently appeared (Abbracchio et al., 2009; Burnstock and Verkhratsky, 2009; Surprenant and North, 2009). P2X receptors are ATP-gated cation channels that regulate calcium conductance. These are known as the ionotropic purinergic receptors. P2Y receptors are G-protein coupled receptors (GPCRs), collectively called the metabotropic purinergic receptors. In humans, there are seven subclasses of P2X receptor, designated P2X1–7. There are eight subclasses of P2Y receptor, designated P2Y1–8. Figure 2.5.4 shows a diagram of purinergic regulation of synaptogenesis. ATP is a co-neurotransmitter at every synapse studied to date. Mitochondria are the ultimate source of extracellular ATP (eATP). The activity and usage of each synapse regulates that concentration of eATP surrounding the synaptic junction. Microglial cells monitor synaptic activity and respond to eATP to either stabilize or inhibit synapse formation. Excitotoxicity results in excessive eATP that binds to microglial purinergic receptors and stimulates neuroinflammation. ER = endoplasmic reticulum; IL = interleukin; NO = nitric oxide.
designated P2Y1, 2, 4, 6, 11, 12, 13, and 14 (P2Y 3, 5, 7, 8, 9, and 10 were subsequently removed from the list) (Jacobson and Boeynaems, 2010). P2X receptors are all ATP-gated. P2Y agonists differ according to subtype. ATP, UTP, ADP, UDP, and UDP-glucose are used selectively by different subtypes. EC50s are typically in the micromolar range. Nucleotide signaling via P2X and P2Y receptors mediates a large number of biological phenomena of relevance to autism. These include normal synaptogenesis and brain development (Abbracchio et al., 2009), regulation of the PI3K/AKT pathway (Franke et al., 2009), control of immune responses and chronic inflammation (Pelegrin, 2008), gut motility (Gallego et al., 2008), gut permeability (Matos et al., 2007), taste chemosensory transduction (Surprenant and North, 2009), sensitivity to food allergies (Leng et al., 2008), hearing (Housley et al., 2002), innate immune signaling, neuroinflammation, antiviral signaling, microglial activation, neutrophil chemotaxis, autophagy, and chronic pain syndromes (Abbracchio et al., 2009). Figure 2.5.4 illustrates the role of purinergic signaling in ASD (see Section 4).

SUMMARY

Recently, the connections between mitochondria and ASD have become increasingly clear. The nature of this connection is more complex than previously thought. Simple reduction in mitochondrial function does not cause ASD. A small, but informative, fraction of autism is caused by single-gene defects or DNA copy number variations. The large majority of ASD is the result of variation in hundreds of genes and loci interacting with environmental and other factors. The crossroads of genes and environment is metabolism. Mitocellular hormesis is the adaptation of cellular and mitochondrial metabolism to environmental change. Changes in nutrition, infectious agents, environmental toxicants, intellectual attention, and physical activity each play a role in mitochondrial hormesis during children’s development. Definite mitochondrial disease is responsible for as much as 5% of ASD. However, pathological disturbances in mitochondrial metabolism leading to excitotoxicity may lie at the heart of a larger proportion of ASD and this is an important area for future studies.

ACKNOWLEDGMENTS

RKN thanks the UCSD Christini Fund, the Wright Foundation, the Lennox Foundation, the Jane Botsford Johnson Foundation, and the Hailey’s Wish Foundation for their support. RKN thanks Roman Sasik, Gary Hardiman, and Narimene Lakmine for assistance in creating the chromosomal map of mitochondrial proteins.

References

REFERENCES

Yuen, B., Boncompagni, S., Feng, W., Yang, T., Lopez, J.R., Matthaei, K.I., et al., 2012. Mice expressing Tg8261-RYR1 are viable but exhibit sex- and genotype-dependent susceptibility to malignant hyperthermia and muscle damage. FASEB Journal 26, 1311–1322.

2. ETIOLOGY OF AUTISM SPECTRUM DISORDERS
Oxidative Shielding or Oxidative Stress?

Robert K. Naviaux

The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California San Diego School of Medicine, San Diego, California

Received March 2, 2012; accepted June 8, 2012

ABSTRACT

In this review I report evidence that the mainstream field of oxidative damage biology has been running fast in the wrong direction for more than 50 years. Reactive oxygen species (ROS) and chronic oxidative changes in membrane lipids and proteins found in many chronic diseases are not the result of accidental damage. Instead, these changes are the result of a highly evolved, stereotyped, and protein-catalyzed “oxidative shielding” response that all eukaryotes adopt when placed in a chemically or microbially hostile environment. The machinery of oxidative shielding evolved from pathways of innate immunity designed to protect the cell from attack and limit the spread of infection. Both oxidative and reductive stress trigger oxidative shielding. In the cases in which it has been studied explicitly, functional and metabolic defects occur in the cell before the increase in ROS and oxidative changes. ROS are the response to disease, not the cause. Therefore, it is not the oxidative changes that should be targeted for therapy, but rather the metabolic conditions that create them. This fresh perspective is relevant to diseases that range from autism, type 1 diabetes, type 2 diabetes, cancer, heart disease, schizophrenia, Parkinson’s disease, and Alzheimer disease. Research efforts need to be redirected. Oxidative shielding is protective and is a misguided target for therapy. Identification of the causal chemistry and environmental factors that trigger innate immunity and metabolic memory that initiate and sustain oxidative shielding is paramount for human health.

Introduction

An alternative title for this review might be, “Oxidative stress or oxidative shielding: can 50 years of research be wrong?” To understand why cells might choose to defend themselves from harm by intentionally making reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, and by stiffening the cell membrane to make it less permeable and less vulnerable to attack, we need to start at the beginnings of life on our planet. The great evolutionary pulses of metabolic and structural innovation of life on Earth can be correlated with changes in environmental oxygen (Holland, 2006). In the beginning, all life on Earth was anaerobic and oxygen was toxic. The first cells to emerge in the Precambrian seas were anaerobic bacteria that made ATP by anoxygenic photosynthesis. This life chemistry dates to approximately 3.5 billion years ago (GYA) (Cavalier-Smith, 2006). Most of the pathways of intermediary metabolism that we know today were developed during this anaerobic epoch of life’s history on Earth. Isoprenyl and ubiquinol synthesis, fatty acid oxidation and synthesis, iron-sulfur cluster synthesis, glycolysis, carotenoid synthesis, the pentose phosphate pathway, the glyoxylate cycle, pyruvate dehydrogenase, cobalamin synthesis, heme synthesis, cytochromes, glutathione metabolism, electron transport, chemiosmotic proton-coupling for ATP synthesis, and both reductive and oxidative (reverse and forward) Krebs cycles all were present in the oldest bacteria known, the green sulfur bacteria (Tang and Blankenship, 2010).

R.K.N. is supported by the University of California San Diego Christini Fund, the Wright Foundation, the Lennox Foundation, the Jane Botsford-Johnson Foundation, and the Hailey’s Wish Foundation.

Article, publication date, and citation information can be found at http://jpet.aspetjournals.org. http://dx.doi.org/10.1124/jpet.112.192120.

ABBREVIATIONS: ROS, reactive oxygen species; GYA, giga (109) years ago; Torr, millimeters of mercury pressure (mm Hg); GSH, glutathione; GSSG, GSH disulfide; CI, confidence interval; ER, endoplasmic reticulum; pO2, oxygen partial pressure.
Mitochondria, Innate Immunity, and Cellular Defense

In this review I present evidence that one of the most ancient functions of mitochondria was cellular defense. Today we call this metabolic response to cellular attack or injury “innate immunity.” Mitochondria play a central role in innate immunity today (West et al., 2011). This is the direct result of the role that bacterial ancestors or mitochondria played in the Earth’s early oceans. The complex ecology of the Precambrian seas was replete with viruses and predatory intracellular bacteria (Wichels et al., 1998). No cells without effective defenses survived. The biochemical signature of an attack is a metabolic “steal” or diversion of electrons and resources such as nitrogen, phosphorus, iron, and copper. When limiting cellular resources are used by predators and parasites, those resources are not available to the host cell. Mitochondria are uniquely equipped to detect and respond to this metabolic steal. When the local chemistry of the cell provides nutrients and resources in concentrations that are matched to mitochondrial metabolism, mitochondria will create a normal oxygen gradient of approximately 30 outside the cell to 0.2 Torr in the mitochondrial matrix (Gnaiger et al., 1995) (see above). When cellular resources are consumed by a parasite, a “metabolic mismatch” is produced.

Mitochondria have a proteome of approximately 1500 proteins (Pagliarini et al., 2008). Nearly 1000 of these proteins have catalytic functions in cell metabolism, such as citrate synthase or malate dehydrogenase. Under normal physiologic conditions, the concentrations of thousands of nutrients and metabolic substrates in mitochondria are closely governed by the collective kinetic constants (\(K^*\), \(K^*\), \(V_{max}\), Hill coefficient, etc.) of all the enzymes responsible for transforming those metabolites. This has recently been computationally modeled in the Recon 1 and BiGG reconstructions of cell and organ metabolism (Schellenberger et al., 2010; Rolfsson et al., 2011). Only the primary structure of an enzyme is genetically determined. The activity of an enzyme at any instant in time is determined by ambient metabolic conditions. For example, the \(K^*\) of citrate synthase for oxaloacetate is approximately 2 \(\mu\)M, but the enzyme is allosterically inhibited by ATP, NADH, acetyl-CoA, palmitoyl-CoA, and the product citric acid, so the rate of converting oxaloacetate to citrate is changing minute to minute according to the condition of the cell (Shepherd and Garland, 1969). When the concentrations of substrates are perturbed by viral or microbial infection, disease, toxin, or nutritional excess, mitochondria sense this as a metabolic mismatch between the optimum concentration of those metabolites for a given tissue and the actual concentration.

This metabolic mismatch diverts electron flow away from mitochondria in the cell and decreases intramitochondrial electron flow, and mitochondrial oxygen consumption falls. When mitochondrial oxygen consumption (extraction) falls and the cell is still surrounded by 30 Torr (2–4%) oxygen supplied by capillaries, the concentration of oxygen in the cell rises sharply. When cellular oxygen rises, the redox of the cell rises, and the chemistry of polymer assembly (DNA, RNA, lipid, protein, and carbohydrate synthesis) is ultimately stopped because the NADPH/NADP\(^+\) ratio falls as the change in Gibbs chemical free energy of synthetic reactions becomes less negative (more positive changes in Gibbs chemical free energy are thermodynamically less favorable). Under these more oxidizing conditions, electrons are no longer available for carbon-carbon bond formation to build biomass for viral or intracellular bacterial replication. Electrons are instead abstracted by the rising tide of intracellular oxygen to make superoxide, other ROS, and reactive nitrogen species and form bonds between free thiols in amino acids, such as cysteine, and peptides, such as glutathione, to make disulfides, such as cystine and the glutathione disulfide (GSSG). The rising tide of intracellular oxygen also oxidizes iron-sulfur clusters and redox-responsive sites in many proteins, inactivating proteins for macromolecular synthesis and activating proteins that shield the cell membrane from further attack. These include lipoxygenases and NF-xB (Serezani et al., 2011), NADPH oxidases (Jiang et al., 2011), redox-sensitive signaling systems in innate immunity such as the purinergic receptors (Hillmann et al., 2009), and transcriptional regulators such as Keap1/NRFE2, and sirtuin-FOXO (Speciale et al., 2011). The net result of oxidative shielding in innate immunity is to limit the replication and prevent the exit of the invading pathogen.
Oxidative Shielding

Oxidative shielding is a stereotyped response to cellular injury or attack. To better understand the fundamental differences between the oxidative stress and the oxidative shielding perspectives it is helpful to ask and answer a few questions from the viewpoint of these two different schools of thought. This approach is similar to Galileo’s dialog (Galileo, 2001) between adherents of Ptolemaic and Copernican systems as a method of showcasing their relative strengths and weaknesses.

What Triggers the Production of Superoxide, Hydrogen Peroxide, and Other ROS? Hostile, damaging, or unhealthy conditions surrounding the cell trigger the production of superoxide, hydrogen peroxide, and other ROS. Both stress and shielding schools agree with this answer.

Where Do the ROS Come From? ROS come from mitochondria and specialized enzyme systems in the cell. Both stress and shielding schools agree with this answer.

What Is the Function or Purpose of ROS? The shielding school holds that the function of ROS is, first, to protect the cell if possible, both as signaling molecules and by physically decreasing the cellular uptake, release, and exchange of potentially toxic pathogens or chemicals from and with the environment; and second, to actively kill the cell by apoptosis or necrosis when the local environmental conditions threaten to spread to neighboring cells and jeopardize the survival of host. ROS are an effect of disease, not the prime cause. In the shielding school, the organism is considered the ultimate unit of Darwinian selection. The fitness of an individual, in terms of its ability to reproduce, can be substantially increased by rapidly cutting off resources, walling off, or actively killing damaged or infected cells in a part of the body to save the whole.

The stress school holds that the function of ROS is to cause cell damage and disease.

What Is the Target of Effective Therapy in Diseases Associated with Increased ROS and ROS-Related Damage? The shielding school holds that because the prime cause of disease can ultimately be traced back to toxic exposure, microbial pathogen, unhealthy nutritional practices, nutrient loading, or unhealthy patterns of exercise and activity therapy should be directed at eliminating these causal factors. ROS production will naturally fall back to normal levels when physiologic balance is restored.

The stress school holds that because ROS are the prime cause of disease therapy should be directed at eliminating or normalizing ROS and ROS-related cell damage.

Randomized Clinical Trials

The scientific literature is rife with cell culture and animal experiments showing apparent benefits of antioxidant therapy and opinion papers that advocate antioxidants for treating everything from diabetes to cancer and Alzheimer’s disease. However, the gold standard of proof in medicine is the randomized clinical trial. When antioxidants are put to the test in randomized clinical trials they generally fail or, worse, show evidence of unexpected harm. For example, in a meta-analysis of nine clinical trials that evaluated the benefit of treating type 2 diabetes with antioxidants such as α-tocopherol (vitamin E) there was no benefit (Suksomboon et al., 2011). Like many purified antioxidant vitamins, vitamin E is a two-edged sword. The reasons for this are not entirely clear, but may relate to the fact that therapeutic dosing of purified micronutrients and antioxidants intervenes in regulatory pathways that produce biochemical symptoms associated with cell defense, but are not the actual cause of disease. Vitamin E supplementation, alone or in combination with β-carotene, was shown to increase the risk of lung cancer in smokers (The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group, 1994). Vitamin C supplementation was found to double the risk of cancer death in nonobese women [relative risk (RR) = 2.0; 95% CI = 1.12–3.58], while having no effect in obese women (Lin et al., 2009). The SELECT clinical trial of vitamin E and selenium was terminated early because of an apparent increase in the risk of new onset diabetes in the selenium group and a 1.6-fold increased risk in prostate cancer in the vitamin E group (Lippman et al., 2009; Klein et al., 2011). If ROS are at the heart of cancer, diabetes, and heart disease, why are antioxidants so ineffective at preventing or treating these diseases?

Other data that may prove helpful in weighing the merits of the schools of oxidative shielding versus oxidative stress are the results of clinical trials in which a therapy recommended by the shielding school, for example, diet and exercise (which is known to stimulate ROS; Niess and Simon, 2007), is directly compared with conventional medical intervention. When this is done in type 2 diabetes and its prodromal metabolic syndrome, diet and exercise are categorically superior to the best drug intervention. A recent meta-analysis of 13 clinical trials involving 3907 subjects found that the odds ratio for disease improvement with diet and exercise was 3.8 (95% CI = 2.5–5.9), but the odds ratios for disease improvement with drug treatment was 1.6 (95% CI = 1.0–2.5) (Dunkley et al., 2012). Diet and exercise can actually cure early type 2 diabetes while simultaneously reducing the risk of heart disease. In contrast, common drug interventions such as the thiazolidinedione insulin-sensitizing drug rosiglitazone will decrease diabetes, but increase the risk of heart failure (DREAM Trial Investigators et al., 2008).

Evolutionary Conservation of the Oxidative Shielding Response

The stereotyped oxidative shielding response to danger and metabolic mismatch can be identified in all aerobic forms of life on Earth. Even bacteria have it. For example, *Escherichia coli* rapidly generates superoxide and hydrogen peroxide in a manner reminiscent of mitochondria, by partially reducing oxygen at the site of NADH dehydrogenases and quinone acceptor sites along the inner membrane (Cabiscol et al., 2000). The magnitude of the response is regulated by nutrient availability, environmental toxin, and infection exposure (González-Flecha and Demple, 1997). It is noteworthy that ROS production by bacteria is highest under conditions of nutrient loading, similar to increased ROS production under nutrient loading in diabetes. Inhibitors of NADH dehydrogenase activity, such as the pesticides paraquat or rotenone, produce a rapid increase in ROS and mutation rates in the stressed bacteria (Cabiscol et al., 2000). Antioxidant defenses in aerobic bacteria are coordinately up-regulated by endogenously produced ROS by redox-reactive thiols on cys-
teines of peroxide-responsive OxyR and superoxide-sensitive SoxR transcription factors.

Plant cell ROS production leads to cross-linking of tyrosine-rich proteins in the cell wall (Bradley et al., 1992). Animal cells use many mechanisms including the use of another tyrosine-rich protein, melanin, and the production of collagen scar tissue to wall off the chronically disturbed or injured collection of cells. The initiating rise in intracellular oxygen that is caused by the failure of mitochondria to reduce oxygen to water is the hallmark of a metabolic “fever” or mismatch.

Why is it important to make the distinction between oxidative shielding and oxidative damage? When an oxidative shielding response is beneficial to the cell or the organism, then antioxidant treatments designed to block or reverse it will have two effects: 1) there will be no effect on the primary cause of the cellular toxicity, e.g., the viral infection, toxic exposure, or metabolic mismatch causing the cellular oxidative response, and 2) chronic treatment may ultimately prove harmful because it inhibits the highly evolved protective and hormetic functions of protein-catalyzed oxidative shielding.

Apoptosis, Cellular Altruism, and the Seductive Clarity of Cell Culture

Cell culture experiments have proved to be highly successful over the years in answering genetic questions. However, cell culture experiments have not been as reliable and are often misleading, in answering metabolic questions when the experiment is aimed at answering a question about multicellular development, organ function, or a whole animal phenotype. This happens because of four major differences between the metabolic conditions of cell culture and tissues. These can be briefly stated as the apoptosis, hyperoxia, cycling cell NADPH, and multicellularity problems.

Apoptosis: Bad for Cells in Culture, Good for the Species

Mitochondria are the principal regulators of apoptosis (Karbowski, 2010). This process lies at the heart of the developmental program of plants and animals that permits embryos to grow and remove cells that are no longer needed. Another essential function of apoptosis is the physical containment of injury or infection. Cells that become infected by viruses, or other microbial pathogens, initiate the program of apoptotic cell death to prevent the spread of infection. Many viruses and other microbes devote substantial genetic resources to thwart the infected cell’s effort to commit suicide (Galluzzi et al., 2008). Evolution has preserved and refined the apoptotic program because it confers an increased fitness to the plant or animal during development and under attack. This can be seen as a form of cellular altruism without intent, in which the death and removal of a few infected, injured, or obsolete cells increases the likelihood of survival of the organism. Protein-catalyzed ROS production and membrane and protein oxidation events precede the commitment to apoptosis in most cell types. These genetic and metabolic pathways have been selected over evolutionary time to increase the fitness of the organism. Ultimately, the oxidative shielding response confers evolutionary advantage for the organism. This advantage cannot be seen in cell culture because the death of cells in culture occurs without reference to the survival of the whole organism.

Hyperoxia: The Uniquely Oxidizing Environment of the Culture Dish

Cells in culture are typically grown under ambient oxygen tensions of approximately 100 Torr that result from diffusion from a 21% oxygen atmosphere at sea level. They are not usually grown at the 2 to 4% oxygen (15–30 Torr) that is normal in tissues. Because all of the proteins involved in antioxidant defense evolved under physiologic conditions of 15 to 30 Torr oxygen, they typically have K_w values for oxygen in the 15- to 30-Torr range. Cell culture hyperoxia in the 30- to 100-Torr range will naturally activate antioxidant and pro-oxidant proteins that would otherwise be quiescent and substrate-limited. This makes the interpretation of oxidative changes in cell culture seductively clear. The measurement of a myriad of reactive oxygen species such as superoxide and hydrogen peroxide and biomarkers of oxidation such as lipid peroxidation is technically simple in cultured cells. However, the judgment that these changes are deleterious in the context of the whole organism is biologically unsound.

NADPH: The Electron Carrier for Biomass Synthesis, Not for Cell Work

Cycling cells have higher NADPH/NADP$^+$ ratios than postmitotic cells (Attene-Ramos et al., 2005). Cultured cells must double their biomass each day in preparation for division. Postmitotic cells in tissues do not. Postmitotic cells direct electrons to NADH for cellular work, not NADPH for biomass production. This essential difference between growing and nongrowing cells must be grasped before the different roles of mitochondria in growing and nongrowing cells can be understood. The synthesis of lipids, proteins, DNA, and RNA requires the use of electrons carried by NADPH to make new carbon-carbon and other chemical bonds. NADPH is made in large amounts by the pentose phosphate pathway in which glucose 6-phosphate is used before entering glycolysis to make ribose for DNA and RNA synthesis and NADPH for macromolecular synthesis and glutathione metabolism (Wamelink et al., 2008). When incoming electrons from glucose and other nutrients are directed to NADPH, those electrons are not available for NADH used in mitochondrial oxidative phosphorylation. The combined effect of increased NADPH and hyperoxia (21% O_2) in cell culture conspires to amplify superoxide and hydrogen peroxide production by NADPH oxidases, making the study of more subtle factors such as regulation of the pentose phosphate pathway by nitric oxide (Bolaños et al., 2008) and compartmental redox regulation during differentiation challenging or impossible.

Multicellularity and Metabolic Complementarity: The Autonomy of Cells in Culture

In cell culture, investigators necessarily remove the normal connectedness of cells in tissues. As a consequence, single cells in culture must be cell-autonomous, that is, they must synthesize everything they need for growth without
reliance on supplies from other cells. This is not the case in somatic tissues. In tissues, distant and neighboring cells adopt complementary metabolic functions. It is wasteful for photoreceptor cells in the eye, for example, to express genes that are used to produce muscle contraction in the heart. Likewise, it is wasteful and potentially toxic for all somatic cells to make a particular hormone such as insulin or testosterone. In another example, the cells of the liver lobule clearly differentiate along the gradient of oxygen established between the high oxygen present in the vicinity of the hepatic artery in the portal triads where ornithine transcarbamoylase is expressed and the low oxygen present in center of the lobule surrounding the portal vein where ornithine amino transferase is expressed (Naviaux and McGowan, 2000). Somatic cells epigenetically silence unused genes by DNA methylation and other processes. The process of DNA methylation is regulated by folate, B12, and S-adenosylmethionine metabolism, which are also controlled by mitochondria (Naviaux, 2008). The natural metabolic cooperativity among differentiated cells in the body is lost in cell culture. No longer is there any selective pressure for cells to cooperate as they do in tissues and organs. No longer can the death of a few cells be clearly identified in the context of its evolutionary function to decrease the probability of death of the organism under stress. It is easy to see how an investigator studying cells in a dish might think that active cell processes that cause cell death, such as apoptosis and necrosis, are “bad.” However, it is the pathway’s oxidative shielding, and occasionally cell death, that permits the organism to live on and reproduce under the ever-changing conditions of life on Earth.

Tug at a single thread in Nature and you will find it connected to the rest of the Universe.
—modified from John Muir (1911) (Muir 1911)

Cell Metabolism Is Like an Ecosystem

The chemical reactions of the cell take place in a myriad of discrete locations and compartments within the cell that are maintained in thermodynamic disequilibrium. Natural redox boundaries and oxygen gradients are maintained by proteins and membranes in each of these compartments. Cell metabolism can be visualized intuitively as a coral reef ecosystem. The metabolic products of one compartment in the cell are used as resources by other compartments, just as one species of coral can provide resources for another species in the reef. Metabolism is a complex trophic web that stabilizes or destabilizes the differentiated function of the cell. Ultimately, the end products of metabolism are released from the cell into the blood and excreted in the urine, back into the external ecosystem. In both the coral reef and the microcosm of the cell, small-molecule metabolites and signaling molecules drive changes in gene expression, not the reverse. The success of transgenic and gene knockout experiments over the past 20 years has given scientists the impression that genes drive the evolution of metabolism. This is wrong. Rather, it is environmental nutrients and the small molecules of metabolism that drive the evolution of genes.

Over evolutionary time, genes and gene expression patterns evolved to handle the resources provided by the environment. Over shorter time periods of minutes to hours, and weeks to months, nutrients such as glucose, fats, and amino acids, and small molecules of metabolism are the forcing variables that induce the changes in enzyme activity and gene expression associated with feeding, fasting, and seasonal variations in nutrient availability. The amino acid leucine plays a central role in stimulating the master fuel regulator mammalian target of rapamycin (mTOR) and inhibiting AMP kinase and autophagy (Han et al., 2012).

Many intermediary metabolites act differently inside and outside the cell. Inside the cell they act as carbon skeletons for fat, protein, carbohydrate, DNA, and RNA synthesis. Outside the cell they act as signaling molecules that bind cell receptors and alter gene expression. For example, ATP is an energy-carrying molecule inside the cell. Outside the cell, ATP is a “mitokine” and damage-associated molecular pattern (Zhang et al., 2010) that binds ionotropic and metabotropic purinergic receptors, activating innate immunity and inflammatory pathways (Marques-da-Silva et al., 2011). Succinate is a Krebs cycle intermediate inside the cell, but binds the G protein-coupled receptor 91 (GPRC91) on the cell surface that can reverse the antiplatelet activity of aspirin (Spahth et al., 2012). In another example, citric acid inside the cell is the namesake of the “citric acid cycle,” known more commonly as the Krebs cycle. Outside the cell, citrate is a mobile carbon source and barometer of nutrient availability. Citrate is taken into cells via a cell surface transporter called INDY (for “I’m Not Dead Yet”) that when mutated leads to cellular citrate depletion and mimics the life-extending effects of caloric restriction (Birkenfeld et al., 2011). These genetic manipulations illustrate the role of small-molecule metabolites as being prime regulators of cell gene expression. The literature on this topic of metabolic regulation of gene expression is extensive (for a recent review see Buchakjian and Kornbluth, 2010).

Metabolic Consequences of Nutrient Excess

In 1929, Herbert Crabtree used mouse cancer cells to show that when glucose was added to a medium oxygen consumption decreased (Crabtree, 1929). Mitochondria were not yet identified as the oxygen-consuming particles. Otto Warburg coined the term the “Atmungsferment,” the iron and cytochrome-containing respiratory catalyst, to describe the site of oxygen consumption in cells (Warburg and Negelein, 1928) later discovered to be mitochondria. The Crabtree effect has been called the inverted Pasteur effect, because in the Pasteur effect exposure to oxygen was found to inhibit anaerobic glycolysis. The magnitude of the respiratory inhibition by glucose caused by the Crabtree effect varies between 5 and 50% (Ibsen, 1961) depending on the cell type and the concentration of glucose added. The Crabtree effect plays an important role in many conditions, including diabetes, in which persistently high levels of calories and glucose produce a relative decrease in mitochondrial oxygen consumption. There are several biochemical mechanisms that combine to produce the Crabtree effect under conditions of nutrient loading (Sussman et al., 1980). The most significant is the inhibitory effect of the cytosolically produced [ATP]/[ADP][Pi] ratio on mitochondrial ATP synthesis. This happens because mitochondrial oxidative phosphorylation requires cytosolic ADP and Pi to make ATP. When cytosolic ATP rises and ADP falls, ADP becomes limiting in mitochondria, and the ex
cesses of cytosolic ATP inhibits the forward action of mitochondrial ATP synthase (complex V) by classic mechanisms of product inhibition. This induces a chemiosmotically backpressure of protons in the mitochondrial inner membrane space and hyperpolarizes the mitochondrial membrane, i.e., makes the mitochondrial membrane potential ($\Delta \psi_m$) more negative. Excess electrons that enter mitochondria under these conditions cannot be used to make ATP because of the backpressure. The partial reduction of oxygen to superoxide and peroxide serves as a “pressure release valve” (Fisher-Wellman and Neuf, 2012) that permits excess electrons to be dissipated and excess oxygen to be exported from the cell in the form of soluble hydrogen peroxide. All of these biophysical and thermodynamic consequences of nutrient loading result in a net decrease in mitochondrial oxygen consumption that we call the Crabtree effect.

Because mitochondria create the oxygen sink for the cell, when mitochondrial extraction of oxygen is decreased, cell and tissue oxygen levels rise, and the tissue extraction of oxygen from the blood falls. This is observed clinically as a decrease in the arteriovenous difference in pO$_2$. Physiologically, this is interpreted as “wasted” oxygenation. Ultimately, it results in the pruning of capillary beds and reductions in tissue vascularity, i.e., peripheral vascular disease. Over time, this leads to chronic tissue hypoxia, ischemia, and loss of organ function, to heart and kidney failure, and chronic neurodegenerative disease.

Tissue Hypoxia and Ocean Hypoxia: Universal Metabolic Response to Nutrient Loading

There is an ocean-scale analog to the cellular Crabtree effect. When excessive amounts of nutrients are concentrated in agricultural fertilizer runoff and urban waste and carried downriver to the ocean, the metabolism of plankton in the sea is changed. Ultimately, this process creates seasonal and persistent “dead zones” of ocean hypoxia (Diaz and Rosenberg, 2008) that cannot support coral, fish, shellfish, or any eukaryotic life larger than a nematode or a few small snails. Repopulating these lost ecosystems can take years of concerted remediation. Excessive “calories” and nutrients injected into the ocean trigger an ecosystem-scale Crabtree effect, in a biphasic process that is similar to type II diabetes. First, there is an inhibition of aerobic metabolism and a rapid increase in algal and cyanobacterial oxygenic photosynthesis to create plankton blooms. This occurs for the same metabolic reasons as in nutrient-loaded human cells; excess nutrients exceed the oxidative capacity of the cells and redirect these excess electrons to NADPH and biomass synthesis. Nonphotosynthetic cells also shift to this more fermentative metabolism to facilitate rapid conversion of the new nutrient resources to biomass. In diabetes, this shift to biosynthesis leads to organ hypertrophy and the accumulation of adipose tissue and intracellular fat. The net result in the ocean is a transient increase in water oxygen because of photosynthesis and decreased oxygen utilization by heterotrophs. This metabolic shift is quantified by biological oceanographers as an increase in bacterial growth efficiency (Azam and Malfatti, 2007). This first stage of hypoxia is short-lived and rarely measured. This is similar to the situation in diabetic tissues exposed to excessive nutrients. The second stage of the response to nutrient loading is a decrease in water oxygen. In the ocean this occurs because the excess plankton biomass produced by the blooms dies and becomes fuel for other bacteria that extract oxygen from the water to process the dead biomass. Hypoxia results. In tissues, chronic nutrient excess leads to tissue hypoxia because of capillary pruning that results from decreased mitochondrial oxygen consumption as described above, and from decreased arteriovenous differences in pO$_2$. Initially, the tissue hypoxia from excess nutrient load is patchy, resulting in localized areas of ischemia and segments of dysfunction. Later, the patches of organ hypoxia begin to merge and significant organ dysfunction occurs.

Redox Compartments and Oxygen Gradients in the Cell

The intracellular “ecosystem” of the eukaryotic cell is comprised of at least eight different organelar compartments, each with its own redox poise (Fig. 1). These include: lysosomes (Gille and Nohl, 2000), smooth ER, rough ER (Hwang and others, 1992), the Golgi (Navas et al., 2010), the cytosol (Go and Jones, 2008), peroxisomes (Yano et al., 2010), the nucleus (Go and Jones, 2011), and the mitochondrial matrix (Go and Jones, 2008). These compartments are not in equilibrium because the proteins that maintain the redox in each compartment, and the membranes that separate them, are not diffusible (Jones, 2010). The standard redox potentials of each of these compartments with regard to the glutathione couple (GSH/GSSG) have been measured (Table 1).

In contrast to sharp boundaries of redox poise that define the different organelles of the cell, the concentration of oxygen at any point in the cell is determined by oxygen diffusion along its gradient from the capillary to the mitochondrial matrix. With a little imagination, one can imagine that each organelle “swims” to a point in the cellular ecosystem that best meets its need for oxygen and nutrients. The oxygen partial pressure of 40 Torr in venous plasma, 30 Torr in the pericellular space (Pittman, 2011), and 0.02 to 0.2 Torr (25–250 nM) in mitochondria (Scandurra and Gnaiger, 2010) can be conceptualized in an “oxygen well” or “target diagram” of the cell (Fig. 2A). When the measured glutathione redox couple is plotted against the log of the partial pressure of oxygen in Torr, a linear regression can be calculated. The formula for this line is: GSH/GSSG redox (in mV) = 82.6 × Log(oxygen in Torr) – 272 (Fig. 2B). This connection between oxygen concentration at every point along the oxygen diffusion gradient and compartmental redox helps explain the profound effect that small changes in mitochondrial oxygen consumption, leading to increased dissolved oxygen concentrations in throughout the extramitochondrial compartments of the cell, can have on the metabolic and work performance of the cell. Indeed, the cell cycle has been characterized as a redox cycle (Burhans and Heintz, 2009).

Cellular Thermodynamics and Work

Ilya Prigogine described the mathematics of dissipative systems in which physical work and the capacity for self-organization can be extracted from the environment by maintaining a compartmentalized, collective chemical “distance” from thermodynamic equilibrium (Prigogine, 1984). Mitochondria create the oxygen sink for the cell, when mitochondrial extraction of oxygen is decreased, cell and tissue oxygen levels rise, and the tissue extraction of oxygen from the blood falls. This is observed clinically as a decrease in the arteriovenous difference in pO$_2$. Physiologically, this is interpreted as “wasted” oxygenation. Ultimately, it results in the pruning of capillary beds and reductions in tissue vascularity, i.e., peripheral vascular disease. Over time, this leads to chronic tissue hypoxia, ischemia, and loss of organ function, to heart and kidney failure, and chronic neurodegenerative disease.
Chondria set a limit on the maximum free energy available for work by a cell by consuming oxygen and transforming metabolites. Highly aerobic mitochondria produce a deep oxygen gradient (Fig. 3) of nearly 150-fold, from 30 Torr in the pericellular space to 0.2 Torr (Scandurra and Gnaiger, 2010) at the site of cytochrome c oxidase in the inner mitochondrial membrane. The depth of the oxygen sink creates the potential energy that acts like a coiled spring to drive the living clockwork of metabolism, development, differentiation, and organ function.

Less active mitochondria maintain more shallow oxygen gradients and have a lower work capacity, but greater proliferative capacity. This is illustrated in Fig. 3, left. This occurs because electrons in the cytosol are redirected to NADPH and macromolecular synthesis and away from usage as NADH in mitochondria when oxygen consumption rates are lower (Fig. 3).

The ultimate energy currency of the cell is electrons that enter the cell in the form of the chemical bonds in the carbon skeletons of nutrients such as glucose, amino acids, and fatty acids. Mitochondrial oxygen consumption determines the depth of the oxygen sink and ultimately tips the redox balance of the cell either toward growth and proliferation or to differentiation and work.

Metabolic Memory and Exercise

Short-duration physical or chemical stimuli produce long-term cellular effects by inducing kinetically linked chains of events that can be measured metabolically and by protein changes. This phenomenon is called metabolic memory. It is the result of post-translational activation and inhibition and transcriptional activation and inhibi-
tion events that are initiated by the short-duration stimulus. Many examples are known. The most widely reported example is the long-term effect of short-term, strict metabolic management in patients with diabetes. Even after the management of diabetes is relaxed, long-term metabolic changes in insulin sensitivity and decreased incidence of vascular complications and end-organ disease are observed (Cooper, 2009).

Physical exercise is perhaps the best-known method of inducing metabolic memory. Even a single session of exercise will produce an increase in basal metabolic rate for hours after the session (LaForgia et al., 2006). Adaptive strength and cardiovascular benefits can be measured over days. Regular resistance training produces metabolic memory and reverses age-related changes in skeletal muscle over months (LaForgia et al., 2006). The mechanisms of these adaptive changes to exercise seem to require the transient pulses of ROS that are produced (Niess and Simon, 2007).

Antioxidant Therapy Inhibits the Benefits of Exercise

What happens if the normal amounts of superoxide and hydrogen peroxide produced during exercise are inhibited by treatment with antioxidants? In a ground-breaking study in 2009, Ristow et al. (2009) studied the effect of antioxidant supplements (vitamin C at 1000 mg/day; vitamin E at 400 IU/day) on insulin sensitivity and markers
such as plasma adiponectin and the master mitochondrial biogenesis regulator peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) after 1 month of exercise. They found that the subjects who exercised and did not take antioxidant supplements had significant improvements in insulin sensitivity, adiponectin, and PGC1α. Antioxidants inhibited these metabolic benefits of exercise. Ristow et al. proposed that mitochondrial hormesis, or beneficial adaptation to stress, requires transient oxidative stress to induce the downstream changes in nuclear gene expression that promote health and longevity (Ristow and Schmeisser, 2011).

Antioxidant Treatment Decreases Tissue Perfusion

Experimental work has also been conducted to study the effects of vitamin C and the antioxidant tempol on skeletal muscle performance. When antioxidants were provided acutely, Copp et al. (2009) showed that spinotrapezius muscle contractile force was decreased 25%. Muscle blood flow was also reduced, and the resting oxygen tension in the skeletal muscle was reduced 14%, from 29.9 to 25.6 Torr (Copp et al., 2009). Copp et al. report that optimum blood flow and optimum contractile force depend on the redox state of skeletal muscle. Therefore, antioxidant therapy resulted in decreased muscle perfusion and contractile performance measured acutely (Copp et al., 2009) and interfered with the beneficial effects of exercise such as increased insulin sensitivity when measured after 1 month of supplementation (Ristow and Schmeisser, 2011).

Phytonutrients and Xenohormesis

Plants and animals that share an ecosystem coevolve. Many plants depend on mammals and birds for seed dispersal. Therefore, the survival of these plants depends on the survival of the mammals and birds that facilitate the dispersal of their seeds. If the coevolving animals do not survive a drought or other seasonal hardship, the plants also perish. Plants have developed secondary metabolites and small-molecule stress hormones such as resveratrol that not only help the plant survive, but also activate molecules such as the sirtuins in animal cells that produce a metabolic shift that improves drought and heat tolerance in the animals. Resveratrol is a polyphenol that activates the lysine-deacetylase activity of sirtuin 1 under conditions of caloric restriction that promote a high NAD+/NADH ratio. The principal health benefits of fruits and vegetables lie not just in the vitamins, minerals, and fiber they provide, but in the dozens to hundreds of phytonutrients such as the polyphenols, flavonoids, terpenoids, and quinones that have evolved to activate mammalian cellular targets such as sirtuins, cytoskeleton, tyrosine protein kinases, phosphoinositide 3 kinase, mitogen-activated protein kinases, and transcription factors such as Keap1 and NRF2 (Murakami and Ohnishi, 2012). Animals that consume foliage from stressed plants redirect energy resources away from reproductive pathways. This results in a decrease in fecundity. However, the animals benefit directly from an increase in their own heat and drought tolerance. This phenomenon in which coevolving plants produce signaling molecules that benefit ecologically connected animals is called “xenohormesis” (Howitz and Sinclair, 2008).

An important fact has emerged in the study of the antioxidant properties of plants. Just as in the response to exercise, the durable antioxidant effects of botanicals occur because of their acute, but transient, pro-oxidant (electrophilic and/or ROS-generating) effects (Speciale et al., 2011). Electrophiles abstract electrons from (oxidize) other molecules. Metabolically, this is similar to the action of intracellular microbial pathogens that “steal” electrons to make carbon-carbon bonds and replicate the parasite biomass at the expense of the cell. For this reason, the stereotyped metabolic responses antioxidant defenses and innate immunity are activated similarly by electrophiles and certain microbial pathogens. Potential phytonutrients such as curcumin in turmeric, quercetin in onions, sulforaphane in broccoli, and epigallocatechin-3-gallate in green tea produce their antioxidant effects by acting acutely as pro-oxidants in the cell and inducing metabolic hormesis. The electrophilic chemical nature of these compounds up-regulates Keap1/NRF2-mediated transcription of dozens of antioxidant defense genes that contain antioxidant response elements (electrophile response elements). These include enzymes for glutathione synthesis and metabolism (γ-glutamylcysteine synthetase, glutathione peroxidase, glutathione reductase, sulfiredoxin, and thioredoxin), stress proteins such as heme oxygenase-1, and drug detoxification enzymes such as glutathione transferase and NADPH-quinone oxidoreductase, and cytokines such as interleukin-6 (Speciale et al., 2011).

Conclusions

ROS and oxidative changes in chronic disease are the symptoms of disease and not the cause. Indeed, transient and
regular stimulation of ROS production is required for mitochondrial hormesis and the beneficial physiologic adaptations associated with exercise and a diet rich in fruits and vegetables. Membrane lipid peroxidation, fibrosis, protein oxidation, and hundreds of other markers that were formerly cataloged as oxidative damage need to be understood as cellular oxidative shielding. The conserved pathways of oxidative shielding are protein-catalyzed reactions that evolved as the first steps in innate immunity. They evolved to protect the cell from chemical and microbial threats in the environment. Both oxidative and reductive stress will trigger cellular oxidative shielding. Oxidative shielding takes many forms in different bacterial, plant, and animal phyla. All forms ultimately increase membrane rigidity, decrease membrane permeability, and inhibit cell division. Systemwide conditions such as calorie restriction or nutrient loading modify the cellular response to stress. When stress coincides with dietary nutrient excess, cellular electrons are transferred preferentially to NADPH and not NADH, glycolytically synthesized ATP inhibits mitochondrial oxygen consumption via the Crabtree effect, and chronic inflammation results.

Research efforts need to be redirected. Catalogs of the many forms of oxidative changes that are found in 100 chronic diseases provide no insight into the underlying pathogenesis of disease. Treatment of oxidative changes in chronic disease with antioxidants is similar to treating a fever with aspirin instead of treating the pneumonia. If the clinical outcome selected for monitoring the disease is the fever, then aspirin will be “clinically proven” to be effective at improving the “disease.” However, the untreated pneumonia might still kill the patient. It is better to “treat” the fever by treating the bacterial cause of the pneumonia. Certain antioxidant might be shown to decrease oxidative markers such as nitrotyrosine. However, nitrotyrosine-modified proteins are a symptom, not the disease. More patients will benefit when the true cause of the fever, the cause of the disease, is identified and treated.

New methods of targeted and untargeted metabolomics will help decode the language of metabolism in disease (Tautenhahn et al., 2011; Yanes et al., 2011) and assist physicians in providing personalized medical treatment. NextGen treatments will need to restore the normal “ecology” of metabolism. Complex diseases such as autism, autoimmune disease, diabetes, cancer, and kidney and cardiovascular disease do not have simple causes that are true for every patient. Personalized causes must be sought and new diagnostic tools developed. Identification of the causal chemistry and environmental factors that trigger innate immunity and metabolic memory that initiate and sustain oxidative shielding will lead to fresh new therapies for old diseases.

References

Metabolic features of the cell danger response

Robert K. Naviaux *

The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA
Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA

Abstract

The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP. Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental, autoimmune, and degenerative disorders. These disorders include autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), asthma, atopy, gluten and many other food and chemical sensitivities syndromes, emphysema, Tourette's syndrome, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), chronic traumatic encephalopathy (CTE), traumatic brain injury (TBI), epilepsy, suicidal ideation, organ transplant biology, diabetes, kidney, liver, and heart disease, cancer, Alzheimer and Parkinson disease, and autoimmune disorders like lupus, rheumatoid arthritis, multiple sclerosis, and primary sclerosing cholangitis.

© 2013 The Author. Published by Elsevier B.V. and Mitochondria Research Society. Open access under CC BY license.

1. Introduction

Cells have a limited number of ways they can respond to threat. An important consequence of this is that evolutionary selection preserves similar cellular responses to diverse forms of threat. The cell danger response (CDR) is an evolutionarily conserved cellular metabolic response that is activated when a cell encounters a chemical, physical, or microbial threat that could injure or kill the cell. Common microbial threats are viruses, bacteria, fungi, and parasites. Physical threats include heat, salt, or pH shock, or UV or ionizing radiation. Chemical forms of danger include heavy and trace metals like lead, mercury, cadmium, arsenic, and nickel, certain electrophilic aromatic chemicals like the plasticizer bisphenol A, the chemical flame retardants like the brominated diphenyl ethers (BDEs), and certain halogenated pesticides like chlorpyrifos and DDT. Psychological trauma, particularly during childhood, can also activate the cell danger response, produce chronic inflammation, and increase the risk of many disorders (Ehlert, 2013). Mixtures of these factors and susceptible genotypes have synergistic effects. The total load of triggers is integrated by metabolism and regulates the CDR. Mitochondria are evolved to sense all of these threats according to the induced changes in electron flow available for normal metabolism. This review will emphasize communication between mitochondria...
and the nucleus, and show how many pathways of extracellular, cell–cell communication are ultimately traceable to mitochondrial metabolism. The cell danger response is coordinated in the brain via chemosensory integration of whole body and microbiome metabolism. Abnormal persistence of the CDR ultimately leads to altered organ function and behavior, and results in chronic disease.

Small molecule nutrients and metabolites are the prime movers of the CDR. Protein, glycans, RNA, epigenetic, and genetic changes are essential, but secondary, and can only be understood with reference to the prime drivers in metabolism. Readers interested in the mitochondria-associated proteins (Arnoult et al., 2011), glycans (Angata et al., 2012), microRNAs, genetics, and epigenetics (Knight, 2013) of innate immunity and inflammation that are associated with the CDR are referred to recent reviews on those topics.

2. Historical foundations

The concept of the cell danger response described in this review has evolved from a confluence of six rivers of scholarship that have developed in relative isolation over the past 60 years. Briefly these are: 1) the recognition that inherited disorders in purine and pyrimidine metabolism produce distinct behavioral and immunologic phenotypes that are not explained by current concepts in neuropharmacology and immunology, 2) the recognition that extracellular purines and pyrimidines like ATP, ADP, UTP, and UDP bind to ubiquitous ion channels and G-protein coupled receptors (GPCRs) to control everything from neurotransmission, to cortisol production, inflammation, chronic pain signaling, and control of the autonomic nervous system, 3) the recognition that immunologic systems have evolved not to distinguish self from non-self, but rather to respond to threats that result in cellular injury, 4) the recognition from the field of virology that the most adaptive strategy is a co-evolutionary negotiation between virus and host, that the pre-exposure condition of the host determines a large fraction of the pathology of infection, and that across virtually all classes of animal cell viruses studied, considerable genetic reserves are expended to target the host mitochondrial “danger alarm system”, 5) the recognition within the field of mitochondrial medicine of that extracellular nucleotides are ultimately traceable to mitochondria and that one of the most ancient functions of mitochondria is cellular defense—the detection and response to cellular danger as a fundamental component of innate immunity, and 6) the concept that humans and all other animals are ecosystems of cooperating cells, and that even the most complex ecosystems on Earth can be understood and made more resilient with attention to the relevant forcing variables of physical habitat, resource availability, complementary biodiversity, elimination of invasive species, and the recycling and removal of metabolic end products.

2.1. Biochemical genetics

Biochemical genetics is a mature medical subspecialty that dates to the publication of Sir Archibald Garrod’s report of the Mendelian inheritance of alkaptonuria in 1902 (Garrod, 1902), and has been dedicated to the care of children and adults with inborn errors of metabolism since the 1960s. William Nyhan is one of the fathers of the field of biochemical genetics and a mentor to many leaders in the field today. Dr. Nyhan published the first example of an inherited defect in purine metabolism that profoundly altered behavior known as Lesch–Nyhan Disease (Lesch and Nyhan, 1964). Just a few years later he published the first example of a child with autism-like behaviors resulting from an inherited increase in purine synthesis known as phosphoribosylpyrophosphate synthase (PRPPS) super activity syndrome (Nyhan et al., 1969). Both disorders resulted in a profound increase in de novo purine biosynthesis. The complex behavioral and immunologic syndromes produced by inherited defects in purine and pyrimidine metabolism have recently been reviewed (Micheli et al., 2011; Nyhan, 2005). Although the fact that purine and pyrimidine disturbances produce these syndromes is well established, no unifying mechanistic theory exists to explain the development of these complex neuroimmuno-developmental disorders.

2.2. Purinergic signaling

Purinergic signaling was pioneered by Geoffrey Burnstock in the early 1970s, when he described the first examples of non-adrenergic, non-cholinergic (NANC) signaling mediated by the stimulated release of ATP (Burnstock et al., 1972). Skepticism was high in the early days that extracellular ATP could actually be a neurotransmitter. With the cloning of 19 different purinergic receptors that are widely distributed in every neural and non-neural tissue of the body, this early skepticism has been soundly extinguished (Burnstock and Verkhratsky, 2009; Burnstock et al., 2010, 2011). Today, the role of purinergic signaling continues to expand virtually into every fundamental cell communication, stress response, autonomic, vestibular, and sensory integration pathway known (Bours et al., 2011; Burnstock, 2012; Choo et al., 2013; Halassa, 2011; Junger, 2011; Pimentel et al., 2013).

2.3. Immunologic cell danger

Polly Matzinger and Ephraim Fuchs developed the cell danger model of tolerance and immunoreactivity in the early 1990s to explain why effective adaptive immune responses are best mounted under conditions of cell danger and injury (Dreifus, 1998; Matzinger, 1994). This danger theory of immunology has produced many fruitful insights over the past 20 years ranging from contributions to tumor immunology, to graft versus host disease, allergy, asthma, and next generation adjuvants (Fuchs and Matzinger, 1996; Matzinger and Kamala, 2011; Seong and Matzinger, 2004).

2.4. Virology

Since the polio epidemics of the 1950s, we’ve learned that the vast majority of infections do not kill or permanently disable the host. In the case of polio, just 1 in 150 to 1 in 1800 people infected develops paralytic disease (Nathanson and Kew, 2010). More than 99% of poliovirus infections are either silent, or lead to self-limited upper respiratory tract infections (“cold”), or flu-like abdominal symptoms. Malnutrition and innate immune status are major factors that determine the probability that exposure to poliovirus will result in paralytic disease. Darwin went further. He recognized that many indigenous people were ravaged by disease that was brought by European explorers aboard ships where no disease was evident. Native people had an innate susceptibility to disease that did not affect the European explorers. He noted this phenomenon during his visit to Australia in 1836:

“It is certainly a fact, which cannot be controverted, that most of the diseases that have raged in the islands during my residence there, have been introduced by ships; and what renders this fact remarkable is that there might be no appearance of the disease among the crew of the ship which conveyed this destructive importation (Darwin, 1839).”

The comprehensive study of viral gene structure since the 1990s has revealed that virtually every class of animal virus has incorporated into its genome the machinery to thwart, suppress, neutralize, or evade the mitochondrial “danger alarm system” (Corcoran et al., 2009; Ohta and Nishiyama, 2011; Scott, 2010). This genetic insight has cast a bright light on the role of mitochondria in antiviral signaling, and cellular defense. In this review, the role of mitochondria in the initiation and maintenance of the cell danger response is placed in context of coordinated changes in whole cell, and whole body metabolism, that together lead to changes in neurodevelopment, behavior, and to chronic disease.
2.5. Mitochondrial medicine

For many years, the treatment of inborn errors in mitochondrial oxidative phosphorylation was directed at trying to restore cellular ATP production, with limited success. At one memorable meeting in Melbourne, Australia in 1998, the distinguished yeast geneticist, biochemist, and mitochondrial biologist Dr. Anthony Linnane stood up and commented (to paraphrase), “If we are intellectually honest, we must discard old ideas and look for new paradigms to explain the cause of symptoms in a disease if we test a rationally designed therapy in patients with the disease, but it fails repeatedly.” Mitochondria are located at the hub of the wheel of metabolism, contain 1500 proteins tailored to meet the needs of each different cell type, and catalyze over 500 different chemical reactions in metabolism. The connection between neurodegenerative episodes and infection in mitochondrial disease was recognized and quantified in the early 2000s (Edmonds et al., 2002). With the discovery that mitochondria represented the front lines in cellular defense and innate immunity, this connection between neurological setbacks and infection began to be understood (Seth et al., 2005; West et al., 2011). Ultimately, all the phosphorylated nucleotides of the cell are traceable to reactions in mitochondria. This makes mitochondria fundamental sources of nucleotides for purinergic signaling.

2.6. Ecology and medicine

Even the most complex ecosystem dynamics can be understood as a function of a discrete set of forcing variables that include the physical habitat, resources, complementary biodiversity, disruptive biodiversity (invasive species), and the recycling and removal of metabolic end products. Metabolism, and indeed, whole body function and development can be considered as a complex web of interconnected and interdependent pathways that change in an orderly pattern from conception to old age. Ecologists focus on the identification of drivers, forcing variables, or state variables that can alter the state of an ecosystem, preserve resilience, or drive succession. Drivers are discrete physical, chemical, or biological entities that when changed a small amount, produce large changes in the interaction and performance of the ecosystem as a whole. For example, factors like sunlight, ocean temperature, pH, CO₂, and dissolved oxygen concentration produce dramatic changes in the health of coral reef ecosystems (Riegli et al., 2009).

As we reduce the scale of analysis to the level of the cell, the details of chemistry become more important, and the time constants of response shorten from years in terrestrial ecosystems, to seconds to months in metabolism. Physical habitats are established in complementary microhabitats in each organ, like interdependent structures in the brain. Species become differentiated cell types in tissues that develop complementary and interdependent metabolisms. Within a cell, specialized proteins and enzymes are organized in complementary and interdependent compartments or microhabitats called organelles, and trophic layers in a network. These intracellular trophic layers distinguish proteins needed for the recycling of nutrients, from proteins required for the synthesis of secondary metabolites and polymers—larger structures from smaller building blocks. Resources in the cell are the chemical building blocks of proteins, fats, carbohydrates, and nucleic acids. More generally, the traffic flow patterns of resources and electrons within a cell determine its state of health, alarm, or disease.

What are the state variables in metabolism? In metabolism, pH, CO₂, and oxygen are also important state variables. However, metabolic intermediates like alpha-ketoglutarate (AKG), and cofactors and vitamins are also state variables. Deficiencies in vitamin C produce defects in collagen proline hydroxylation and neurotransmitter metabolism known as scurvy. Deficiencies in thiamine produce defects in glucose, pyruvate, and amino acid metabolism that cause Beriberi and Wernicke-Korsakoff syndrome. Other drivers or state variables in metabolism will be discovered by the systematic application of advanced mass spectrometry and metabolomics methods in each complex disease state, before and after successful treatment.

In ecology, an ecosystem can fail or become unhealthy for many reasons. The field of restoration ecology concerns itself both with identifying the governing dynamics of the complex system, and with the identification of the discrete factors that can be modified to restore health and resilience to the system (Gunderson, 2000). The same is true in medicine. An important forcing variable in the control of chronic inflammation and the cell danger response is purinergic signaling.

3. The cell danger response

When ATP synthesis, nucleotide metabolism, and associated purinergic signaling are disturbed, a coordinated set of cellular responses is triggered that evolved to help the cell defend itself from microbial attack or physical harm. Elements of this cell danger response (CDR) have been given many names that reflect the level and tools of analysis used to study it. The CDR includes the endoplasmic reticulum (ER) stress response (Liu et al., 2008), the unfolded protein response (Lee and Glimcher, 2009), the mitochondrial unfolded protein response (Haynes et al., 2013), the heat shock protein response (Kim et al., 2006), the integrated stress response (Silva et al., 2009), the oxidative stress response (Lushchak, 2010), the oxidative shielding response (Naviaux, 2012), innate immunity (West et al., 2011), and inflammation (Zhou et al., 2011). These can be understood as a unified, and functionally coordinated response by considering the CDR in its most fundamental and most ancient role; to improve cell and host survival after viral attack. The acute CDR produces at least 8 functional changes: 1) it shifts cellular metabolism from net polymer synthesis to monomer synthesis to prevent the hijacking and assembly of cellular resources by intracellular pathogens, 2) it stiffens the membranes of the cell and circumscribes an area of damage to limit pathogen egress, 3) releases antigens and antimicrobial chemicals into the pericellular environment, 4) increases autophagy and mitochondrial fission to remove intracellular pathogens, 5) changes DNA methylation and histone modification to alter gene expression, 6) mobilizes endogenous retroviruses and other mobile genetic elements like the long interspersed nuclear elements (LINEs) to produce genetic variations, 7) warns neighboring cells and distant effector cells of the danger, and 8) alters the behavior of the host to prevent the spread of infection to kin and sleep patterns to facilitate healing (Fig. 1).

3.1. Ancient and modern triggers of the CDR

In the Precambrian seas, the only cells that could transmit their DNA to the next generation were cells that had successfully survived infection by viruses and other microbial pathogens, and exposure to a wide array of chemical and physical forces that were fixtures of the young biosphere. Early cells synthesized ATP and other nucleotides for a diverse array of metabolic functions in addition to RNA and DNA synthesis. The concentration of ATP inside of single cells is typically about 1–5 mM—nearly one million times more than in the extracellular environment (<5–10 nM). When a cell was injured or lysed by a virus, ATP and other nucleotides and metabolites were released into the surrounding area, creating a bright chemical “flare” warning other cells of the danger and the presence of a pathogen.

Before a cell is broken or lysed, mitochondria in an infected eukaryotic cell sense the presence of an intruding microbe by detecting the diversion of electrons (as NADH and NADPH) and carbon to viral bio-genesis centers for polymer synthesis to make viral RNA, protein, and DNA from building blocks in the host cell. This “electron steal” is sensed as a voltage drop, or decrease in electron flow available within the cell for oxidative phosphorylation in mitochondria. The metabolic consequences are nearly instantaneous. Mitochondria rapidly decrease their oxygen consumption, which is coupled to electron flow. The dissolved oxygen concentration in the cell begins to rise because mitochondria
Fig. 1. Functions of the acute cell danger response. The acute CDR includes 8 functional changes in cell structure, physiology, metabolism, and gene expression. These are: 1) shift cellular metabolism from polymer to monomer synthesis to prevent the hijacking and assembly of cellular resources by intracellular pathogens, 2) stiffen the cell membranes to limit superinfection and pathogen egress, 3) release antiviral and antimicrobial chemicals into the pericellular environment, 4) increase autophagy, mitochondrial fission, and mitophagy to facilitate removal of intracellular pathogens and biogenesis centers, 5) change DNA methylation and histone modification to alter gene expression, 6) mobilize endogenous retroviruses and LINEs to produce genetic variations, 7) warn neighboring cells and distant effector cells of the danger with extracellular nucleotides, H2O2, eicosanoids, and cytokines, and 8) alter the behavior of the host to prevent the spread of infection to kin, and sleep patterns to facilitate healing. Abbreviations: HSPs: heat shock proteins; AMPs: antimicrobial peptides; D-cells: Dendritic Cells; ERVs: endogenous retroviruses; LINEs: long interspersed nuclear elements; mDNA: methylated DNA; heat shock proteins; AMPs: antimicrobial peptides; D-cells: Dendritic Cells; ERVs: endogenous retroviruses; LINEs: long interspersed nuclear elements; meDNA: methylated DNA; dNTPs: deoxynucleoside triphosphates; CNS: central nervous system.

3.2. Summer and winter metabolism

Large trends in the seasonal variation of metabolism can be placed in context by considering the evolutionary forces that have acted on our ancestors. Seasonal changes in calorie availability were the rule. Summer was a time of plenty, when the environment provided abundant calories, which were harvested with physical exercise. This was a natural time for cell growth, during which building blocks were polymerized to produce new cells and increase biomass. Physical exercise ensured that the added biomass was functionally efficient. The master fuel sensor in the cell during summer is mTOR (mammalian target of rapamycin) (Yang and Ming, 2012). mTOR facilitates protein synthesis and growth using new materials taken from the environment. mTOR inhibits the internal recycling of used or damaged cellular resources by autophagy. The pathways supported by mTOR are Janus faced. In cells capable of dividing, mTOR promotes rapid growth with net polymer synthesis, without inflammation. Used or damaged proteins, lipids, glycans, RNA, and DNA are diluted by new synthesis from fresh building blocks obtained from rich summer ecosystems. In differentiated cells that cannot dispose of excess calories without hypertrophy, mTOR excess results in the accumulation of old and damaged macromolecules like oxidized or aggregated proteins, and produces chronic inflammation—oxidizing conditions that act as a thermodynamic break on the inexorable accumulation of intracellular polymers like lipids, proteins, glycogen, and nucleic acids from their monomer building blocks.

Winter was a time of caloric restriction and a time when resources stored in the summer and fall had to be used with great efficiency if survival was to be assured. The master fuel sensor in the winter is AMPK (AMP activated protein kinase) (Salminen and Kaarniranta, 2012). AMPK optimizes energy efficiency and stimulates the recycling of cellular materials in autophagy. This cycle occurs to a lesser extent each night and during fasting. The pathways activated by AMPK support regeneration and are anti-inflammatory because they work to break down damaged proteins, lipids, glycans, RNA, and DNA. AMPK facilitates the resynthesis of these macromolecules from newly synthesized monomers and refreshed building blocks. Monomer synthesis and polymer synthesis are balanced for winter maintenance. Historically, before the 1980s, most human nutrition research was focused on disorders of deficiency. After the 1980s, much of human nutrition research has been redirected to disorders of caloric excess. Indeed many of the genes that have been found to guard against age-related diseases like diabetes, cancer, and heart disease are found to be “summer genes” coordinated by AMPK, while the “summer genes” coordinated by mTOR lead to chronic disease and inflammation when combined with caloric excess and physical inactivity. Technological progress and industrial scale farming practices have been a double-edge sword for the health of populations around the world. Many developed nations now experience an “endless summer” of calorie availability, decreased physical exercise, and an absence of the historical norm of winter caloric restriction. This has led to
modern epidemics of obesity in both adults and children, and to a growing tide of chronic disease traceable to cellular inflammation.

4. Metabolic features of the CDR

The following section is designed to be read with close reference to Fig. 2. Panels A and B illustrate 21 branch points in metabolism that are normally tipped in the direction of “healthy development”, reducing conditions, polymer synthesis and renewal (upward in the figure). However, when a cell is infected by a virus or other microbial pathogen, metabolism is shifted to innate immunity, inflammation, oxidizing conditions, and monomer synthesis to oppose the efforts of the pathogen to parasitize resources and replicate itself by assembling polymers. The shift in metabolism during this cell danger response (CDR) is indicated in the downward direction in the figure. When these changes occur in the context of cell division and the distribution of accumulated biomass to daughter cells during growth, then inflammation is avoided unless accompanied by significant cell damage. Problems arise when these conditions are activated in post-mitotic tissues that have a limited capacity for growth. The list of metabolic branch points in Fig. 2AB is not intended to be comprehensive, and not all metabolic fates of the branch-point metabolites are discussed. The reader is referred to topical reviews of each of the branch point metabolites of interest for more comprehensive discussion.

4.1. Mitochondria

Mitochondria fragment under conditions of the CDR leading to ineffective control and propagation of intracellular calcium transients (Eisner et al., 2010). When cells are injured and mitochondrial proteins are released to the extracellular space, formyl-methionine initiated mitochondrial proteins can stimulate inflammation via the formyl-peptide receptor (Rabiet et al., 2005). Extracellular mitochondrial DNA activates innate immunity via the TLR9 receptor (West et al., 2011), and is specifically released during infection by eosinophils as an antimicrobial net (Yousefi et al., 2008).

4.2. Oxygen

When mitochondrial oxygen consumption decrease, dissolve cytoplasmic oxygen rises and activates reactive oxygen species (ROS) production by many enzyme systems including NOX4 (Hecker et al., 2009). Increased dissolved oxygen, superoxide and hydrogen peroxide activate many proteins including the central inflammatory regulator NFkB (Lluis et al., 2007) and the multifunctional transglutaminase 2 (Caccamo et al., 2012). Although ROS are sometimes considered intrinsically in inflammation, it is interesting to note that one of the most destructive genetic forms of chronic inflammatory disease is one that cannot produce ROS in response to infection. Chronic granulomatous disease (CGD) is caused by the genetic deficiency of subunits of phagocyte NADPH oxidase 2 (NOX2) that makes the child unable to produce significant amounts of superoxide, hydrogen peroxide, and hypochlorous acid for antibacterial and antifungal defense (Kuijpers and Lutter, 2012). In another example, ROS are protective, and now recognized as important inhibitors of inflammation in autoimmune disorders like rheumatoid arthritis, multiple sclerosis, thyroiditis, and type 1 diabetes (Hultqvist et al., 2009).

4.3. ATP

Purinergic signaling nucleotides like ATP, ADP, UTP, and UDP are released in increased amounts from cells under stress and activate inflammation (Xia et al., 2012). Cells need not be broken or lysed to increase the release of ATP, other nucleotides, and metabolites. ATP and sodium urate crystals are activators of NLRP3 inflamasome assembly (Riteau et al., 2012). Purinergic signaling via ATP directly stimulates cortisol synthesis and release from the adrenal cortex, independent of ACTH stimulation (Kawamura et al., 1991).

4.4. Cysteine and sulfur

Sulfur metabolism is shifted such that glutathione is consumed in glutathionylation regulatory (McLain et al., 2013) and liver phase II detoxification reactions (Zamek-Gliszczynski et al., 2006), and cysteine is diverted to H2S, taurine, and sulfate excretion (Stipanuk and Ueki, 2011). As an important compensation, the increased plasma oxidation state of the CDR favors cysteine oxidation to cystine (CySSCy), which is used to transport needed cysteine across the blood–brain barrier to the brain (Bridges et al., 2012; Lewerenz et al., 2013), and into macrophages for glutathione synthesis (Kobayashi et al., 2012).

4.5. Vitamin D

In the face of normal body stores of calcium and phosphorus, vitamin D metabolism is altered significantly by the CDR. A mitochondrial P450 enzyme, the 1α hydroxylase, in the kidney is required to activate 25-Hydroxyvitamin D to hormonally active, 1,25-Dihydroxyvitamin D. Another mitochondrial enzyme, the 24α-hydroxylase, is used to inactivate vitamin D. The 24α-hydroxylase is increased by cell danger threats like endotoxin (Shamugasundaram and Selvaraj, 2012). This decreases the concentration of active vitamin D and contributes to the CDR by increasing inflammation, but also increases the risk of developing of autoantibodies that may include anti-thyroid antibodies (Kivity et al., 2011), and may contribute to the development of other autoimmune diseases like anti-foliceptor antibodies.

4.6. Folate and B12 metabolism

The metabolism of folic acid and vitamin B12 is tightly interconnected with mitochondrial function, sulfur metabolism, glycan, serine, nucleotide synthesis, and DNA and histone methylation (Naviaux, 2008). Out of over 2700 enzymes encoded by the human genome (Romero et al., 2005) only two require B12, but no fewer than 15 proteins are dedicated to the absorption, transport, and metabolism of B12 (Nielsen et al., 2012). One of the two enzymes is methylmalonyl CoA mutase. It is located in mitochondria and uses the adenosyl form of B12, adenosylcobalamin to convert methylmalonyl-CoA to succinyl-CoA for import into the Krebs cycle. The other B12-dependent enzyme, methionine synthase (MS), is located in the cytosol and uses the methyl form of B12, methylcobalamin, to synthesize methionine from homocysteine. Methionine can be used to initiate protein synthesis, or as a precursor for S-adenosyl methionine (SAM) synthesis. Ultimately the flux through alternative pathways of folate, glutathione, and methionine metabolism is determined by cellular redox poise. Under oxidizing conditions of the CDR, SAM is directed preferentially to polyamine synthesis to assist with ROS and antiviral and antimicrobial polyamine aldehyde synthesis and release (Bachrach, 2007). This lowers the SAM/SAM ratio, while simultaneously decreasing net availability of SAM for DNA methylation reactions. Gene- and cell type-specific demethylation of histones is stimulated by oxidizing conditions of the CDR by the Junonji histone demethylases, increasing expression of pro-inflammatory cytokines like TNFα (Kruidenier et al., 2012). In addition, the oxidizing conditions of the CDR increase the ratio of formyl-tetrahydrofolate to methyl-tetrahydrofolate (fTHF/mTHF) and the ratio of methylene-THF to mTHF. This favors the de novo synthesis of nucleotides like IMP and dTMP that require 1-carbon donation from fTHFR and methylene-THF, respectively. The resulting increase in IMP synthesis can be used to make purine nucleotides like ATP for purinergic signaling. The oxidizing conditions of the CDR ensure that the resulting nucleotides will be used preferentially as monomers for metabolic and signaling purposes, since assembly into polymers of RNA and DNA is chemically unfavorable.
4.7. SAM

S-adenosyl methionine (SAM) is used as a universal methyl donor for DNA, histone, and neurotransmitter methylation reactions. After decarboxylation by SAM decarboxylase, dcSAM is used as an essential aminopropyl donor for polyamine and methylthioadenosine (MTA) synthesis (Fontecave et al., 2004). When the CDR is activated, a larger portion of SAM is diverted to the synthesis of polyamines like...
spermidine and spermine, which can be used to synthesize hydrogen peroxide and potent antimicrobial aldehydes like 3-aminoopropanal, and 3-acetoaminopropanal (Cervelli et al., 2012). SAM can be usurped by invading pathogens as a methyl donor for the maturation of pathogen mRNAs. S-adenosylhomocysteine (SAH) is a potent feedback inhibitor of SAM-mediated methylation reactions. By decreasing the SAM/SAH ratio, the CDR further consolidates an intracellular environment that is unfavorable for pathogen replication. Adenosine and several purine nucleosides and nucleotides help to maintain a low SAM/SAH ratio by inhibiting SAH hydrolase (SAHH), a key enzyme known to be the target of several synthetic antiviral drugs (De Clercq, 2009).

4.8. Ornithine

Ornithine is a non-proteogenic amino acid synthesized from arginine by arginase I in the liver, and arginase II in many other tissues. When the CDR is activated, ornithine is decarboxylated by the B6-dependent enzyme ornithine decarboxylase (ODC) to putrescine, the polyamine used for all higher molecular weight polyamines like spermidine and spermine. Sustained activation of ODC contributes to increased inflammation and the development of autoantibodies in animal models of lupus erythematosis (Hsu et al., 1994).

4.9. Histidine

Acute activation of the CDR stimulates the B6-dependent enzyme histidine decarboxylase to yield histamine. Histamine is a potent vaso-dilator that facilitates the delivery of increased oxygen and immune effector cells to sites of inflammation. Histamine is also critical for mast cell and eosinophil function in allergy and the anti-parasite limb of innate immunity (Fullerson and Rothenberg, 2013).

4.10. Arginine

Arginine has several fates in metabolism. It is a substrate for the tetrahydrobiopterin-dependent nitric oxide synthase. The resulting nitric oxide (NO) gas is a potent and reversible inhibitor of mitochondrial cytochrome c oxidase, also known as complex IV (Forstermann and Sessa, 2012). Arginine can also be decarboxylated to synthesize agmatine, a natural anti-depressant neurotransmitter (Bernstein et al., 2012). Under conditions of the CDR, agmatine is hydrolyzed to produce urea and the antiviral polyamine, putrescine (Bernstein et al., 2012).

4.11. Heme

Heme is abundant in erythrocyte hemoglobin, but is also present as an important prosthetic group in the mitochondrial cytochromes of respiratory chain complexes II, III, and IV (Kim et al., 2012). In a sequence of events that activates the CDR, red cell and mitochondrial heme centers are released from damaged cells. In the extracellular space, heme is metabolized by heme oxygenase I (HO-1) to produce carbon monoxide (CO), releasing iron and biliverdin. Like NO, CO is a potent inhibitor of mitochondrial complex IV. In non-erythrocytes, heme is a feedback inhibitor of porphyrin biosynthesis (Ajikoka et al., 2006).

4.12. Phospholipids

The membranes of all eukaryotic cells are composed largely of phospholipids. Most of these are phosphoglycerolipids that are comprised of a glycerol backbone, two fatty acid side chains, and a phosphate-containing polar head group. The fluidity of the cell membrane is a bio-physical consequence of thermal packing of the fatty acid side chains. In general, the shorter and more polyunsaturated (more cis double bonds) the side chain, the more fluid the membrane. Reciprocally, the longer the carbon side chain, and the more saturated, the stiffer the membranes become. In the plasma, phosphoethanolamine-containing saturated very long chain fatty acids (PE-VLCFAs) are more abundant (Pastural et al., 2009). Under conditions of cell danger, both Jumonji and sirtuins demethylases (Liu et al., 2012) and heme oxygenase I (Nie et al., 2013) upregulate lipoxigenase expression. The double bonds of fatty acids in the membrane are targets for peroxidation by lipoxigenases. Under conditions of the CDR, the cell membrane is stiffened by progressive replacement of shorter polyunsaturated lipids with longer, more saturated lipids. The activation of phospholipase D2 leads to coupling of G-protein activation (Mahankali et al., 2011) and release of the potent signaling lipids as phosphatidic acid (Peng and Frohman, 2012). Since a large number of purinergic and other innate immune signaling receptors are G-protein coupled receptors, the early translocation of PLD2 to the membrane has the effect of priming purinergic signaling in the early steps of the CDR.

4.13. Tryptophan

The many metabolic fates of tryptophan make it an important molecule in both the early and late stages of the CDR. Tryptophan can be metabolized either to serotonin and melatonin via the hydroxylation (tryptophan hydroxylase) pathway, or to kynurenic acid, quinolinic acid, niacin, and the pyridine nucleotides (NAD+, NADP+) via the dioxygenase (indoleamine 2,3-dioxygenase, IDO) pathway. About 90% of the total body stores of serotonin are synthesized in gut enterochromaffin cells, and transported in platelets in the form of dense, α-granules, which also contain ADP, ATP, histamine and calcium. Gut microbial metabolism of tryptophan results in the synthesis of a large family of indoles, several of which can also be metabolized to kynurenine. Kynurenic acid acts as an endogenous ligand for the aryl hydrocarbon receptor and synergistic inducer of IL6 (DiNatale et al., 2010), stimulates the innate immune functions like the anti-fungal activity of neutrophils, and stimulates TH2 cells, while attenuating adaptive immunity by the stimulation of TH1-inhibitory, regulatory T cells (Treg) (Mandi and Vecsei, 2012).

4.14. Lysine

The antiviral CDR is strongly regulated by the post-translational state of lysines on histones and immune effector proteins like the double strand RNA binding protein known as RIG1 (retinoic acid inducible gene 1), and the mitochondrial antiviral sensor (MAVS) (Jiang et al., 2012). Lysine ubiquitination facilitates oligomerization of RIG1, which is required for efficient binding to MAVS and interferon induction. SAM-mediated lysine methylation stabilizes proteins, inhibits ubiquitination, and works to oppose increased proteasome-mediated protein turnover that is part of the CDR. Dietary lysine is an antagonist of the gut...
serotonin receptor 4 (5HTR4), is anxiolytic (Smriga and Torrii, 2003), and opposes the CDR.

4.15. Cholesterol

Unesterified cholesterol increases the shear-stress resistance and activation of neutrophils (Zhang et al., 2011). Low cholesterol inhibits calcium activation and oxidative burst in neutrophils (Kannan et al., 2007). High cholesterol also makes neuronal cells more resistant to the cytotoxic effects of amyloid beta peptides (Aβ/π) (Arispe and Doh, 2002). The plasma membrane of many eukaryotic cells consists of nearly 50 mol% unesterified cholesterol, which acts as an intramembrane space filler, with a small polar head group (a single hydroxyl), to help solubilize phospholipids. Cholesterol accumulates with GM1 ganglioside in microdomains called caveolae that continuously sample the pericellular environment. When the cell is activated, GM1 and cholesterol concentrate to form lipid rafts, which cause many proteins to patch and concentrate into the rafts for more efficient anti-microbial defense. CDR proteins like the formyl peptide receptor and NADPH oxidase (NOX) are assembled in lipid rafts for efficient ROS production (Jin and Zhou, 2009).

4.16. Vitamin B6

Low plasma levels of the active metabolite of vitamin B6, pyridoxal 5′-phosphate (PLP) are a common feature of inflammation and the CDR (Paul et al., 2013). PLP is a cofactor in 4 reactions in the dioxygenase (IDO) pathway of tryptophan metabolism, after the formation of kynurenine, leading to the synthesis of quinolinic acid and NAD+ and NADP+. PLP is also required by the enzyme S1P lyase for inactivating the lymphocyte chemoattractant sphingosine-1-phosphate (S1P). Low systemic levels of PLP have the effect of increasing the kynurenine/tryptophan ratio, and increase S1P in inflamed tissues, thereby sustaining an active CDR.

4.17. Arachidonate

Cells that are especially rich in mitochondria, like brain, nerve, and epithelial cells, are also rich in plasmalogen lipids, which contain arachidonic acid in the sn-2 position. This is the preferred substrate for phospholipase A2 (PLA2) isozymes for the release of arachidonate from prostaglandin, leukotrienes, and other inflammatory lipid synthesis (Ong et al., 2010) during an active CDR.

4.18. Sphingosine

Several intracellular pathogens have evolved mechanisms to either inhibit the synthesis and translocation of sphingosine 1-phosphate (S1P) (Thompson et al., 2005), or stimulate its degradation in mitochondria (Degtyar et al., 2009). S1P is a phosphorylated sphingolipid that contains a single fatty acid linked to a phosphoserine head group. Intracellular S1P traffic to phagosomes where it facilitates calcium-dependent autophagy during the elimination of intracellular parasites and modulates histone acetylation in the nucleus (Lucki and Sewer, 2012). Extracellular S1P binds to 5 G-protein linked receptors, acts to inhibit apoptosis, prevents lymphocyte egress from sites of production as well as sites of inflammation (Takabe et al., 2008), and is essential for normal development of hearing and vestibular function (MacLennan et al., 2006). S1P opposes the immunomodulatory effects of kynurenine by inhibiting Treg stimulated TH1, and activating mTOR (Liu et al., 2010).

4.19. Ceramide

Ceramide is the precursor to GM1 ganglioside, sphingosine, and S1P. Ceramide both requires mitochondria for synthesis (Novgorodov and Gudz, 2011), and targets mitochondria under conditions that lead to cell death (Sentelle et al., 2012). The cell death or cell survival result of the CDR depends in part on the balance between S1P and ceramide.

4.20. Metals

Normal metabolism depends critically on the presence of a large number of metals like Mg2+, Ca2+, Fe2+, Cu+, Zn2+, Mn2+, Mo4+, Se2+, and Co2+ that interact with nucleotides and other metabolites, and with proteins to stabilize structure and create organometallic reaction centers. Many other metals like Pb, Hg, As, V, Ni, Al, Cd, Ce, and Cr are toxic. Under reducing redox conditions of cell health, these toxic metals are not accumulated because excretion normally exceeds exposure. When the CDR is activated, the oxidizing intracellular conditions favor sequestration, toxic amounts of trace and heavy metals can be accumulated, and are not easily mobilized. Many toxic metals act not only as electrophiles because of their positive charge, but are also sulfurophiles—they readily form sulfides with free thiols of cysteine, and glutathione. This makes free thiols unavailable for normal metabolic reactions and can create a condition known as pseudohypoxia in which intrapeptide cysteine residues of redox-sensing proteins remain uncrosslinked, disulphide bonds cannot form normally, and the three dimensional structure of the reduced form of the protein is favored under normal oxygen concentrations that would otherwise stabilize disulfide bonding. In addition to these effects, the more specific neurotoxic effects of metals like lead and mercury are well known (Ibrahim et al., 2006). When functional vitamin D is decreased by a chronically active CDR, subclinical renal wasting of magnesium can occur (Sutton and Domrongkitchaiporn, 1993).

4.21. Gut microbiome

Healthy metabolism acts as a survival engine that computes the optimum chemical solution for fitness based on the developmental history, current environmental conditions, and the genetic resources available to the individual. When we sample blood or urine, we are actually sampling the collective metabolism of the host-microbiome system. This collective metabolism also controls the epigenetic modification of DNA in somatic cells that creates long-term changes in gene expression (Naviaux, 2008). The human metabotype consists of a dynamically regulated core vocabulary of about 400–1200 chemical words that cells use to communicate. These are small molecule metabolites with a mass less than 2000 Da in size. The stoichiometric proportions of these metabolites are a reflection of our state of health at the time of sampling. The adult human body consists of about 1014 human cells and 1015 bacterial cells that act as a living shield to help protect us from opportunistic pathogens and keep us healthy. About 99% of our microbiome is in our gut. The biomass of our microbiome is about 1.5 kg, or about 2% of our body weight. Collectively, the bacteria, archaea, rare fungi, protists, and invertebrate metazoans that constitute the 3000 to 30,000 species in our gut microbiome contain a genetic complexity of about 4.5 × 1014 Gb—about 150 fold more genetic information than in the human haploid genome. This is evidence that the metabolic diversity in the gut microbiome far exceeds that of the human host.

The composition and function of the microbiome are best considered as an ecosystem that is continuously shaped by the developmental history, diet, health, and activity of the host. As with any ecosystem, the health and species composition of the microbiome are determined by a discrete set of forcing variables that include the physical habitat, resources, complementary biodiversity, disruptive biodiversity (invasive species), and the recycling and removal of metabolic end products. When the host is sick, the microbiome is also sick. The chronic activation of the CDR alters both the physical habitat of the distal bowel and the availability of resources in the form of dietary nutrients. For example, in children with autism spectrum disorders (ASD), the expression of...
intestinal disaccharidases is decreased so that the microbiota of the distal bowel receives a larger number of simple disaccharides like sucrose, lactose, and maltose (Williams et al., 2011). In addition, the increase in oxidizing conditions associated with the CDR in cells lining the intestine leads to changes in the uptake, intracellular processing, and folding of the proline and glutamine-rich, processed gliadin 33-mer peptide (Oguma et al., 2007), and to an increase in gluten sensitivity (Jacobs, 2007). These and other factors combine to alter the permeability and species composition in the gut. Among children with ASD, this commonly leads to dysbiosis and alternating bouts of constipation and diarrhea. It also leads to changes in behavior that are a result of communication abnormalities between the enteric nervous system (ENS) that monitors the health and function of the microbiome, and the central nervous system (CNS). Restoring a sick microbiome is not as simple as adding back missing or underrepresented species. Both the physical habitat of the gut and the nutrient resources delivered must be durably changed in order to produce a durable change in the complex microbial ecosystem.

5. Resolution of the CDR

Once the danger has been eliminated or neutralized, two things happen naturally. First, a choreographed sequence of anti-inflammatory and regenerative pathways is activated that helps replace lost cells and restore normal organ function (Heber-Katz and Stocum, 2013). Next, a metabolic memory of the exposure that led to the CDR is stored in a way similar to the way the brain stores memories, in the form of durable changes in mitochondrial biomass, and cellular protein, lipid and other macromolecule content, cell structure, and gene expression via somatic epigenetic modifications (Naviaux, 2008). This metabolic memory is also called mitochrondrial hormesis (Naviaux, 2012). Under conditions that are determined by a mixture of host genotype, and the character, developmental timing, magnitude, and frequency of exposure, a dysfunctional form of the CDR can persist that leads to chronic disease. Because the CDR is initially adaptive and coordinated by the close interplay of mitochondria and the cell, but becomes maladaptive once the environmental danger is gone, this can be referred to as “anachroadaptive mitochrondrial dysfunction”.

6. Disease implications and summary

When the CDR fails to resolve, chronic disease results. Beginning in the first trimester, the brainstem is responsible for the chemosensory integration of whole body metabolism with neurodevelopment. After birth, the trajectory of normal development can be altered if the CDR and its attendant metabolic changes persist. Some of the diseases that result from a pathological persistence of the CDR include: autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), food allergies, asthma, atopy, emphysema, Tourette’s syndrome, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), traumatic brain injury (TBI), chronic traumatic encephalopathy (CTE), suicidal ideation, ischemic brain injury, spinal cord injury, diabetes, kidney, liver, and heart disease, cancer, Alzheimer and Parkinson disease, and autoimmune disorders like lupus, rheumatoid arthritis, multiple sclerosis, and primary sclerosing cholangitis. Pathological persistence of the CDR can occur after the initiating agent has gone. This can be the result of hormesis and metabolic memory, somatic epigenetic changes (Blumberg et al., 2013), or both. Purinergic signaling appears to play an important role in sustaining the multifaceted metabolic features of the CDR. This observation led to the successful correction of all 16 of 16 multi-system, autism-like features in a classic animal model of ASD using antipurinergic therapy (APT) (Naviaux et al., 2013).

The chronic CDR disorders listed above produce abnormalities in a broad range of target tissues and cell types. The genotype and health of the host, and the developmental timing and the nature of the exposure determine the risk of developing a particular disease. In many cases, it appears that mixtures of cell danger exposures are required. When the abnormalities appear later in childhood or young adult life, and have not persisted long enough to produce structural abnormalities, there is a chance that many disorders currently thought to be static, irreversible, and poorly responsive to treatment, or even degenerative, might actually be dynamic functional states that respond well to anti-CDR treatments. Many of the disorders named above have already shown response to APT in animal models (Table 1). An important caveat to APT is that if the physical, chemical, or biological trigger of the CDR has not been eliminated or neutralized, treatments designed to inhibit a persistent CDR may have mixed effects. For example, if the CDR is a response to perinatal exposure to PBDE flame retardants (Blumberg et al., 2013), but the PBDEs have not been removed from living space of an affected child, then a persistent CDR can be adaptive and not anachroadaptive. APT under these conditions may cause net harm.

Each of the metabolic features of the CDR illustrated in Figs. 1 and 2AB can be addressed individually with specific treatments, or more globally with a combination of supplements, dietary and activity changes, or with adaptogen therapies (Panossian and Wikman, 2009). However, since the CDR appears to be a functional response that is coordinated by purinergic signaling, a new chapter in complex disease therapeutics can be imagined in which the pharmacology of purinergic antagonists is expanded, natural products are sought, and new anti-inflammatory drugs are developed that selectively target one or more of the 19 known classes of purinergic receptors.

Table 1

<table>
<thead>
<tr>
<th>Disease</th>
<th>Species</th>
<th>Antipurinergic drug</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autism</td>
<td>Mice</td>
<td>Suramin</td>
<td>Naviaux et al. (2013)</td>
</tr>
<tr>
<td>Spinal cord injury</td>
<td>Rats</td>
<td>Suramin</td>
<td>Peng et al. (2009)</td>
</tr>
<tr>
<td>Traumatic brain injury</td>
<td>Rats and Mice</td>
<td>Suramin</td>
<td>Naviaux et al. (2013)</td>
</tr>
<tr>
<td>Ischemic brain injury</td>
<td>Rats</td>
<td>Suramin</td>
<td>Peng et al. (2009)</td>
</tr>
<tr>
<td>Glutamate excitotoxicity</td>
<td>Rats</td>
<td>Suramin</td>
<td>Kharlamov et al. (2002)</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>Mice</td>
<td>A438079</td>
<td>Engel et al. (2012)</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>Rats</td>
<td>Suramin</td>
<td>Sahu et al. (2012)</td>
</tr>
<tr>
<td>Chronic pain</td>
<td>Rats</td>
<td>P2X3-15h</td>
<td>Cantin et al. (2012)</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>Mice</td>
<td>Suramin</td>
<td>Novales-Li (1996)</td>
</tr>
<tr>
<td>Lupus erythematosus</td>
<td>Mice</td>
<td>Suramin</td>
<td>Baldok and Saitic (2008)</td>
</tr>
<tr>
<td>Restenosis after angioplasty</td>
<td>Rats</td>
<td>Suramin</td>
<td>Gray et al. (1999)</td>
</tr>
<tr>
<td>Duchenne cardiomyopathy</td>
<td>Mice</td>
<td>Suramin</td>
<td>de Oliveira Moreira et al. (2013)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Rats</td>
<td>Apyrase</td>
<td>Marine et al. (2013)</td>
</tr>
<tr>
<td>Alcoholic liver disease/cirrhosis</td>
<td>Rats</td>
<td>Suramin</td>
<td>He et al. (2013)</td>
</tr>
<tr>
<td>Asthma</td>
<td>Guinea Pigs</td>
<td>Suramin</td>
<td>Oguma et al. (2007)</td>
</tr>
<tr>
<td>Emphysema</td>
<td>Mice</td>
<td>Suramin</td>
<td>Cicko et al. (2010)</td>
</tr>
<tr>
<td>Diabetic kidney disease</td>
<td>Rats</td>
<td>Suramin</td>
<td>Korrapati et al. (2012)</td>
</tr>
</tbody>
</table>

Acknowledgments

RKN thanks Jane Naviaux, Will Alaynick, Jim Adams, Steve Edelson, Kate Crowley, and Vicki Kohlmer for helpful comments on the manuscript. This work was made possible by support from the UCSD Christini Fund, the Jane Botsford Johnson Foundation, the Wright Foundation, the Lennox Foundation, the It Takes Guts Foundation, the UCSD Mitochondrial Disease Research Foundation, and the Hailey’s Wish Foundation.

Conflict of interest

None.
Antipurinergic therapy for autism—An in-depth review

Robert K. Naviaux

University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, MC #8467, San Diego, CA 92103, United States

ARTICLE INFO

Keywords:
M1 mitochondria
M2 mitochondria
Purinergic signaling
Cell danger response
Epigenetics
Ecoalleles
Metabolism
Nucleotides
Antipurinergic therapy
Suramin

ABSTRACT

Are the symptoms of autism caused by a treatable metabolic syndrome that traces to the abnormal persistence of a normal, alternative functional state of mitochondria? A small clinical trial published in 2017 suggests this is possible. Based on a new unifying theory of pathogenesis for autism called the cell danger response (CDR) hypothesis, this study of 10 boys, ages 5–14 years, showed that all 5 boys who received antipurinergic therapy (APT) with a single intravenous dose of suramin experienced improvements in all the core symptoms of autism that lasted for 5–8 weeks. Language, social interaction, restricted interests, and repetitive movements all improved. Two children who were non-verbal spoke their first sentences. None of these improvements were observed in the placebo group. Larger and longer studies are needed to confirm this promising discovery. This review introduces the concept of M2 (anti-inflammatory) and M1 (pro-inflammatory) mitochondria that are polarized along a functional continuum according to cell stress. The pathophysiology of the CDR, the complementary functions of M1 and M2 mitochondria, relevant gene-environment interactions, and the metabolic underpinnings of behavior are discussed as foundation stones for understanding the improvements in ASD behaviors produced by antipurinergic therapy in this small clinical trial.

1. Background

In over 20 years of modern clinical trial efforts (McPheeters et al., 2011) and 75 years since the first description of autism (Kanner, 1943), no drug has been FDA approved to treat the core symptoms of autism spectrum disorder (ASD). I believe this is because the root cause of ASD is not yet understood. This has made it impossible to develop a unifying theory of pathogenesis that might help to guide new drug development.

2. The cell danger response hypothesis

The Suramin Autism Treatment 1 (SAT1) study (Naviaux et al., 2017) was the first clinical trial to test a new unifying theory for the root cause and a new treatment of autism. The cell danger response hypothesis represents a paradigm shift in how scientists think about the cause of autism. Instead of focusing on a particular behavior, cell type, genes, the microbiome, synapses, or the connectivity of neural circuits in the brain, the cell danger hypothesis states that the root cause of autism is a universal cellular response to stress that shifts normal cell function to a new state. Severe and/or prolonged stress forces a reallocation of cellular resources for survival. This universal response to stress traces to mitochondria and is called the cell danger response (CDR) (Naviaux, 2014). Aspects of the CDR are also referred to as the integrated stress response (Green et al., 2011; Nikkanen et al., 2016; Silva et al., 2009). The CDR gives the appearance of mitochondrial dysfunction, but is actually a normal, necessary, and highly regulated change in mitochondrial function from oxidative phosphorylation to cellular defense. This shift is needed to respond to a threat, and to heal after an injury. Mitochondria that defend the cell in danger can no longer function the same as they do under unstressed conditions (Naviaux et al., 2009). This programmed change in mitochondrial function is needed for innate immunity and inflammation (West, 2017), which in turn are required for establishing the adaptive immune response and healing.

3. M1 and M2 mitochondria

To emphasize the importance and dynamic nature of this programmed change in mitochondrial function, I have designated these as M1 and M2 mitochondria (Fig. 1). M1 and M2 mitochondria represent two poles on a functional continuum (Sander and Garaude, 2017) regulated by the CDR. M2 mitochondria are devoted to oxphos and are anti-inflammatory. In contrast, M1 mitochondria are pro-inflammatory. M1 mitochondria are specialized for creating the oxidative shielding response (Naviaux, 2012b). M1 mitochondria are tasked for cellular defense and increase cellular redox (are pro-oxidants) and perform dozens of other functions needed for anti-viral and anti-microbial defense. The shift from M2 to M1 mitochondrial functions is an intrinsic feature of an activated CDR. Within a given cell, this shift creates a spectrum from 100% M2 mitochondrion when stress is minimum, to

E-mail address: Naviaux@ucsd.edu.

https://doi.org/10.1016/j.mito.2017.12.007
Received 15 September 2017; Received in revised form 11 December 2017; Accepted 14 December 2017
1567-7249/ © 2017 Published by Elsevier B.V.

Please cite this article as: Naviaux, R.K., Mitochondrion (2017), https://doi.org/10.1016/j.mito.2017.12.007
Mitochondrial metabolism and macrophage differentiation. The availability of purinergic effectors in the unstirred water layer where receptors and ligands meet is controlled by a suite of metabolic proteins and soluble channels. A simplified summary of their actions, and the dynamic capacity for mitochondrial functional changes that are associated with the CDR are illustrated.

Cellular zones: Bulk flow zone (BFZ), unstirred water layer (UWL), cell membrane, cytoplasm, ER-mitochondria-associated membranes (MAMs).

Organelles: M1 mitochondria are pro-inflammatory and dedicated to oxidative phosphorylation (oxphos). Lyosomes contain an acidic pool of calcium gated by NAADP acting on TCP. Endoplasmic reticulum (ER) contains a neutral pool of calcium gated by cADPR acting on the ryanodine receptor (RyR). Exosomes are sphingolipid-enriched nanovesicles that are used for cell-cell signaling and the removal and exchange of intracellular materials.

Proteins: Integral membrane-associated enzymes (purple), Non-integral membrane enzymes (green), Receptors and ligand-gated channels (orange), and Non-ligand-gated Transport materials.

50:50 M1:M2 and intermediate forms within medium-stress conditions, up to 100% M1 when the survival of the cell is threatened. When the fusion-fission cycle of mitochondria in a particular cell type is rapid (minutes to hours), as occurs in rapidly dividing cells in the bone marrow and gut epithelium, this transition comes to a new steady-state within minutes to hours. When the fusion-fission cycle of mitochondria is slow (for example, it is 2 weeks in the cardiac myocytes of adult mice (Song and Dorn II, 2015)), the M2 to M1 transition occurs more slowly, and the M1 state lasts longer after the danger has passed. Other differentiation states of mitochondria exist. For example, the mitochondria in brown adipose tissue (BAT) and beige/bright cells in white adipose tissue (WAT) have distinct developmental origins (Kajimura and Saito, 2014). Pluripotential M0 mitochondria are present in stem cells (Folmes et al., 2012) and primary oocytes (Van Blerkom, 2011).

The shift from M2 (anti-inflammatory) to M1 (pro-inflammatory) mitochondria that occurs when a cell becomes threatened is not unlike the analogous shift in the functional state of macrophages from resting...
M0 or polarized M2, to M1. The M1 phenotype of macrophages is pro-inflammatory and needed for cell defense, while M2 macrophages are anti-inflammatory and needed to facilitate the resolution of inflammation and healing. This cellular polarization is strongly correlated with oxidative phenotype of the mitochondria within macrophages (Chen et al., 2017). When the choreographed sequence of metabolic steps in the healing cycle encounters a roadblock for any reason, a persistent form of the CDR results, and M1 pro-inflammatory mitochondria persist past the time they are needed. This changes the trajectory of child development, and can lead to ASD and several other disorders.

4. ASD genetics, the CDR, and inflammation

Each of the common genes known to strongly increase the risk of ASD can be shown to play a role in CDR signaling or maintenance. Fragile X is just one of several examples. The Fragile X gene FMR1 encodes a protein that normally inhibits the translation of pro-inflammatory cytokines like TNFa (Garnon et al., 2005). Decreased expression of the Fragile X protein results in persistent activation of the CDR in the form of a low-grade inflammatory response in the brain (Di Marco et al., 2016). Could therapy directed at the CDR be effective in Fragile X, and other genetic causes of ASD? Antiinflammatory therapy (APT) directed at the CDR has already proven effective in correcting ASD-like behaviors in the Fragile X mouse model (Naviaux et al., 2015).

Rett syndrome is another example of a genetic cause of autism spectrum disorder that is tied to the cell danger response and inflammation (Cortelazzo et al., 2014). Most cases of Rett syndrome trace to new mutations in the MeCP2 gene, which codes for a methyl-CpG binding protein. Mutations in MeCP2 alter chromatin structure and lead to retroelement mobilization (Mastroi et al., 2010), genetic instability, and profound changes in the innate immune response (Derecki et al., 2012). The CDR coordinates retroelement mobilization and innate immunity (Naviaux, 2014). Animal models of Rett syndrome are an important reminder that even in some genetic causes of autism, the core behavioral features of ASD are not permanent. Behaviors can be reversed by treating the cell danger response that underlies oxidative changes and inflammation (Derecki et al., 2013).

Other examples include Angelman and Smith-Magenis syndrome. Angelman syndrome is usually caused by a de novo maternal deletion or mutation of a gene called ubiquitin-protein ligase E3A (UBE3A) located on chromosome15q11-q13. UBE3A is involved in the unfolded protein response. Mutations in UBE3A result in the accumulation of unfolded proteins (Mishra et al., 2009), which are in turn known to activate the CDR (Smith, 2014). Smith-Magenis syndrome is usually caused by chromosomal copy number variation (CNV) resulting in a deletion of a patch of DNA on chromosome 17p11.2 containing the retinoic acid induced 1 (RAI1) gene (Huang et al., 2016). This is not to be confused with the retinoic acid induced gene 1 (RGI1), a helicase on chromosome 9. Defects in RAI1 result in increased childhood infections and immunologic abnormalities (Perkins et al., 2017) that result in repeated activation of the CDR. Future studies will be required to test therapies directed at the CDR in children with Fragile X, Rett, Angelman, and Smith-Magenis syndromes.

5. Cellular order, metabolism, defense, and immunity

5.1. Mitochondria and the CDR

The daily operations of the cell require protein-protein and many other macromolecular interactions that rely critically on cellular spatial order—packing—for efficient function. When order is disrupted, function suffers. Any kind of physical or biological injury to the cell decreases electrons shuttled from nutrients to mitochondria. Mitochondrial electron flow acts as a barometer of cellular health. When mitochondrial electron transfer is disrupted a cellular metabolic syndrome is produced. This new cellular metabolic state is needed for healing. This starts locally at the site of injury, but propagates to neighboring cells as they adopt a change in function to contain the injury. If the injury cannot be contained locally, systemic signals are sent by neuroendocrine and autonomic nervous systems that ultimately produce changes in systemic metabolism and behavior. Disruptions in molecular order or the organization of cytoskeleton and organelles within cells is perhaps one of the most fundamental signals of danger. Increasing cellular disorder is the biologic equivalent of increasing thermodynamic entropy.

5.2. The importance of water

The decrease in the ordered state of macromolecules and solutes forces a change in the distribution, behavior, and thermodynamic properties of water molecules (H2O) in and around cells (Chaplin, 2006; Pollack, 2013; Prigogine and Nicolis, 1971). The partial positive and negative charge on a molecule of water, and other forces, constrain its movement by interacting with the surface charges around proteins, membranes, and cytoskeleton creating a fraction of bound or “vicinal” water that covers all biological surfaces. The more polymers or membranes in solution, the greater the fraction of bound to unbound water. The net effect of increased acidity and increased dissolved oxygen in cells and tissues is to inhibit macromolecular (polymer) synthesis reactions. Polymer synthesis reactions include the condensation of amino acids to make proteins and nucleotides to make RNA and DNA. This decreases the differentiated functional capacity of the cell, but is required to initiate healing after injury. Mitochondrial fusion-fission dynamics shift toward fission to permit increased quality control under stress (Yool and van der Bliek, 2012). Metabolic synapses between mitochondria and the endoplasmic reticulum known as mitochondrial-associated membranes (MAMs) also change under stress, further altering the ordered intracellular structure of organellar networks. MAMs regulate calcium, phospholipid, sphingolipid exchange, and many other key physiologic processes (Sano et al., 2009). Changes in mitochondrial dynamics during cell stress in tissues link increasing cytoplasmic disorder with increasing disorder of water molecules, and an increase in CDR-associated functions. The monitoring of cellular disorder is fundamental for normal immune system function (Cunliffe, 1997).

6. The CDR, redox, M1 mitochondria, and ASD

Oxidative changes in autism have been well-studied (James et al., 2006; Rose et al., 2017). Single cells make reactive oxygen species (ROS) to harden themselves when they come under attack by pathogenic organisms or environmental stress (Naviaux, 2012b). Indeed, the mitochondria in cells make the very ROS that inhibit their own bioenergetic functions. This seems self-destructive, but it is not. The adaptive function of the ROS-response cannot be understood within a single-cell frame of reference. The relevant frame of reference is the host considered as a collective system of many cells and tissues. Local ROS are responsible for activating a normal, but latent, alternative function of mitochondria in threatened cells. Under baseline conditions, tissue mitochondria exist mostly in an M2, or anti-inflammatory state dedicated to oxphos. When ROS are increased, mitochondria take on a new job. They become polarized to M1 mitochondria, become an important source of ROS themselves, increase the rate of damaged organelle removal via intracellular quality control methods, and become the initiators and coordinators of the antiviral response (Seth et al., 2005) and cellular defense (West et al., 2011). To do this, mitochondria must temporarily drop their “day job” as the hub of oxidative phosphorylation served by their M2 polarized state. The cell-autonomous inhibition of mitochondrial oxphos by ROS decreases both the production of cellular building blocks and the exchange of building blocks with other cells. The ROS-response and M1 polarization of mitochondria is adaptive because it decreases the chances that a virus, or pathogenic...
organism, or damage from a traumatic or chemical injury or toxin can spread to kill the host. A line of cells in which mitochondrial oxphos is decreased, and lactic acid and ROS are increased, creates the cellular equivalent of sealing the bulkheads that separate the compartments on a damaged ship or submarine to prevent the spread of more water to undamaged sections. Furthermore, when the metabolic rate of a single cell is decreased relative to neighboring cells, the local clock of biological time within that cell slows, permitting it to resist maturation and outlast the cells unable to use fewer resources for survival. For this and other reasons, the author favors the term "oxidative shielding" instead of "oxidative stress" (Naviaux, 2012b). The host benefits strongly from the ability of single cells to shift nimbly from peacetime M2 metabolism to defensive M1 metabolism needed for damage containment in response to environmental stress. When viewed contextually, it can be understood that this is not "mitochondrial dysfunction". The M1 state is an adaptive, new function of mitochondria that is produced when cells come under stress. Chronic disease results when this cell danger response cannot be turned off when its job is done.

7. The CDR, exosomes, and the immune response in ASD

Stressed cells increase the number and diversity of lipid nanovesicles called exosomes that they release into the extracellular space (Fig. 1) (Nemeth et al., 2017). Exosomes are enriched in stress- and danger-signaling sphingolipids, self-antigens that include metabolic enzymes from internal compartments of the cell, micro-RNAs, mitochondrial DNA (mtDNA), and partially processed materials from the mitophagy and autophagy pathways (Pellegrino and Haynes, 2015). Exosomes help to remove non-infectious aggregates of proteins like β-amyloid, α-synuclein, and tau that might otherwise accumulate inside the cell and become toxic (Rajendran et al., 2006; Wang et al., 2017; Yang et al., 2017). Exosomes are also critical for many forms of cell-cell communication involved in fundamental biological processes like fertilization (Machtinger et al., 2016) and neurotransmission (Lachenal et al., 2011). Viruses and microbial pathogens are known to hijack exosomes for cell-to-cell transmission. To combat this, certain interferon-induced genes like ISG15 have evolved that decrease total cell protein synthesis and exosome release from infected cells. This creates a reduction in cell-to-cell communication through exosome release, but permits more efficient disposal of pathogens within the cell by fusion with lysosomes (Villarroya-Beltri et al., 2017).

Another function of exosomes is to permit the export and recycling of biochemical building blocks produced during normal cell function (Fig. 1). Exosome release and reuptake into neighboring or distant cells occurs naturally during the turnover of billions of cells that occurs daily by apoptosis. Naturally occurring molecules like mtDNA, α-galactosylsereamide in lipid rafts, formyl-methionine containing mitochondrial peptides, released ATP and UTP, and other molecules can stimulate toll-like receptors (TLRs) and related stress-sensing receptors on B1 cells and support the production of naturally occurring, low-affinity, IgM antibodies. These natural autoantibodies (NAAs) are present from birth, are produced by T-cell independent, TLR-stimulated B1 cells, and have potent anti-inflammatory effects (Lobo, 2017). Low-titer IgM antibodies to self-antigens are increased after surgery and other traumas (Raad et al., 2014) because of increased release of material from stressed or damaged cells (Oka et al., 2012). These natural autoantibodies play an important protective role, limiting inflammation (Andaluz-Ojeda et al., 2013). Once the trauma or cellular damage is healed, exosome production, and other cellular sources of antigens are diminished, and autoantibody production is returned to background levels. If antigen presentation continues because of ongoing stress or infection, then high-affinity IgG antibodies can be stimulated, selected, and amplified.

Autoantibodies to the folate receptor (Frye et al., 2016a), and maternal antibodies to brain proteins (Edmiston et al., 2017) are associated with ASD risk. Complex neuroimmune syndromes like pediatric acute-onset neuropsychiatric syndrome (PANS), pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections (PANDAS), and autonomic disturbances like postural orthostatic tachycardia syndrome (POTS) are also risks in ASD. The chronically activated CDR can also lead to sleep disturbances, seizures, leuky gut, gut inflammation, and dysmotility. Thyroid abnormalities reflected by an increase in the rT3 also occur (Frye et al., 2017). This may be a consequence of stress induction of the selenoproteins, deiodinases 2 and 3 (DIO2 and 3), that are responsible for inactivating T4 and producing reverse T3 (rT3) (Lamirand et al., 2008). The CDR also regulates Th17 cells through purngeric signaling (Sullivan et al., 2014). Th17 cells and Th17 receptor expression on monocytes play several important roles in regulating breaches in immune tolerance (Pefi le et al., 2017), and inflammation in autism (Nadeem et al., 2017).

8. The CDR, natural infections, and vaccinations

The CDR is a normal and universal feature of any stress. This means that it is normally activated by both natural infections and vaccination. The CDR is needed to establish cellular and humoral immunity. Since the large majority of children and adults who receive vaccinations, or are exposed to common natural viral infections like Epstein Barr Virus (EBV), are able to recover without incident, the biological question is, "Why are some children and adults unable to moderate or turn off the CDR when its job is done and immunity is established?" We do not have an answer to this question yet. However, relatively simple measures like distributing vaccinations over time, instead of giving a large number at once would decrease the chances of triggering an excessive CDR in individual children deemed to be at increased risk. In addition, future research into the metabolomic phenotypes of children before and after vaccinations may begin to shine some light on differences in natural metabolic and physiologic states, that might permit us to predict the risk and develop treatments to prevent the rare complications like post-inmunization, febrile seizures (MacDonald et al., 2014).

9. Gene-environment interactions in ASD

9.1. Managing environmental risks

The CDR is triggered by both genes and environmental factors. Genes, and the proteins they make, can be thought of as providing adaptive resilience, like stretch in a homeostatic safety net, to a large number of stressors. When new, more frequent, or more severe exposures are encountered, the adaptive and healing capacity of cells can be pushed to, and beyond its homeostatic limits. This creates roadblocks to healing that result in a persistent form of the CDR. Environmental factors that can test the resilience of any given genotype include physical, chemical, nutritional, microbial, and psychological traumas. Infections during pregnancy (Zerbo et al., 2013), prenatal maternal psychological stress (Kinney et al., 2008; Ronald et al., 2010), early life stress (Cameron et al., 2017; Heun-Levitt and Levitt, 2016; Rutter et al., 2001), and exposure to a variety of toxins (Braun et al., 2014), metals (Kalkbrenner et al., 2014; Palmer et al., 2009), or traffic-related air pollution (Volk et al., 2011; Volk et al., 2013) have each been shown to contribute to ASD risk. Combinations of all these factors in a particular home, neighborhood, city, or rural environment contribute to the concept of total toxic load (Herbert et al., 2013). If the exposure happens during critical periods in early child development, ASD and several other childhood disorders can result (Landrigan et al., 2012). When avoidable risks are managed, pregnancy outcomes and child health can be improved (Adams et al., 2016; Schmidt et al., 2011).

9.2. Ecoge netics, ecoloalleles, and ASD

Recent twin studies show that environmental factors are responsible for about 60% (mean = 58%; 95% CI = 30–80%) of ASD. The collective contribution of all genes was about 40% (mean = 37%; 95% CI
8–84%) (Hallmayer et al., 2011), but no single gene accounts for more than 1–2% of all of ASD (Talkowski et al., 2014). The term ecogenetics describes the interaction between genes and environment. Many genes show strong differences in function depending on exposure to different environmental factors. These “ecoalleles” are common genetic variants—polymorphisms with allelic frequencies of about 2%–50%—in enzymes, receptors, transporters, and transcription factors that have different activities depending on environmental factors. Some of these environmental factors include seasonal and diurnal temperature fluctuations, or the availability of calories, fats or carbohydrates, trace metals, redox, critical cofactors like thiamine (B1), niacin (B3), riboflavin (B2), folic acid (B9), B12, lipoic acid, tetrahydrobipterin (BH4), biotin, pantothenic acid, vitamin D, C, or pyridoxine (B6), or exposure to drugs, pesticides, or toxins.

The prevalence of ecoalleles in different populations around the world differs significantly according to different climatic, dietary, infectious disease, and cultural conditions. For example, the ecoallele c.677TT in methylene tetrahydrofolate reductase (MTHFR) is rare in populations from sub-Saharan Africa (5%), but more common in Mexican, Italian, and Ashkenazi Jewish populations where it has an allelic frequency of about 50% (Karban et al., 2016). The risk of disease associated with the c.677TT ecoallele is context dependent. Despite being more common in Ashkenazi Jewish populations, the c.677T allele in MTHFR was a risk factor for autism, inflammatory bowel disease, and certain other diseases in non-Ashkenazi populations but not in Ashkenazi populations (Frye and James, 2014; Karban et al., 2016). If ecoalleles were always harmful in all world contexts at all ages, they would eventually be removed from the ancestral gene pool, or reduced to frequencies well below 1%. Alleles that cause disease in post-reproductive adults can be maintained by advantages to children or young adults. In the case of MTHFR, it has been hypothesized that the c.677TT variant confers resistance to malaria (Meadows et al., 2014). In sub-Saharan Africa, the sickle-cell hemoglobin trait became the most common genetic form of resistance to malaria. In other regions where different ecological and nutritional factors played a role in the selection of mechanisms of pathogen resistance that were not limited to malaria, MTHFR variants became more widespread, as in historical populations in southern Europe and Mexico.

Other ecoalleles include variants of cystathionine beta synthase (CBS), catechol-O-methyl transferase (COMT), monoamine oxidase A (MAO-A), amine oxidase, copper-containing 1 (AOCI; also known as diamine oxidase, DAO, and amiloride binding protein, ABP), histamine N-methyl transferase (HNMT), N-acetyltransferase 2 (NAT2), sulfo-transferase 1A1 (SULT1A1), glucose-6-phosphate dehydrogenase (G6PD), extracellular super oxide dismutase 3 (SOD3), deiodinase 2 (DIO2), chitinase 1 (CHIT1), solute carrier 19A1 (SLC19A1), also called the reduced folate carrier 1, RFC1, methionine adenosyltransferase 1 (MAT1), sphingomyelinase phosphodiesterase 1 (SMPD1, also called acid sphingomyelinase, ASM), endothelial nitric oxide synthase (eNOS, also called NOS3), homocystinosis (HFE), glutathione peroxidase 1 (GPX1), glutathione-S-transferase pi-1 (GSTP1), and serum paraoxonase/arylesterase 1 (PON1). Evolutionary selection maintains the prevalence of ecoalleles at frequencies of about 2%–50% because they have environment- and context-dependent fitness advantages, sometimes manifested only as the heterozygote carrier genotype.

9.3. The CDR activates the moonlighting functions of ecoalleles

As discussed above, M1 mitochondria use ROS to activate their latent/moonlighting function as coordinators of the cell danger response under conditions of environmental stress. Many metabolic enzymes also have moonlighting functions that are induced by new environmental conditions (Sriram et al., 2005). These moonlighting functions often seem self-destructive unless understood in terms of the cell danger response (CDR) (Naviaux, 2014). One important example is the mitochondrial enzyme dihydrolipoamide dehydrogenase (DLD), also known as the E3 protein. This protein is shared by 5 different mitochondrial enzyme systems that are critical for regulating cellular bioenergetics, redox, and amino acid metabolism. The enzyme systems catalyze NAD+ dependent, oxidative decarboxylation reactions. They are: pyruvate dehydrogenase complex (PDH), alpha-keto glutarate dehydrogenase (AKDH, also known as 2-OGDH), branched chain ketoacid dehydrogenase complex (BCKDH), 2-oxoadipate dehydrogenase (2-OADH), and the glycine cleavage system. Each of these 5 key enzyme systems can be affected when DLD changes from its canonical function to its moonlighting function under conditions of environmental stress. This leads to CDR-associated chromatin remodeling because alpha ketoglutarate released from mitochondria is an essential cofactor for Jun-moi histone demethylases (Kang et al., 2017), and NAD+ build-up activates histone deacetylation and DNA transcriptional silencing by sirtnuins (Simoneau et al., 2016). The net result is to slow gene expression and metabolism in stressed cells. Over 90 DNA variants of DLD are currently listed in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar?term=238331[MIM]). Thirty-one of 92 variants (34%) are currently classified as benign or likely benign. Some of these may in fact be ecoalleles of DLD that have not yet been fully characterized. Several DLD variants are strongly inhibited by valproate, creating an ecogenetic risk for drug-induced liver toxicity (Kudin et al., 2017).

Under conditions of low mitochondrial matrix pH produced by ischemia-reperfusion, high salt concentration, and other stresses, DLD changes from its normal dimeric conformation and adopts an oligomeric or monomeric structure. The normal DLD activity is lost as the moonlighting functions of the E3 protein are activated by stress. The first new activity to emerge is reactive oxygen species (ROS) production (Ambrus and Adam-Vizi, 2017) using NADH and oxygen for oxidative shielding in response to microbial infection or other stress (Naviaux, 2012b). This accompanies the shift from M2 anti-inflammatory to M1 pro-inflammatory mitochondria. Progressive stress leads to the transformation to monomer configuration and unmasks a cryptic protease activity. The emergent E3 protease cleaves several mitochondrial substrates, including the iron-sulfur cluster biogenesis protein frataxin (Babady et al., 2007). This leads to a prolonged shift from M2 to M1 mitochondria after transient but severe stress (Klyachko et al., 2005). Disruptions in iron-sulfur cluster assembly can have profound affects on dozens of proteins in key pathways of the cell danger response. Among these are vepin and ABCE1 used in the antiviral response, aconitase in the Krebs cycle, subunits of the mitochondrial respiratory chain complexes I, II, and III needed for energy production, and DNA repair proteins like XPD and FANCJ (Braymer and Lill, 2017).

9.4. Emergent phenotypes, epigenetics, and metabolic treatments

Mixtures of ecoalleles, with and without moonlighting functions, produce new phenotypes and patterns of disease risk and resilience that represent latent traits that are revealed by exposure to specific environmental triggers. While single ecoalleles can have predictable consequences like common pharmacogenomic variants (Schuck and Grillo, 2016), mixtures of ecoalleles are conditional and have emergent phenotypes that cannot be predicted from genomic analysis alone. Ecoalleles create resilience in the homeostatic safety net that helps life manage environmental infections, toxins, famine, vascular and tissue injury, and other stressors. The combined effect of unique mixtures of ecoalleles is to create metabolic phenotypes that are key targets for natural selection and evolution. Emergent metabolic traits are the result of real-time interaction of genes and environment. Their fitness depends on the environmental context. What permits survival under harsh conditions may slow reproduction or development under mild conditions.

When environmental conditions change over the course of child development, and harsh conditions alternate with mild, or harsh conditions begin to be more common than mild, recovery from the survival or defensive cellular state can be delayed or persist. Some of the
1. Metabolism and ASD behavior

The idea that behaviors in autism are caused by a change in metabolism is not new. The first organic abnormalities reported in ASD were metabolic (Rimland, 1964; Sutton and Read, 1958) (Table 1). Several genetic disorders of purine and pyrimidine (Micheli et al., 2011; Nyhan et al., 1969; Page and Coleman, 2000) and energy metabolism (Stockler-Ipsiroglu and van Karnebeek, 2014) are associated with autistic behaviors. Bernie Rimland, the founder of the Autism Research Institute (ARI), pioneered the metabolic approach to treatment in the first clinical trial of pyridoxine in children with ASD (Rimland et al., 2011). When cells detect genetic or environmental threats, mitochondrial function changes in a predictable way. These changes produce the metabolic abnormalities that trace to mitochondrial function (Minocherhomji et al., 2012; Naviaux, 2008; Wallace and Fan, 2010), but produce changes in gene expression that can persist beyond their utility because of time lags between frequent activation in a harsh environment, and recovery. Under these changing environmental conditions, mixtures of ecoalalleles and epigenetic changes that were once advantageous may become a disadvantage. When this happens in ASD, cofactor and metabolic therapies directed at ecoalallele-driven phenotypes in ASD can help strengthen resilience in the homeostatic safety net and improve behavioral symptoms (Frye et al., 2013a, 2016b).

Table 1
Metabolic disturbances in autism spectrum disorder.

<table>
<thead>
<tr>
<th>No.</th>
<th>Metabolic abnormality</th>
<th>Authors</th>
<th>Dates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decreased tryptophan conversion to serotonin; increased kynurenine pathway</td>
<td>H. Eldon Sutton</td>
<td>1958</td>
<td>Sutton and Read (1958)</td>
</tr>
<tr>
<td>2</td>
<td>Increased tryptophan and platelet serotonin</td>
<td>Daniel Freedman</td>
<td>1961</td>
<td>Mulder et al. (2004); Schain and Freedman (1961)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pyridoxine metabolism</td>
<td>Bernard Rimland, James Adams</td>
<td>1978,</td>
<td>Adams et al. (2006); Rimland et al. (1978)</td>
</tr>
<tr>
<td>5</td>
<td>Increased sphingolipids and gangliosides</td>
<td>Chris Gillberg</td>
<td>1998</td>
<td>Nordin et al. (1998); Schengrund et al. (2012)</td>
</tr>
<tr>
<td>6</td>
<td>Decreased sulfation, and plasma sulfate; Increased plasma cysteine, urine sulfate</td>
<td>Rosemary Waring</td>
<td>1999</td>
<td>Alberti et al. (1999)</td>
</tr>
<tr>
<td>8</td>
<td>Mitochondrial respiratory chain complex overactivity</td>
<td>William Graf et al.</td>
<td>2000</td>
<td>Frye and Naviaux (2011); Graf et al. (2000); Palmieri et al. (2010); Rose el al. (2014a); Rose et al. (2014b)</td>
</tr>
<tr>
<td>9</td>
<td>Decreased cholesterol/sterols</td>
<td>Elaine Tierney, Richard Kelley</td>
<td>2000</td>
<td>Tiemey et al. (2000)</td>
</tr>
<tr>
<td>10</td>
<td>Microbiome dysbiosis</td>
<td>Richard Sandler, Sydney Finegold</td>
<td>2002</td>
<td>Finegold et al. (2002); Sandler et al. (2000)</td>
</tr>
<tr>
<td>12</td>
<td>Cysteine, glutathione, SAM/SAH</td>
<td>Jill James</td>
<td>2006</td>
<td>James et al. (2006)</td>
</tr>
<tr>
<td>13</td>
<td>Reactive oxygen metabolism</td>
<td>Jill James</td>
<td>2006</td>
<td>Frustaci et al. (2012); James et al. (2006)</td>
</tr>
<tr>
<td>14</td>
<td>Pyrimidines—increased uridine, BAIB</td>
<td>W. Brussel, James Adams</td>
<td>2006,</td>
<td>Adams et al. (2011); Brussel et al. (2006); Micheli et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Increased VLCFA PE lipids</td>
<td>Dayan Goodenowe</td>
<td>2009</td>
<td>Pastural et al. (2009)</td>
</tr>
<tr>
<td>19</td>
<td>Decreased biopterin</td>
<td>Richard Frye</td>
<td>2010</td>
<td>Frye et al. (2010)</td>
</tr>
<tr>
<td>20</td>
<td>Decreased plasma biotin</td>
<td>James Adams</td>
<td>2011</td>
<td>Adams et al. (2011)</td>
</tr>
<tr>
<td>21</td>
<td>Decreased plasma ATP, increased adenosine</td>
<td>James Adams</td>
<td>2011</td>
<td>Adams et al. (2011)</td>
</tr>
<tr>
<td>22</td>
<td>Increased plasma glutamate</td>
<td>James Adams</td>
<td>2011</td>
<td>Adams et al. (2011)</td>
</tr>
<tr>
<td>23</td>
<td>Decreased branched chain amino acids</td>
<td>James Adams</td>
<td>2011</td>
<td>Adams et al. (2011); Novarino et al. (2012); Tirovanziam et al. (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Increased plasma and urine oxalate</td>
<td>Jerry Konstantynowicz</td>
<td>2012</td>
<td>Konstantynowicz et al. (2012)</td>
</tr>
<tr>
<td>25</td>
<td>Propionic amino acid metabolism</td>
<td>Derrick MacFabe, M. Al-Owain</td>
<td>2007, 2012</td>
<td>Al-Owain et al. (2013); MacFabe et al. (2007)</td>
</tr>
<tr>
<td>26</td>
<td>Decreased carnitine synthesis</td>
<td>Art Beaudet</td>
<td>2012</td>
<td>Celestino-Soper et al. (2012)</td>
</tr>
<tr>
<td>27</td>
<td>Eicosanoids</td>
<td>Afaf El-Ansary</td>
<td>2012</td>
<td>Beaulieu (2013); El-Ansary and Al-Ayadhi (2012); Gorrindo et al. (2013)</td>
</tr>
<tr>
<td>28</td>
<td>Oxidative shielding and metabolic memory</td>
<td>Robert Naviaux</td>
<td>2012</td>
<td>Naviaux (2012b)</td>
</tr>
<tr>
<td>29</td>
<td>Decreased fatty acid oxidation</td>
<td>Richard Frye</td>
<td>2013</td>
<td>Frye et al. (2013b)</td>
</tr>
<tr>
<td>30</td>
<td>Decreased plasma choline and betaine</td>
<td>Jill James</td>
<td>2013</td>
<td>Hamlin et al. (2013)</td>
</tr>
<tr>
<td>31</td>
<td>Increased rT3/TSH</td>
<td>Richard Frye</td>
<td>2017</td>
<td>Frye et al. (2017)</td>
</tr>
<tr>
<td>32</td>
<td>Cell danger response metabolism</td>
<td>Robert Naviaux</td>
<td>2012</td>
<td>Naviaux et al. (2014); Naviaux et al. (2015); Naviaux (2012a, 2014); Naviaux et al. (2017); Naviaux et al. (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>

Persistence of these traits can be driven by durable epigenetic changes that trace to mitochondrial function (Minocherhomji et al., 2012; Naviaux, 2008; Wallace and Fan, 2010), but produce changes in gene expression that can persist beyond their utility because of time lags between frequent activation in a harsh environment, and recovery. Under these changing environmental conditions, mixtures of ecoalalleles and epigenetic changes that were once advantageous may become a disadvantage. When this happens in ASD, cofactor and metabolic therapies directed at ecoalallele-driven phenotypes in ASD can help strengthen resilience in the homeostatic safety net and improve behavioral symptoms (Frye et al., 2013a, 2016b).
child development. The CDR produces effects on purinergic signaling that change how neural circuits are selected and how synapses are formed and pruned in the brain (Sipe et al., 2016). Many other organ systems are also affected by the CDR. These include the immune system, the gut microbiome, and the autonomic nervous system. Each of these is documented to be dysfunctional in autism.

Over 30 metabolic abnormalities have been described in ASD over the past 60 years (Table 1). All are known markers of the cell danger response (Naviaux, 2014; Naviaux et al., 2016). Interestingly, this set of about 30 different metabolic pathways is shared with the conserved cellular response to danger or threat regardless of whether the trigger was a virus (Wikoff et al., 2009), a bacterium (Degtyar et al., 2009), genetic forms of mitochondrial disease (Nikkanen et al., 2016), or neurodevelopmental disorders with complex gene-environment pathogenic mechanisms like autism (James et al., 2004). The hopeful message behind the CDR hypothesis is that the root cause of the communication difficulties, social anxiety, sensory abnormalities, GI problems, seizures, allergies, and many other comorbidities in autism, is a treatable metabolic syndrome. This means that contrary to classical teaching in medical schools around the world for the past 70 years, autism may not be permanent in some children. By treating the root cause, the CDR hypothesis gives hope that longstanding roadblocks to development can be removed and the children can make remarkable progress, despite a great heterogeneity in the causes of ASD. Future clinical trials will be needed to test this hypothesis rigorously.

11. Purinergic signaling and ASD

11.1. Purinergic signaling maintains the CDR

If the CDR is the problem, what is the cellular signal that keeps it turned on after it is no longer needed for healing? To answer this question, researchers had to weave together several apparently unrelated threads. These threads included research on mitochondria and healing (Naviaux et al., 2009), genetic forms of mitochondrial dysfunction in autism (Graf et al., 2000), genetic forms of autism associated with increased purine metabolism (Nyhavn et al., 1969), and the paradoxical improvement with fever that proved that the core behaviors of autism could be dynamically regulated by metabolism (Curran et al., 2007). The author hypothesized that the root cause of pathological persistence of the CDR was continued excessive or unbalanced purinergic signaling, called hyperpurinergia (Naviaux et al., 2013), and dyspurinergia, respectively.

Hypermurinergia is a universal and normal feature of the immediate and subacute cellular response to injury. Stressed cells release ATP and other small molecules less than about 800 Da in size through specialized membrane channels. The pannexin/P2X7 porin is an example of one of these stress-gated channels (Burnstock and Knight, 2017; Naviaux, 2012b). This phenomenon is illustrated in the whiteboard animation available at: https://www.youtube.com/watch?v=ZldUufy8Lks. When ATP, UTP, and other mitokines (signaling molecules traceable to mitochondria) are released through the stress-gated channels in the cell membrane, they bind to receptors on the cell surface to signal danger. Nineteen (19) purinergic receptors have been cloned. There are 8 P2Y receptors, 7 P2X receptors, and 4 P1 (adenosine) receptors. Extracellular ATP, ADP, adenosine, and UDP-glucose are important regulators of mast cell degranulation (Lazarowski and Harden, 2015; Osipchuk and Cahalan, 1992), neutrophils and T-cell function (Ledderose et al., 2015). Many different disease processes are regulated by purinergic signaling (Burnstock, 2014). Once the danger has passed, the release of ATP decreases, the CDR turns off, cells can complete the healing cycle, and return to normal “peacetime” function. Mixtures of CDR triggers can be synergistic. This contributes to the concept of total toxic load. Sequential exposures during critical developmental windows can stack to create a “perfect storm” of events that can derail the healing process and lead to pathological persistence of the CDR.

11.2. Nucleotide metabolism regulates purinergic signaling

In principle, hyperpurinergia can be produced by increased release of ATP and related receptor ligands, increased nucleotide dwell time caused by decreased metabolism or inactivation of purinergic effectors, a failure of receptors to desensitize once their job is done, or a combination of each. The dwell time of extracellular nucleotides in the pericellular halo is tightly regulated by cell-specific expression of CD39 (ectonucleotide triphosphate diphosphohydrolase 1) and CD73 (ecto-5’-nucleotidase) on the cell membrane. These proteins convert extracellular ATP and ADP to AMP (CD39), and AMP to adenosine (CD73) in calcium- and magnesium-dependent reactions (Antonioli et al., 2013) (Fig. 1). Adenosine is then either taken up by the cell through the equilibrative nucleoside transporter 1 (ENT1, SLC29A1), or metabolized to inosine by adenosine deaminase (ADA). Inosine is hydrolyzed to yield hypoxanthine and ribose-1-phosphate by purine nucleoside phosphorylase (PNP). PNP does not accept adenosine as a substrate and is not a source of adenine. Adenine base can be produced by methylthioadenosine phosphorylase (MTAP) during polyamine synthesis and methionine salvage (Mavrikas et al., 2016). Free adenine can be released or taken up by cells via the equilibrative nucleobase transporter (ENT1, SLC43A3). When taken up, adenine is used for salvage synthesis of AMP by adenine phosphoribosyl transferase (APRT). Hypoxanthine can be taken up by cells for salvage synthesis of purines via membrane transporters like the concentrative sodium-dependent nucleobase transporter 1 (SNBT1, SLC23A4), then condensed with phosphoribosylpyrophosphate (PRPP) by the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT) to make IMP. Hypoxanthine can also be oxidized in the extracellular space to xanthine and uric acid, with the production of superoxide (O2−) by the molybdenum-dependent flavoprotein xanthine oxidase (XO). Extracellular superoxide is converted to hydrogen peroxide (H2O2) by the copper and zinc-dependent, extracellular superoxide dismutase (SOD3). Extracellular and intracellular NAD+ and NADP+ are converted by CD38 to cADPR and NAADP+, respectively. Both CDPRP and NAADP activate calcium influx via the TRPM2 membrane channels. Inside the cell, cADPR releases calcium from the ER through the ryanodine receptor (RyR), and NAADP releases acidic calcium stores from lysosomes through the two pore channel (TPC) proteins. In anti-inflammatory, M2 polarized mitochondria the flux of NAD+ and NADPH through the nicotinamide nucleotide transhydrogenase (NNT) favors NADH and NADP+ production. In M1 (pro-inflammatory) mitochondria, the flux through NNT favors NADPH and NAD+ (NADP+ and NADPH production). Calcium and oxygen are then used by mitochondrial outer membrane-associated NAADP oxidase 4 (NOX4) to produce H2O2. Uric acid is transported into the cell by the cytokine-regulated uric acid transporter SLC2A9 (So and Thorens, 2010) and can stimulate inflammation directly by triggering the assembly of the NLRP3 inflammasome (Ghaemi-Oskouie and Shi, 2011) (Fig. 1).

UTP, UDP, and UDP-glucose are also released from cells under stress and act as signaling molecules that bind to purinergic receptors. CD39 and CD73 can also dephosphorylate UTP and UDP to produce extracellular uridine. Uridine can be metabolized by uridine phosphorylase (UPase) to produce the free nucleobase uracil and ribose-1-phosphate. Uracil can be imported as a free nucleobase into the cell by SNBT1. Uridine is transported into the cell through ENT1. Inside the cell, uridine is salvaged by phosphorylation by uridine-cytidine kinase 1 and 2 (UCK1/2). By regulating the relative expression of CD39, CD73, ADA, ENT1, SNBT1, ENBT1, PNP, XO, SOD3, CD38, TRPM2, APRT, HGPRT, SLC29A9, and UCK1/2, the nuanced informational content of the un-stirred water layer (UWL) produced by the release of extracellular ATP and UTP can be precisely calibrated in accordance with the functional states of each responding cell type (Fig. 1).
11.3. Purinergic signaling, the CDR, and the symptoms of ASD

When healing is incomplete, cells can be left in a state of hyper- or hypo-responsiveness to new threats. Chronic changes in purinergic signaling alter pain perception (Magni et al., 2017), and the processing of other sensory stimuli (Breza and Travers, 2016; Dietz et al., 2012). This is not unlike a cellular form of post-traumatic stress disorder (PTSD) resulting in durable changes in behavior after exposure to a transient, but serious stress. Cells cannot heal if a significant fraction of ATP is exported for purposes of signaling danger instead of being kept in the cell for normal energy metabolism. The use of antipurinergic drugs like suramin to treat a misfiring CDR has been called “molecular armistice therapy” because it sends a signal that “the war is over”. This decreases losses of ATP through stress-gated membrane channels, and decreases purinergic autocrine and paracrine signaling of danger (https://www.youtube.com/watch?v=zdUufy8Lks) so cells and mitochondria can return to peacetime metabolism needed for healing and development. The concept that purinergic signaling abnormalities are involved in ASD and can alter behavior is not just theoretical. Evidence of purinergic signaling abnormalities was found in children with ASD in a recent gene expression study (Ginsberg et al., 2012). Purinergic signaling has been shown to regulate a number of the cellular comorbidities and functional abnormalities associated with ASD (Table 2).

12. Preclinical studies of antipurinergic therapy

The idea that purinergic signaling might be involved in autism was born in 2008 (Naviaux research supported by Mr. Dan Wright). In 2010, the Naviaux Lab received a “Trailblazer” award from Autism Speaks (https://autismspeaksblog.wordpress.com/tag/mitochondria/) to test this idea. Suramin has many actions (Liu and Zhuang, 2011; Voogd, 2013) and one of its most studied actions is as a non-selective purinergic antagonist (Burnstock, 2006a). The 2013 paper (Naviaux et al., 2013) describing the results of the first suramin treatment studies in ASD mouse models showed that abnormal persistence of extracellular ATP signaling could cause ASD-like behaviors. It also produced excitotoxicity that led to the death of Purkinje cells in the cerebellum. Rebalancing the CDR with suramin restored normal behavior and prevented the loss of these cells (Naviaux et al., 2013). Two additional studies confirmed that antipurinergic therapy with the non-selective purinergic antagonist suramin improved both the core behaviors and the metabolic syndrome underlying autism-like symptoms in both the Fragile X genetic model and the environmental maternal immune activation (MIA) models (Naviaux et al., 2014; Naviaux et al., 2015). The mouse models also showed that high doses were not necessary. Low-dose suramin that produced blood levels of just 5–15 μM was both safe and effective in treating the symptoms of autism in these models.

13. Results of the SAT1 clinical trial

13.1. Metabolic abnormalities in ASD were improved by low-dose suramin

Using mass spectrometry, the metabolic pathways that were disturbed at baseline and changed by suramin were characterized in two mouse models of ASD-like behavior. Suramin treatment improved 17 of 18 (94%) biochemical pathways that were abnormal in the MIA mouse model (Naviaux et al., 2014) and 20 of 20 (100%) pathways disturbed in the Fragile X mouse model (Naviaux et al., 2015). Metabolomic analysis was also performed in the 10 children with ASD in the SAT1 study (Naviaux et al., 2017). This study showed that 21 of 28 (75%) of the pathways disturbed in children with autism were also abnormal in the mouse models. These included improvements in purines, 1-carbon/ folate, S-adenosylmethionine (SAMe), glutathione, microbiome, branched chain amino acids, fatty acid metabolism, and others (Naviaux et al., 2017) (Fig. 2). These improvements in metabolism were associated with similar improvements in each of the core symptoms of autism. There was a flowering of interest in social communication, new language, new social activities on the playground like playing tag, and at home like playing catch and other games with neurotypical siblings. The half-life of suramin after a single-dose was 14.7 ± 0.7 days. Studies in African sleeping sickness have shown that the plasma half-life of suramin can increase to 1 or 2 months after multiple doses (Hawking, 1940). As the single dose of suramin in the SAT1 study gradually wore off over 5–8 weeks, metabolism drifted back toward baseline, and most of the behavioral gains were lost. It is not yet known if regular suramin given every month or so could support continued developmental gains.

These studies strongly underscore the hopeful message that the symptoms of autism might be caused by a treatable metabolic syndrome and that antipurinergic therapy with low-dose suramin is a powerful tool in treating these fundamental metabolic abnormalities.

13.2. Core symptoms of ASD were improved by low-dose suramin

Low-dose of suramin used in the SAT1 study (Naviaux et al., 2017) improved the core symptoms of ASD measured by ADOS2 (autism diagnostic observation schedule, 2nd edition) score by 1.6 ± 0.55 points in 6 weeks (p < 0.0028; Fig. 3). Language, social interaction,
restricted interests, and repetitive movements all improved. Two children who were previously non-verbal spoke their first sentences. Suramin treatment was synergistic with regular school, educational enrichment programs, applied behavioral analysis (ABA), speech, and occupational therapy. None of these improvements were observed in the placebo group. The authors reported that the maximum benefit from a single dose of suramin occurred after 3 weeks then decreased slowly. Even after 6 weeks, three children had improved by 2 points and two children improved by 1 point, compared to baseline. No children were unimproved in the treatment group. In comparison, three children who received placebo were unchanged, and two improved by 1 point each. This gave rise to an estimate of the placebo effect of 0.4 ± 0.55 points (Fig. 3; p = 0.18; ns). ADOS comparison scores of 7–9 are used as a gold standard for the diagnosis of autism spectrum disorder (ASD). An ADOS score of 10 meets criteria for classical autism. If a few doses of suramin given over 3 months produce improvements at the same rate of 1 point/month, then children with symptoms that were initially severe enough to be on the spectrum (ASD = ADOS comparison scores of 7–9), might be able to come off the autism spectrum (dotted red box), and those with more severe forms of autism might improve significantly (Fig. 3). Does this mean suramin might be the first effective drug treatment for autism in nearly 75 years of research efforts? It is too early to say. Some biomedical treatments of ASD show benefits for a few weeks or months, then lose effectiveness over time. There is no evidence this could happen with suramin, but more clinical trials are needed. We need to know if a few doses given over a few months are safe and are able to maintain the same rates of ADOS score improvement of about 1 point per month of treatment. If this is true, then we are one step closer to the goal.

13.3. Low-dose suramin safety

Low-dose suramin that produced blood levels of just 5–15 μM, was safe and produced significant improvement in ASD symptoms at 6 weeks in the SAT1 trial (Naviaux et al., 2017) (Fig. 4). This low dose of suramin has never been studied before. The side effect profile of high-dose suramin (150–270 μM) is known from cancer chemotherapy studies (Stein, 1993). One author has expressed concern about the safety of high-dose suramin (Theoharides, 2013) citing a review of cancer studies (Kaur et al., 2002) that used prolonged exposure to high-doses of suramin that produced 25-times higher blood levels than those needed
to treat autism (Naviaux et al., 2017). Cancer studies typically used a dose and schedule of suramin designed produced blood levels of 250 μM compared to 10 μM used in the SAT1 study. High doses of most drugs have toxicities that are not seen at lower doses. The safety and side effect profile from medium-dose suramin (50–100 μM) is well known from nearly 100 years of study in African sleeping sickness (Hawking, 1940, 1978). This work showed that when a cumulative dose of 2.5–3 g/m² was divided into five, weekly intravenous infusions over a month, the elimination half-life increased from 2 weeks to 1.5–2 months, and suramin concentrations ≥4 μM (≥5 mg/L; MW = 1297 g/mol) were safely maintained for at least 6 months. About 10% of patients treated were rapid excretors and did not maintain these concentrations for as long (Hawking, 1978). These studies were done in Africa before the era of pharmacogenomics, so future studies in more ethnically diverse patient populations may reveal genetic differences in the handling and response to suramin that cannot yet be predicted. The side effect profile of low-dose suramin, given for several months is unknown. Future studies are needed to answer four big questions: 1) Do all children with ASD benefit, or just a fraction? 2) Does suramin lose effectiveness after a few months, or do children continue to benefit for as long as the drug levels in the blood are above 5 μM? 3) Does suramin need to be given for life, or are 4–8 doses over 6–12 months sufficient for normal child development to become self-sustaining? and 4) How long can low-dose suramin be used safely?

14. Sparking a Renaissance in drug development

14.1. Suramin as the first antipurinergic drug

Like the first antibiotic, or first beta-blocker for high blood pressure, suramin is the first antipurinergic drug (APD). APDs represent a class of medicines that is completely new to the world’s pharmacopeia. Soon other drugs that work like suramin will be developed (Jacobson and Müller, 2016). Eventually, the goal of this new Renaissance would be to create a shelf-full of APDs, each with slightly different pharmacological properties that would allow doctors to pick and choose the best match for each patient. The recent discovery that suramin prevents Zika, Ebola, Chikungunya, Coxackievirus A16, and Enterovirus A71 (Albulescu et al., 2017; Henss et al., 2016; Ren et al., 2017) from infecting cells may prompt additional clinical trials and further interest in APD development. Currently however, suramin is the only non-selective APD available for human use. Research into the role of purinergic signaling in autism is so new that we do not yet know which of the 19 purinergic receptors are most relevant. Suramin is a broad-spectrum inhibitor of most purinergic signaling systems.

Several P2Y12-selective antagonists like Plavix (clopidogrel) are used as antiplatelet agents to prevent blood clots, strokes, and heart attacks. However, their safety and activity in autism is unknown. Brilliant Blue G (BBG) is a P2X7 inhibitor and protein binding dye that has been used successfully in animal models to prevent excessive inflammation after spinal cord injury (Peng et al., 2009), Parkinson disease (Ferrazoli et al., 2017), and acetaminophen-associated liver injury (Abdelaziz et al., 2017). BBG is also widely used by ophthalmologists during retinal surgery (Azuma et al., 2016). Several experimental APDs are in clinical trials for rheumatoid arthritis and pain that target the P2X7 receptor, but none are yet available to prescribing physicians. It is likely that novel antipurinergic activities will be found in herbs, fungi, and other natural products distributed throughout the biosphere (Faria et al., 2012; Soares-Bezerra et al., 2013). Some may already be in use but their essential pharmacologic action as purinergic inhibitors is not yet known. Alternatively, knowledge of the synthetic chemical additives in our food chain that activate or inhibit purine and pyrimidine signaling (Ferreira et al., 2016), may shed new light on why some food colorings and additives are a problem in some children (Weiss, 2012).

14.2. Current clinical trials of antipurinergic drugs

In 2017, a search of the keyword “purinergic” among interventional trials in clinicaltrials.gov returned 418 studies in the US. Currently, over 90% of these studies are focused on platelets and heart disease. However, the broad involvement of purinergic signaling in nearly every chronic disease in which it has been studied (Burnstock, 2017) suggests great potential for the development of this new class of medications.

15. Conclusions

Over $1 billion has been spent on genetic research in autism over the past 10 years by the NIH, Autism Speaks, and the Simons Foundation. This work has shown that hundreds of genes play a role in different children, and that no single gene accounts for more than 1–2% of autism (Talkowski et al., 2014). While most genetic studies conclude that each genetic cause of ASD must be treated differently, the CDR hypothesis suggests that one mechanism—a unified cellular response—might be at the root of all the different causes of autism. In addition, the CDR hypothesis comes with a detailed molecular mechanism and a treatment. This new theory has already been rigorously tested in the lab since 2011 and found successful in classical animal models of autism. It also showed promise in 10 children with ASD as a unifying theory of pathogenesis in the SAT1 clinical trial (Naviaux et al., 2017).

15.1. The economic impact of a treatment for ASD

The average family caring for a child with ASD in the US spends over $17,000 annually in extra costs not covered by the health care and educational systems (Lavelle et al., 2014). About 3.5 million Americans today live with ASD (Buescher et al., 2014). Using the current estimates of 1 in 68 (Developmental Disabilities Monitoring Network Surveillance Year Principal et al., 2014) to 1 in 45 (Zablotsky et al., 2015) children in the US with ASD and a birthrate of 4 million children per year, about 75,000 ± 15,000 children will be diagnosed with ASD this year in the United States. The national economic cost of autism in the US is estimated to be $268 billion annually, or close to $75,000 per year per patient with ASD. This could rise to $461 billion by 2025 if the rising prevalence of ASD is not stopped (Leigh and Du, 2015). If a new treatment could help just 10% of patients come off the autism spectrum, it would bring back over $26 billion into the US economy each year ($268 billion × 10% = $26.8 billion). The financial return from this
discovery in a single year would be enough to support over 100 years of autism research funded by the National Institutes of Health (NIH). The 2016 budget for autism research projects at NIH was $232 million (https://report.nih.gov/categorical_spending.aspx; $26.8 billion saved + $0.232 billion/year NIH budget = 115 years).

15.2. Human impact

If autism is proven to be a treatable metabolic syndrome in some children, it means that some children now living with disabling forms of ASD, whose parents fear might never be able to live independently, could have a chance for independence and live happy, self-reliant lives. In addition, ASD often affects children who have shown early gifts and might otherwise grow up to become some of the best and brightest of their generation. If new science can lift their disabling symptoms without touching the unique gifts that make them special, the children with ASD today could grow up to become the young men and women of tomorrow who can think creatively to crack the problems that no one else can—to solve our technological problems, to ease social unrest, protect the environment, and help create a healthier future for us all.

16. Special note from the author

Until recently, the public has not heard the name of a new drug until it has been approved by the FDA to treat a particular disorder and it is ready to be marketed by its manufacturer. This has the beneficial effect of protecting patients from asking for, or trying a drug that has not yet been proven safe and effective for their disease. A growing number of drugs are experiencing new interest as researchers discover new uses for old drugs. This is called “drug repurposing.” Drug repurposing is not as simple as using an old drug “off-label” to treat a new disorder. Many drugs are not safe or effective when used this way. Many times the dose and schedule, and even the fundamental pharmacology, like the half-life and volume of distribution, of a drug are different in different patient populations. Careful clinical trials are needed to establish safety and efficacy for each new indication.

Suramin is approved to treat African sleeping sickness (trypanosomiasis). It is not approved for the treatment of autism. There is currently no approved use of suramin in the United States. It is illegal to import suramin into the US for human use without FDA approval. Like many intravenous drugs, when administered improperly by untrained personnel, at the wrong dose and schedule, without careful measurement of drug levels and monitoring for toxicity, suramin can cause harm. Careful clinical trials will be needed over several years at several sites to learn how to use low-dose suramin safely in autism, and to identify drug-drug interactions and rare side effects that cannot currently be predicted. The author strongly cautions against the unauthorized use of suramin. Ultimately, clinical trials may show that suramin is not the final answer for autism. Its effects may be limited to a small number of children, or they may not last, or side effects may emerge. However, the discovery that the cell danger response and purinergic signaling are fundamental features of ASD is now stimulating new research around the world. New antipurinergic drugs, and the rediscovery of old ones, will not be far behind.

Funding

All funding for these studies was philanthropic. This work was supported in part by gifts from the UCSD Christini Fund, the William Wright Family Foundation, the Autism Research Institute (ARI), the Lennox Foundation, the Gupta Family and Satya Fund, the Agrawal Family, Linda Clark, the N of One Autism Research Foundation, the Rodakis Family, the It Takes Guts Foundation, the UCSD Mitochondrial Disease Research Fund, Dr. Elizabeth Mumper Cooper, the Daniel and Kelly White Family, the Brent Kaufman Family, Fred and Sylvia Fogel, the David Cannistraro Family, Ian and Rochelle Yankwitt, George and Caryn Harb, the Francis Clougherty Charitable Trust, and the Heritage Youth Foundation. Funding for the mass spectrometers was provided by a gift from the Jane Botsford Johnson Foundation.

Conflicts of interest

RKN is a scientific advisory board member for the Autism Research Institute (ARI) and the Open Medicine Foundation (OMF), a consultant for Stealth Biotherapeutics, and has submitted a technology disclosure to UCSD describing antipurinergic therapy for autism and related spectrum disorders.

Acknowledgements

RKN thanks Danielle Sternberg for creating the visualization of nucleotide metabolism and transport illustrated in Fig. 1. RKN thanks Mr. Dan Wright for his support of the MRL mouse studies on healing that created the foundation for the CDR hypothesis, and for the phone call one winter day in January 2008 that began a new trail of discovery in mitochondrial medicine and autism, and John Green, Steve Edelson, Nancy O’Hara, Neil Nathan, and A. Taylor Bright for comments on the manuscript, and Richard Haas, Eric Gordon, Paul Hardy, Vicki Kobiner, Maya Shetreat-Klein, Mauro Lins, and Caio Scocco for helpful discussions. RKN thanks the United Mitochondrial Disease Foundation (UMDF) and NIH for a conference grant in 2010 that first brought together investigators to focus their interests on the crossroads of mitochondria and autism. RKN also thanks the Autism Research Institute (ARI) for their invitation to many high-level scientific, medical, and family conferences, think tanks, and topical focus groups over the years. These events, the professional collaborations that they fostered, and many families and children affected by autism around the world, have helped to refine the concepts of the CDR, purinergic signaling, and new approaches to treatment discussed in this review.

References

Mitochondrion xxx (xxxx) xxx–xxx

Metabolic features and regulation of the healing cycle—A new model for chronic disease pathogenesis and treatment

Robert K. Naviaux
The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, MC#8467, San Diego, CA 92103, United States

A R T I C L E I N F O

Keywords:
Cell danger response
Healing cycle
Mitochondrial nexus
Metabolic addiction
Metabolic memory
Purinergic signaling
Metabokines
Antipurinergic therapy
M0, M1 and M2 mitochondria
Ecoalleles
Ecogenetics
Allostasis
Allostatic load
Integrated stress response

A B S T R A C T

Without healing, multicellular life on Earth would not exist. Without healing, one injury predisposes to another, leading to disability, chronic disease, accelerated aging, and death. Over 60% of adults and 30% of children and teens in the United States now live with a chronic illness. Advances in mass spectrometry and metabolomics have given scientists a new lens for studying health and disease. This study defines the healing cycle in metabolic terms and reframes the pathophysiology of chronic illness as the result of metabolic signaling abnormalities that block healing and cause the normal stages of the cell danger response (CDR) to persist abnormally. Once an injury occurs, active progress through the stages of healing is driven by sequential changes in cellular bioenergetics and the disposition of oxygen and carbon skeletons used for fuel, signaling, defense, repair, and recovery. > 100 chronic illnesses can be organized into three persistent stages of the CDR. One hundred and two targetable chemo-sensory G-protein coupled and ionotropic receptors are presented that regulate the CDR and healing. Metabokines are signaling molecules derived from metabolism that regulate these receptors. Reframing the pathogenesis of chronic illness in this way, as a systems problem that maintains disease, rather than focusing on remote trigger(s) that caused the initial injury, permits new research to focus on novel signaling therapies to unblock the healing cycle, and restore health when other approaches have failed.

1. Introduction

Much of modern Western medicine is based on the principles of acute interventions for poisoning, physical injury, or infection. These principles trace to historical figures like Paracelsus (1493–1541), Ambroise Paré (1510–1590), and Louis Pasteur (1822–1895). These acute care interventions are now widely used in the modern fields of pharmacology, toxicology, urgent care, emergency medicine, and surgery. When caring for acute disruptions in health, the careful identification of the trigger, or cause of the problem, and the anatomical location of the defect, is an important part of good medical care. However, when dealing with chronic illness, treatments based on the rules of acute care medicine have proven less helpful, and can even cause harm by producing unwanted side-effects (Qato et al., 2018).

In chronic illness, the original triggering event is often remote, and may no longer be present. Emerging evidence shows that most chronic illness is caused by the biological reaction to an injury, and not the initial injury, or the agent of injury itself. For example, melanoma can be caused by sun exposure that occurred decades earlier, and post-traumatic stress disorder (PTSD) can occur months or years after a bullet wound has healed. If healing is incomplete between injuries, more severe disease is produced. If a new head injury is sustained before complete healing of an earlier concussion, the clinical severity of the second injury is amplified, and recovery is prolonged. This occurs even when the energy of the second impact was less than the first. Progressive dysfunction with recurrent injury after incomplete healing occurs in all organ systems, not just the brain. Chronic disease then results when cells are caught in a repeating loop of incomplete recovery and re-injury, unable to fully heal. This biology is at the root of virtually every chronic illness known, including susceptibility to sequential or recurrent infections, autoimmune diseases like rheumatoid arthritis, diabetic heart and kidney disease, asthma and chronic obstructive pulmonary disease (COPD), autism spectrum disorder (ASD), chronic fatigue syndrome (CFS), cancer, affective disorders, psychiatric illnesses, Alzheimer dementia, and many more.

Great strides have been made since the 1940s in the treatment of...
acute illness. This success has decreased infant mortality, lowered mortality from infections and trauma, and has improved survival after heart attacks, strokes, and cancer. However, this success has led to a sea change in medicine. Instead of spending the majority of time treating acute illness, physicians and health care workers in 2018 now spend the majority of time and effort caring for patients with chronic disease. Over $2.5 trillion is spent every year in the US to care for patients with chronic illness (Burke, 2015). While it has been tempting to treat this rising tide of chronic disease by using the principles that have proven so successful in acute care medicine, a growing literature supports the conclusion that every chronic disease is actually a whole body disease—a systems problem—that cannot be solved using the old paradigms. For example, autism, bipolar disorder, schizophrenia, Parkinson, and Alzheimer disease each affect the brain, but are also characterized by whole-body metabolic abnormalities that are measurable in the blood and urine (Gevi et al., 2016; Han et al., 2017; He et al., 2012; Varma et al., 2018; Yoshihi et al., 2016). Rheumatoid arthritis affects the joints, but also has metabolic abnormalities in the blood that show an activated cell danger response (CDR) (Naviaux, 2014) for several years before the onset of clinical joint disease (Surowiec et al., 2016). Coronary artery disease affects the heart, but is the result of long-standing abnormalities in metabolism called “the metabolic syndrome” (Mottillo et al., 2010).

All chronic diseases produce systems abnormalities that either block communication (signaling), or send alarm signals between cells and tissues. Cells that cannot communicate normally with neighboring or distant cells are stranded from the whole, cannot reintegrate back into normal tissue and organ function, and are functionally lost to the tissue, even when they are surrounded by a normal mosaic of differentiated cells. As this process continues, two different outcomes are produced, depending on age. If the block in cell-cell communication occurs in a child, then the normal trajectory of development can be changed, leading to alterations in brain structure and function, and changes in long-term metabolic adaptations of other organs like liver, kidney, microbiome, and immune system. If the communication block occurs in adults, then organ performance is degraded over time, more and more cells with disabled or dysfunctional signaling accumulate, and age-related deterioration of organ function, senescence, or cancer occurs.

Blocked communication and miscommunication inhibit progress through the healing cycle, and prevent normal energy-, information-, and resource-coordination with other organ systems (Wallace, 2010). This predisposes to additional damage and disease. When chronic disease is seen as a systems problem in which the healing system is blocked by key metabolites that function as signaling molecules—metabolites—new therapeutic approaches become apparent that were hidden before. What follows is a description of our best current model of the metabolic features of the healing cycle. Future research will be needed to flush out additional details.

2. Materials and methods

2.1. Bioinformatic analysis of P2Y1R-related proteins

A TBLASTN search of the human genome was conducted using the P2Y1R protein (Uniprot P47900, ENSP00000304767) as the reference. The top 156 matching sequences were recovered after removal of pseudogenes, partial, and duplicate sequences, the top 91 unique genes ranged from 257 to 388 amino acids in length, shared a 22%–42% identity with P2Y1R, had blast scores of 70–740, and e-values of 8 × 10−10 to 2 × 10−64. TAS2R46, a bitter taste receptor, encoded by the T2R46 gene, was used as an outgroup for tree construction. Sequence alignments were performed using the clustal w method in MegAlign (Lasergene v15.1, DNAStar Inc., Madison, WI). Tree analysis and visualizations were performed using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

2.2. Bioinformatic analysis of P2X1R-related proteins

A TBLASTN search of the human genome was conducted using the P2X1R protein (Uniprot P51575, ENSP00000225538) as the reference. The only related genes found were the other 6 known P2X receptors. A BLASTP search of related proteins recovered 46 splice variants of the 7 known ionotropic P2X receptors. The 7 top sequences were 352–399 amino acids in length, sharing 38%–52% identity with P2XR1, and had blast scores of 291–831, and e-scores of 3 × 10−91 to 5 × 10−149.

2.3. Gene ontology

A gene ontology analysis of the 91 P2Y1R-related genes was performed using the online gene list analysis tools available on the Panther Gene Ontology website (http://www.pantherdb.org/). The top 6 pathways had gene enrichments > 3 times the expected threshold, explained 98% of the connections, and had false discovery rates from 0.02 to 2.7 × 10−65.

3. Need for a systems biology of healing

The classical signs of inflammation that begin the process of wound healing have been known since before the time of Hippocrates (c. 460–370 BCE). Medical students today still learn the classical Latin terms for the signs of inflammation as rubor, tumor, calor, dolor, and functio laesa (redness, swelling, heat, pain, and loss of function). In United States, the curriculum at most medical schools does not yet include a specific course on the molecular systems biology of healing. The descriptive elements of injury and healing are taught in traditional courses like pathology, histology, and during clinical service on the surgical and burn wards. However, a dedicated systems biology course, describing our current understanding of the choreographed changes in cell metabolism, biochemistry, gene expression, cell structure, cell function, and pathophysiology that occur after injury and during healing, is missing. The rapidly growing fields of Integrative (Rakel, 2018), Functional (Baker et al., 2010), and Natural (Pizzorno and Murray, 2013) Medicine devote considerable attention to the broader, multi-dimensional study of whole-body healing as it applies to the treatment of chronic illness. However, a modern synthesis of functional and traditional medicine with state-of-the-art medical technology directed at the molecular aspects of healing has not yet been achieved.

4. Metabolomics—A new lens for chronic disease medicine

The newest “omics” technologies to be added to the systems biology toolbox are metabolomics (Jang et al., 2018) and lipidomics (Harkewicz and Dennis, 2011). Rapid advances in these emergent technologies were made possible by technological advancements in mass spectrometry that have occurred since about 2012. In 2018, we are still at least 10 years behind the technical sophistication of genomics, but a flood of new publications using metabolomics has revealed the first outlines of a missing link that connects the genes and disease. Whole-body chemistry appears to be this link (Fiehn, 2002).

5. Metabolites as both matter and information

Chemistry provides the link between genotype and phenotype in two ways: (1) cell metabolism is the direct result of gene-environment interactions (G × E = metabolism), and (2) chemicals (metabolites) made by and processed by the cell have a dual biology as both matter and information. Metabolites have a well-known function as matter; metabolites are the physical building blocks used for cell growth, structure, function, repair, and as energy and electron carriers. In ecosystem theory, this metabolic matter represents resources for system structure, function and growth, and for energy to support ecosystem connectivity and resilience to perturbation (Bernhardt and Leslie,
Many metabolites also have a lesser-known function as information; they bind specific receptors to change behavior, regulate fetal and child development, shape the microbiome, activate neuroendocrine and immune systems, and regulate the autonomic and enteric nervous systems.

Metabolites like ATP, S-adenosylmethionine (SAMe), acetyl-CoA, NAD+, and others are used to modify DNA and histones directly to alter gene expression through epigenetics (Naviaux, 2008; Nieborak and Schneider, 2018; Wallace and Fan, 2010). Other metabolites like α-ketoglutarate, succinate, fumarate, iron, FAD, and oxygen act as essential cofactors for epigenetic modifications. These metabolites, and others like propionyl-CoA, butyryl-CoA, succinyl-CoA, myristoyl-CoA, farnesyl-diphosphate, and UDP-glucose, also alter the function of other proteins by post-translational modifications of nuclear transcription factors and enzymes throughout the cell as a function of real-time changes in metabolism. Finally, dozens of metabolites act as signaling molecules called metabokines, by binding to dedicated cell surface receptors.

6. The healing cycle

The healing process is a dynamic circle that starts with injury and ends with recovery. This process becomes less efficient as we age (Gosain and Dipietro, 2004), and reciprocally, incomplete healing results in cell senescence and accelerated aging (Valentijn et al., 2018). Reductions in mitochondrial oxidative phosphorylation and altered mitochondrial structure are fundamental features of aging (Kim et al., 2018). The changes in aging are similar to programmed changes that occur transiently during the stages of the cell danger response needed for healing (Naviaux, 2014) (Fig. 1). Although the circular nature of healing seems obvious from daily experience with cuts, scrapes, and the common cold, the extension of this notion to a unified theory to explain the pathophysiology of chronic complex disease has only recently become possible. Technological advancements in mass spectrometry and metabolomics have permitted the characterization of 4 discrete stages in the healing cycle (Fig. 1). The first of these is the health cycle, which requires wakeful activity alternating with periods of restorative sleep. The health cycle will be discussed after first reviewing the 3 stages of the cell danger response: CDR1, CDR2, and CDR3. Aspects of the CDR include the integrated stress response (ISR) (Lu et al., 2004) and the mitochondrial ISR (Khan et al., 2017; Nikkanen et al., 2016; Silva et al., 2009). While all aspects of the CDR are coordinated by nuclear-mitochondrial cross-talk, the precise controls of the transitions between the stages of the CDR are largely unknown.

The following is a current model based on evidence drawn from many experimental studies. As such, the details must be considered provisional. The 3 stages of the CDR are energetically and metabolically distinct. The smooth transition from one step to the next is choreographed by metabolic signaling and regulated by 3 sequential quality control checkpoints, CP1, CP2, and CP3 (Fig. 1). The checkpoints appear to interrogate mitochondrial and cellular function. The completion of each stage of the CDR appears to be decided largely on a cell-by-cell basis. These checkpoints are not regulated by a single, deterministic signaling molecule. Checkpoints are better considered as gates controlled by the synergistic effects of multiple permissive and inhibitory signals. The concentration of a particular signaling molecule is determined in part by the total number of cells in a tissue in each stage of the CDR. Both local and systemic signals are used. As such, the checkpoints that regulate progress through the healing cycle are probability gates. Based on real-time chemical signals and

Fig. 1. A metabolic model of the health and healing cycles. Health is a dynamic process that requires regular cycling of wakeful activity and restorative sleep. The healing or damage cycle is activated when the cellular stress exceeds the capacity of restorative sleep to repair damage and restore normal cell-cell communication. CDR1 is devoted to damage control, innate immunity, inflammation, and clean up. CDR2 supports cell proliferation for biomass replacement, and blastema formation in tissues with augmented regeneration capacity. CDR3 begins when cell proliferation and migration have stopped, and recently mitotic cells can begin to differentiate and take on organ-specific functions. Abbreviations: eATP; extracellular ATP; CP1–3: checkpoints 1–3; DAMPs: damage-associated molecular patterns; DARMs: damage-associated reactive metabolites.
mitochondrial function, each cell has a certain probability of entering the next stage of healing. This probability is 0%–100% based on cell-specific metabolism and the net effect of all the metabolites in the milieu around the cell. For any given cell, one step in the healing cycle is ready for the next step. Restoration cannot be entered until the previous step has been completed and mi-
etabolism and the net energy flux (Cunliffe, 1997). Physical disruption of gap junctions that
 connects and coordinate cell function in tissues can activate the CDR.
 Other triggers include bacteria, viruses, fungi, protozoa, or exposure to biological or chemical toxins. In all cases, extracellular ATP and other metabolites are released from the cell to signal danger. This happens through stress-gated pannexin/P2X7 channels in the membrane and through an increase in vesicular export of ATP through SLC17A9, the
vesicular nucleotide transporter (VNUT), and related transporters
through stress-gated pannexin/P2X7 channels in the membrane and
metabokines are released from the cell to signal danger. This happens

Table 1

<table>
<thead>
<tr>
<th>CDR1 Disorders</th>
<th>CDR2 Disorders</th>
<th>CDR3 Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innate Immune Disorders</td>
<td>Proliferative Disorders</td>
<td>Differentiation Disorders</td>
</tr>
<tr>
<td>–HPA Axis, ATP, Lipids, mtDNA</td>
<td>–mTOR, p21, HIF, PHDs</td>
<td>–DARMs, Mitro Polari zation</td>
</tr>
<tr>
<td>Systemic Inflammatory Response Syndromes (SIRS)</td>
<td>Dyslipidemia</td>
<td>Autism spectrum disorder</td>
</tr>
<tr>
<td>Multiple Organ Dysfunction Syndrome (MODS), Septic shock</td>
<td>Hyperuricemia</td>
<td>Chronic Fatigue Syndrome</td>
</tr>
<tr>
<td>Acute Respiratory Distress Syndrome (ARDS)</td>
<td>Diabetes</td>
<td>Post-traumatic stress disorder</td>
</tr>
<tr>
<td>Allergies, asthma, atopy</td>
<td>Diabetic retinopathy</td>
<td>Fibromyalgia, Chronic pain syndromes,</td>
</tr>
<tr>
<td>Chronic infections (fungal, bacterial, viral, parasitic)</td>
<td>Hypertension</td>
<td>Allopathy</td>
</tr>
<tr>
<td>Gulf War Illness (GWI), Tinea pedis, Tinea versicolor, Tinea corporis, Tinea barbae</td>
<td>Heart disease</td>
<td>Neuropathic pain syndromes</td>
</tr>
<tr>
<td>Histoplasmosis, Coccidiomycosis</td>
<td>Peripheral vascular disease</td>
<td>Complex regional pain syndromes</td>
</tr>
<tr>
<td>Aspergillosis, Chronic mucocutaneous Candidiasis, Sporotrichosis, Cryptococcosis, Sarcoidosis, Chronic granulomatous disease, Chlamydia, Listeriosis, Toxoplasmosis, Bartonellosis, Syphilis, Helicobacter, Neisseria, Vibrio cholerae, Tuberculosis, Non-tuberculous mycobacteria infections, Leprosy, Lyme, Typhoid, Malaria, Leishmaniasis, Onchocerciasis, Schistosomiasis Trypanosomiasis, Filariasis</td>
<td>Cerebral vascular disease</td>
<td>Obsessive Compulsive Disorder</td>
</tr>
<tr>
<td>Ecosystem disorders</td>
<td>Inflammatory bowel disease</td>
<td>Generalized Anxiety Disorder</td>
</tr>
<tr>
<td>Coral reef fungal infections (Aspergillus), Coral bleaching disorder (Vibrio), Shrimp black gill disease (Hyalohypha), Microsporidial gill disease in fish, Colony collapse disorder in honey bees, White nose disease in bats (Geomyco), Chytridiomycosis in frogs and salamanders, Potato plague (Phytophthora), Sudden Oak Death (Phytophthora), Tea leaf blister, Coffee rust, Cacoa tree witch’s broom fungus, White pine blister rust (Cronartium), Sudden Aspen Decline (Cytospora)</td>
<td>Subacute spinal cord injury</td>
<td>Major depressive disorder</td>
</tr>
<tr>
<td></td>
<td>Dermal vasculitis, Temporal arthritis, Kawasaki coronary arthritis</td>
<td>Bipolar disorder</td>
</tr>
<tr>
<td></td>
<td>Cancers and Leukemias</td>
<td>Migraine headaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New daily persistent headaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POTS, PANS, PANDAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schizophrenia, acute psychosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parkinson, Alzheimer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple sclerosis, Tourette’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dysautonomia syndromes, Lupus Selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epilepsies, Behcet’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scleroderma, Sjogren’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymyalgia rheumatica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ankylosing spondylitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic traumatic encephalopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traumatic brain injury</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected post-stroke syndromes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wakeful delta wave activity (EEG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hashimoto’s thyroiditis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psoriasis, eczema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alopecia areata, vitiligo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoantibodies to intrinsic factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macular degeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presbyopia, presbycusis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetic neuropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetic nephropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irritable bowel syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adaptive Energy Conservation and Survival States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dauer, diapause, torpor, estivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hibernation, Persistor cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plant seed embryo formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caloric restriction metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longevity metabolism</td>
</tr>
</tbody>
</table>

* Subdivisions occur within each of the 3 main stages of the CDR.

7. **CDR1—Glycolysis, M1 mitochondria**

The function of CDR1 is the activation of innate immunity, intruder and toxin detection and removal, damage control, and containment (Fig. 1). The level of inflammation produced in CDR1 is adjusted according to need. A major trigger of CDR1 appears to be a fundamental change in cellular organization or order, generalized as thermodynamic entropy (Cunliffe, 1997). Physical disruption of gap junctions that
connect and coordinate cell function in tissues can activate the CDR.

Other triggers include bacteria, viruses, fungi, protozoa, or exposure to biological or chemical toxins. In all cases, extracellular ATP and other metabolites are released from the cell to signal danger. This happens through stress-gated pannexin/P2X7 channels in the membrane and through an increase in vesicular export of ATP through SLC17A9, the vesicular nucleotide transporter (VNUT), and related transporters (Sakaki et al., 2013). Mitochondria change their function rapidly under stress. Within minutes, the normal anti-inflammatory M2 form of mitochondria that is specialized to meet the metabolic needs of the differentiated cell, is polarized toward pro-inflammatory, M1 mitochondria (Naviaux, 2017) (Fig. 2). This initiates the oxidative shielding response needed for damage control and containment (Naviaux, 2012). When less oxygen is consumed by mitochondria for energy production by oxphos, more oxygen becomes available for synthesis of oxylipin signaling molecules (Gabbs et al., 2015) and reactive oxygen species (ROS) for defense. The incorporation of oxidized nucleotides produced during the oxidative shielding response that occurs during CDR1 into newly synthesized mitochondrial DNA, and the release of small fragments of this new oxy-

* Subdivisions occur within each of the 3 main stages of the CDR.
A cell that adopts the CDR1 phenotype must functionally disconnect many lines of communication with neighboring cells. This is needed to make the metabolic and physical changes needed for cellular defense under threat. Communication with neighboring cells during this time is dramatically decreased and changed. The decrease in, and restructuring of cell-cell communication represents a kind of cellular autism that is not just beneficial, but required to initiate the healing process. However, because organs require tight cell-cell communication and coordination for optimum function, this disconnection of cells from the whole comes at a cost; normal organ function is temporarily decreased while cells pass through the steps of healing (Fig. 1). This contributes to the “funicio laesa”, loss of function, described as a canonical feature of early wound repair and inflammation. Removal of debris and damaged cells is accomplished by the combined actions of polymorphonuclear and mononuclear phagocytes recruited to the site, venous, and lymphatic drainage. This loss of function can last for weeks or months after an injury before recovery occurs. One well-studied example is the stunned myocardium that can occur after acute myocardial infarction. After injury, a segment of heart muscle can remain alive and perfused, but non-contractile for months. When recovery occurs, it is accompanied by a shift in metabolism from glycolysis (CDR1), through a blended transition phase of aerobic glycolysis (CDR2), back to oxidative phosphorylation (CDR3) (Figs. 1 and 2). This sequence is associated with an increase in mitochondrial fusion proteins and normal fatty acid oxidation (Holley et al., 2015; van der Vusse, 2011; Vogt et al., 2003), and a restoration of normal cell-cell communication needed for electromechanical coupling. CDR1 ends with passage through checkpoint 1 (CP1, Figs. 1 and 2). CP1 requires the creation of a less-oxidizing and less inflammatory extracellular environment that is conducive for shifting the thermodynamic balance from monomer to polymer synthesis needed for rebuilding RNA, DNA, proteins and membranes, and for the recruitment of previously quiescent satellite and stem cells into cell division in CDR2.

8. CDR2—Aerobic glycolysis, M0 mitochondria

The function of CDR2 is biomass replacement (Fig. 1). Every organ and tissue has an optimum number and distribution of differentiated cell types that are needed for healthy organ function. When cells are lost, they must be replaced or organ function cannot be fully restored. Once the damage associated with the initial injury, infection, or toxin exposure has been cleared or contained in CDR1, the cells that were lost need to be replaced. In CDR2, stem cells are recruited to replace the lost biomass. Stem cells are present in all tissues throughout life. When activated, they will enter the cell cycle. The mitochondria in stem cells and their immediate daughter cells exist in a youthful, metabolically uncommitted state called “M0” (Fig. 2A). M0 mitochondria help to facilitate aerobic glycolysis, also known as Warburg metabolism, which is needed for rapidly growing cells. During aerobic glycolysis, ATP is synthesized by glycolysis. However, M0 mitochondria still consume oxygen and electrons. Instead of using the potential energy gradient for synthesizing ATP by oxidative phosphorylation, M0 mitochondria dissipate the energy gradient by releasing metabolic intermediates needed for polymer synthesis and cell growth. For example, mitochondria are needed for de novo pyrimidine synthesis. The mitochondrial inner membrane protein, dihydroorotate dehydrogenase (DHODH) is required for the 4th step in de novo pyrimidine synthesis to make orotic acid. Orotic acid is needed to make UMP, which is then used to make all the Us, Cs, and Ts the cell needs for RNA and DNA synthesis, and for the activated intermediates like UDP-glucose for receptor glycoprotein synthesis and glycogen synthesis, and CDP-choline for phosphatidylcholine synthesis. M0 mitochondria also supply succinyl-CoA and glycine for delta-aminolevulinic acid (δ-ALA, also known as 5-ALA), porphyrin, and heme synthesis needed for cytochromes and hemoglobin. M0 mitochondria also synthesize and release citric acid, which can be used either in the cytosol or nucleus by ATP-citrate lyase.
Table 2: Functional characteristics of the CDR and health cycle.

<table>
<thead>
<tr>
<th>Feature</th>
<th>CDR1</th>
<th>CDR2</th>
<th>CDR3</th>
<th>Health Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Metabolism</td>
<td>Cell Metabolism</td>
<td>CDR1</td>
<td>CDR2</td>
<td>CDR3</td>
</tr>
<tr>
<td></td>
<td>Glycolysis</td>
<td>Aerobic glycolysis</td>
<td>Oxidative phosphorylation</td>
<td>Balanced oxphos, glycolysis, and aerobic glycolysis</td>
</tr>
<tr>
<td>Cellular Autonomy</td>
<td>High</td>
<td>High</td>
<td>Decreasing</td>
<td>Low</td>
</tr>
<tr>
<td>Ventral Vagal^2</td>
<td>Low</td>
<td>Low</td>
<td>Increasing</td>
<td>High, with diet and activity-related cyclic variations under circadian and seasonal control</td>
</tr>
<tr>
<td>Autonomic Tone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Containment, pathogen removal, toxin sequestration, innate immunity, clean-up</td>
<td>Proliferation, Biomass Restoration, Blasema Formation*</td>
<td>Differentiation, Cell-cell communication, Metabolic Memory, Adaptive Immunity, Detoxification</td>
<td>Cell-cell communication, Metabolic complementarity, Development, Learning, Fitness, Restorative sleep, Healthy Aging, Cancer suppression, neuroendocrine systems integration</td>
</tr>
<tr>
<td>Diseases</td>
<td>Chronic Infections, allergies, MODS, SIRS, ARDS</td>
<td>Diabetes, Heart disease, Cancer, Fibrosis</td>
<td>Pain, Autonomic, Affective, Psychiatric, Neurologic, Immune/Autoimmune, and Microbiome dysfunction, other target organ dysfunction</td>
<td>n/a</td>
</tr>
<tr>
<td>CDR Gene Examples</td>
<td>NRF2, CRF2, IDO1, NOXs, NFKB, HO1, PARs, REXO2, eIF2a, STAT1/2, MMP9, IFN, IFN3/4, SP1, IFN/β3, IL-1β, UMP-CMPK2, TNFR</td>
<td>mTOR, HIF1α, AhR, p53, p21, p16^{INK4A}, c-myc, PHDs, BRCA1/2, ATR, other DNA repair enzymes, Nanog*, Sox2*, Oct4*, hsl1</td>
<td>AMPK, FOXO, PPARs, BCL2, P1, P2Y, P2X, CD38, RXRs, CD38, CD39, CD73, B2, FXR, IFNγ, IL17, B2, TGF, Iron-sulfur cluster proteins, Mfn1/2, Opat, Intestinal disaccharidases</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Abbreviations: MODS—multiple organ system dysfunction in sepsis; SIRS—systemic inflammatory response syndrome; ARDS—acute respiratory distress syndrome; NOXs—NADPH oxidases; PARs—protease activated receptors (F2R/PAR1, F2R1/PAR2, F2R2/PAR3); IRF1—interferon regulatory factor 1; PHDs—HIF1α-targeting prolyl hydroxylase domain proteins; PPARs—peroxisome proliferator activated receptors; RSA—respiratory sinus arrhythmia; HRV—heart rate variability. 1Cell autonomy is associated with cellular disconnection, whole body stress, and activation of the HPA axis. 2Ventral vagal tone via myelinated fibers from the nucleus ambiguus, measured by RSA and/or HRV. 3For embryonic development and multilineage regeneration in some animals.
Mitochondrion 46 (2019) 278–297

R.K. Naviaux

Mitochondrion 46 (2019) 278–297

Mitochondria in CDR3 cells repolarize from M0 to M2 organelles (Fig. 2). Most remaining M1 mitochondria also repolarize to the M2, anti-inflammatory phenotype needed for differentiated cell function and oxidative phosphorylation (oxphos). This is accomplished in part by re-establishing permanent access to oxygen and nutritional resources, while permitting free release of metabolites and waste products to neighboring capillaries and lymphatics. Oxygen, iron, and sulfur delivery are differentiating and promote mitochondrial biogenesis of iron-sulfur clusters. Iron-sulfur clusters are needed for differentiated cell functions like oxidative phosphorylation, the anti-viral response, protein translation, genome integrity maintenance, and organ-specific physiologic functions (Braymer and Lill, 2017). Outer mitochondrial membrane fusion proteins like mitofusin 1 and 2, and the inner membrane fusion protein Opa1 are also needed to achieve normal mitochondrial network morphology and fully differentiated tissue function (Cao et al., 2017; Del Dotto et al., 2017) (Table 2).

As differentiation proceeds, cells also reestablish connections with the autonomic nervous system and tissue lymphatics. All blood vessels and most tissues receive innervation from the sympathetic and parasympathetic nervous systems. Metabolite and waste product removal helps to provide remote information to and from organs like the brain, liver, intestines, and kidney. Each of these organs participates in regulating whole-body absorption, secretion, metabolism, function, and behavior according to chemical signals that are circulated in the blood. Tissue-specific detoxification restarts in CDR3 and continues through the health cycle. A major regulator of checkpoint 3 is purinergic signaling. The health cycle cannot be reentered until extracellular levels of ATP and related ligands decrease. A decrease in eATP at the completion of CDR3 is a permissive signal that facilitates new and old cells to re-establish the physical, autonomic, and neuroendocrine contact needed for health (Fig. 1, Table 2). In many instances, the completion of CDR3 results in improved baseline physiologic performance and extended reserve capacity compared to before the stress or injury. At a cellular level, this is called hormesis (Fig. 3) and lies at the heart of adaptive improvements in both baseline performance and reserve capacities in response to many forms of stress. These stresses can range from exercise to radiation or chemical toxin exposure, drug tachyphylaxis, to stimuli that result in long-term memory (Calabrese and Baldwin, 2003; Chen et al., 2013; Ristow, 2014).

Fig. 3. Timeline of the healing cycle and hormesis. Despite a cascade of events triggered by injury, and hundreds of molecular abnormalities that can be measured in each stage of the healing cycle, the arrow of time is not reversed to heal damage and normalize abnormal functions. The metabolic stages of the healing cycle proceed sequentially forward in time. Healing follows a similar path regardless of the mechanism of injury. *Once a chronic illness occurs, there is little practical difference between the severities possible for CDR1, 2, or 3 disorders. With rare exceptions, each can produce a spectrum from mild disability to death.
10. The health cycle—Harmonized and periodized bioenergetics

The function of the health cycle is to promote wakeful activity, restorative sleep, normal child development, adaptive fitness, and healthy aging. The health cycle is characterized by the balanced, integrated, and periodized usage of all three bioenergetics programs; glycolysis, aerobic glycolysis, and oxidative phosphorylation (Fig. 1). Health requires brain integration and coordination of organ function and whole body metabolism using neuroendocrine and autonomic controls. Wakeful activity and a varied, seasonally-appropriate diet that is sourced from local ecosystems and consumed during daytime hours helped select the gene pools that humans received from their ancestors, up until about the last 200 years. Disruptions in this pattern of seasonal food availability, the increasing prevalence of night shift work, and the decline of traditionally active outdoor lifestyles, have led to new selection pressures on our inherited gene pool. Modern mass spectrometry and metabolomics have helped us achieve a more detailed understanding of the importance of dietary cycling that occurs naturally with the seasons and periodically with occasional short fasts that promote health throughout the year (Mattson et al., 2018).

Cruciferous vegetables in a healthy diet contain isothiocyanates like sulforaphane that act rapidly as chemical pro-oxidants to transiently decrease the amount of intracellular glutathione. This short-term pro-oxidant effect produces a long-term increase in antioxidant defenses by blocking KEAP1 and Cullin 3-dependent ubiquitination, and permitting the translocation of NRF2 (nuclear factor 2 erythroid related factor 2) to the nucleus. In the nucleus, NRF2 acts as a transcription factor to up-regulate over a dozen different cytoprotective proteins like glutamate-cysteine ligase (GCL) to increase glutathione synthesis, glutathione-S-transferase (GST) for xenobiotic detoxification, and heme oxygenase 1 (HO1) for local synthesis of carbon monoxide (CO) at sites of heme extravasation to attenuate M1-polarized mitochondrial pro-inflammatory effects. While oxygen inhibits the stability of HIF1a, the same conditions increase the stability and support the transcriptional activity of NRF2. Acute stress leads to a normal, NRF2 activation response. In contrast, chronic activation by stress ultimately desensitizes and decreases NRF2 activation, and permits long-term increases in inflammation-associated NFkB activation (Djordjevic et al., 2015). The normal health cycle requires the daily modulation of these cycles of increased and decreased oxygen-related redox stress associated with wakeful activity and restorative sleep (Figs. 1 and 2).

11. Exercise and healthy aging

Exercise is medicine. Wakeful activity is essential for the health cycle (Fig. 1) and healthy aging. Regular exercise appears to be the single most important habit known that mitigates the degenerative effects of aging. Moderate exercise creates a natural stimulus that facilitates restorative sleep and repair by creating balanced activation of all the stages of the healing cycle. In many important metabolic ways, exercise “reminds” the body how to heal and promotes disease-free health throughout life. Exercise is adaptogenic (Panossian, 2017). Exercise increases physiologic reserve capacity and resilience to periodic stress or acute illness. Organ reserve capacity diminishes with age (Atamna et al., 2018). Exercise combats this loss. Even just 15 min of moderate-to-vigorous exercise per day each week lowers all-cause mortality by 22%. Older adults who completed > 30 min/day for 15 min of moderate-to-vigorous exercise per day each week lowers all-cause mortality by 22%. Older adults who completed > 30 min/day for 15 min of moderate-to-vigorous exercise per day each week lowers all-cause mortality by 22%

12. Slow wave sleep and healing

Sleep is medicine. Slow wave sleep (SWS) and the associated increase in parasympathetic autonomic tone are important for healing and recovery during rapid growth in childhood (Takatani et al., 2018). Disruptions in SWS and parasympathetic tone during sleep are risk factors for many chronic illnesses (Carney et al., 2016; Rissling et al., 2016). Delta waves in an electroencephalogram (EEG) are defined as high amplitude (100–300 μV) slow waves (0.5–2 Hz). Delta waves are a normal feature of the deep stages 3 and 4 of sleep. Rapid growth and recovery after high-intensity exercise are associated with an increase SWS in children (Dworak et al., 2008; McLaughlin Crabtree and Williams, 2009). In classical mitochondrial diseases like Alpers syndrome, the need for brain repair is so great that delta waves are seen in the EEG even while awake (Naviaux et al., 1999). Wakeful delta wave activity (slow wave activity) has also proven to be a useful biomarker in studies of traumatic brain injury (Huang et al., 2016). Reciprocally, new methods are being developed to promote wakeful delta waves as therapy in patients with traumatic brain injury (Huang et al., 2017).

13. Metabokines and their receptors

13.1. Metabokines, neurotransmitters, and immune regulators

While it is clear that both exercise and sleep influence metabolism, how does the cell leverage changes in metabolism to influence progression through the healing cycle? Metabolites have long been known to act as signaling molecules in neuroscience. All the classical neurotransmitters are technically metabokines. Molecules like serotonin, melatonin, acetylcholine, glutamate, aspartate, glycine, α-serine, GABA, dopamine, norepinephrine, epinephrine, histamine, anandamide, and adenosine are all products of metabolism that act as signaling molecules by binding to cellular receptors. There are even circulating classes of memory T-cells that contain the enzyme choline acetyl transferase (ChAT) and release acetylcholine in response to vagal nerve stimulation to activate important anti-inflammatory macrophages expressing the nicotinic acetylcholine 7 alpha subunit (nACh7a) (Baez-Pagan et al., 2015; Rosas-Ballina et al., 2011). This signaling function of metabolites has not been widely incorporated into discussions of metabolic control of cellular functions and development. Metabolites act directly as informational molecules by acting as ligands for specific G-protein coupled and ionotropic receptors. Secreted metabokines alter the informational content of the extracellular milieu in many ways. One of these is through a process called exosignalling (Pincas et al., 2014), which can prime cells for contextually-dependent, non-linear quantitative and qualitative responses to hormones and other signaling molecules. Purinergic receptors respond to adenosine and uracil nucleotides and nucleosides (Verkhratsky and Burnstock, 2014). Nineteen (19) purinergic receptors are present in the human genome (Fig. 4). Forty P1 receptors are 7-transmembrane G-protein coupled receptors (GPCRs) that respond to adenosine (ADORA1, 2A, 2B, and 3). Eight GPCRs are single-exon, P2Y receptors (1, 2, 4, 6, 11, 12, 13, and 14) that respond to ATP, ADP, UTP, UDP, and UDP-glucose (Fig. 4A). Seven are multi-exon, ionotropic P2X receptors (1–7) that respond to extracellular ATP and act as ion channels for calcium and potassium (Fig. 4B).

13.2. Dendrogram and gene ontology analysis

To investigate the number of receptor systems that are related to the release of ATP and other nucleotides from stressed and damaged cells, a TBLASTN search was performed of human proteins related to the P2Y1 receptor, a prototypic purinergic receptor. The P2Y1R is a conventional, single-exon, metabotropic, G-protein coupled receptor with 7 transmembrane domains. A dendrogram of the top 91 P2YR1-related proteins revealed a possibility of 6 groupings according to amino acid sequence and function in the healing cycle (Fig. 5A). These are: A) hemostasis, pH monitoring, cannabinoid, Krebs cycle, leukotriene, and purinergic signaling, B) lysophospholipid, sphingolipid, cannabinoid, and metabolite signaling, C) eicosanoid, lactate, nacin, short chain fatty acid (acetate, propionate, butyrate, and the ketone body β-hydroxybutyrate), and protease signaling, D) viral co-receptors, glucose/sucrose signaling, pro-inflammatory and anti-inflammatory peptides E)
neuropeptides and other peptide hormones, and F) chemokines. A gene ontology analysis of the pathways that were enriched in this set of 91 proteins showed that about 50% of the pathways were involved in calcium signaling, 20% with cell movement, and the remainder divided among molecular regulation, immune response, apoptosis, and sensory processing (Fig. 5B).

13.3. Ligand analysis

The ligands that bind to the 91 P2YR1-related proteins differ in size. Eight of the 91 related receptors in Fig. 5A use nucleotides, eg, ATP, ADP, UTP, UDP etc., as their canonical ligand. Another 35 of the receptors use other common metabolites and neurotransmitters like lactic acid, succinate, alpha-ketoglutarate, glutamate, short chain fatty acids, long chain fatty acids, eicosanoids, cannabinoids, sphingolipids, lysophospholipids, serotonin, and melatonin. A total of 43 of 91 (47%) receptors respond to metabolites less than about 400 Da in size. Twenty-four (26%) use peptides 4 to about 80 amino acids long (400–8000 Da), often released by proteolytic activation from an inactive precursor. Twenty-one (22%) respond to chemokines that are 8000 to 10,000 Da in size. Among these are receptors that are essential for innate immunity and for healing and regeneration after injury. For example, the CXCR4 binds to the chemokine CXCL12, also known as stromal derived factor 1 (SDF1), which negatively regulates multi-lineage regeneration (Heber-Katz, 2017). Four (4%) of the 91 GPCRs related to P2YR1 are constitutively active, or have ligands that are not yet known (Table S1).

14. The TOGLEs that regulate metabolism

Transporters, opsins, G protein-coupled receptors, and their ligands and effectors (TOGLEs) are a diverse group of proteins that share a common evolutionary origin (Saier Jr. et al., 2016; Yee et al., 2013). The single, most diverse superfamily of genes found in metagenomic surveys of ocean picoplankton (bacteria) are the bacterial rhodopsins (Venter et al., 2004). Interestingly, the opsins are related to a group of phosphate, sulfur, cystine, heavy metal, organic acid, salt, and sugar transporters that share similar structures and transmembrane topologies. Difficulties in sensing, handling, or responding to many of these molecules have been documented in complex diseases like autism spectrum disorder (ASD) (Adams et al., 2011). These transporters and opsins are related to G-protein coupled receptors (GPCRs) that constitute over 800 genes in the human genome (Gether, 2000). The functional tie that binds all the TOGLEs together is their role in monitoring the cellular environment for signs of nutrient resources, recognizing friends, signaling danger, and facilitating social and reproductive behaviors. The very receptors that now permit cells to monitor minute changes in the chemical environment are descended from ancestral genes for color vision, smell, and taste (Liman, 2012).

15. Hormone target resistance and axis suppression by the CDR

End organ resistance to hormone signaling is an intrinsic part of the CDR. Once a tissue suffers injury, a shift to dependence on local chemical cues and paracrine signaling is essential. Remote decision-making by endocrine glands cannot provide “boots on the ground”, real-time instructions to injured cells when bidirectional lines of communication are disrupted. A shift from fully integrated and periodized metabolism to cell-autonomous metabolism is an obligate feature of CDR stages 1 and 2 (Figs. 1 and 2, Table 2). Re-establishment of hormone sensitivity begins during CDR3, and is required for re-entry into the health cycle (Fig. 1, Table 2). All known mechanisms of hormone resistance have been cataloged. Hormone release, target cell hormone metabolism (Incollingo Rodriguez et al., 2015), and intracellular hormone signaling can each be attenuated by the CDR. End organ resistance during the CDR can affect all the major endocrine systems. Thyroid, adrenal cortical glucocorticoid and mineralocorticoid, and renin-angiotensin system attenuation states are common in patients with chronic fatigue syndrome (CFS). The most common forms of stimulus-response dysregulation lead to complex endocrine syndromes that do not fit classical medical definitions of deficiency or failure because residual hormone production can usually be shown by physiologic stimulation, but is suppressed. These complex disorders have sometimes been called thyroid or adrenal exhaustion syndromes. On the other side of the intracellular energy spectrum, insulin resistance associated with caloric excess and inactivity can lead to type 2 diabetes mellitus (DM2). In all these end-organ resistance states, the treatments that have been most effective are metabolic, diet, and lifestyle interventions that restore normal bidirectional function of the endocrine system. In contrast, chronic treatment with the hormone in question typically leads to...
iatrogenic side-effects, and dependence on the exogenous hormone. Knowledge of the cell autonomy requirement of the CDR helps reframe the causal mechanisms behind these previously unconnected syndromes (Figs. 1–3, and Table 2).

16. Vagal target resistance and axis suppression by the CDR

The activity of the parasympathetic nervous system measured along a gradient of environmental safety is U-shaped. The ventral vagus complex (VVC) is comprised of myelinated fibers from the nucleus ambiguus to the vagus nerve. The VVC is most active under conditions of social attachment, caloric security, and physical safety. At the other extreme is the dorsal vagal complex (DVC). The DVC is also called the dorsal motor nucleus of the 10th cranial nerve (DMNX). The DMNX sends unmyelinated fibers to the vagus nerve. The DMNX is most active acutely under life-threatening conditions, and periodically in synchrony with the VVC during predictable changes in physiology associated with feeding, sleep, and reproduction. Since the majority of wakeful activity
occurs between these two extremes of absolute safety and absolute danger, a large part of life is spent at the bottom of the “U”, poised between the neurophysiologic and neuroendocrine commitment to one or the other. A shift to the left on the U-curve is in the direction of health and fitness (Lucas et al., 2018). A shift to the right leads to chronic illness, disability, and death. When the CDR is chronically activated, the coordination between the two limbs of the vagus is disrupted. This results in disinhibiting the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA), which dominate during illness (Fig. 2, Table 2).

Disruption of cellular communication, and the associated increase in cell-autonomous and paracrine signaling by metabolines during the CDR is tightly associated with either a disruption in normal parasympathetic tone from the VVC, or end-organ resistance to cholinergic signals. This is typically quantified by measurements of respiratory sinus arrhythmia (RSA) and heart rate variability (HRV) (Porges, 2007). Substages of the CDR occur during the transition between a fully active ventral vagus complex in health, its rapid inhibition by CDR1, and its gradual return in CDR3. The return of oxygen utilization by healing tissues during CDR2 and CDR3 is associated with increases in RSA and HRV (Fig. 2, Panel D). Increased RSA and HRV are also known to be associated with endurance exercise and aerobic health (De Meersman, 1992, 1993).

When the normal cyclic variations in vagal outflow are disrupted during the CDR, a number of autonomic abnormalities occur. These include postural orthostatic tachycardia syndrome (POTS), and autoimmune disorders like pediatric autoimmune neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). All of these disorders have autoimmune components that appear tied to a decrease or absence of normal anti-inflammatory signaling by the vagus. Vagal afferents mobilize T-cells from gut associated lymphoid tissue (GALT) in the GI tract. The T-cells then induce the anti-inflammatory M2 macrophage phenotype through nicotinic acetylcholine 7 alpha (nACh7α) receptors (Baez-Pagan et al., 2015). Vagal afferents also inhibit cytokeinyl leukotriene release by mast cells via nicotinic cholinergic signaling (Mishra et al., 2010). Cysteiny1 leukotrienes C4, D4, and E4 are also called the slow reacting substances of anaphylaxis, and bind to receptors closely related to P2Y receptors (CTLR1 and 2 in Fig. 5A). Additional support for the important role played by cholinergic signaling from the vagus comes from the use of nicotinic cholinergic antagonists for neuromuscular blockade (NMBA) during anesthesia. Drugs like suxamethonium and atracurium are used for NMBA, and block nicotinic cholinergic signaling everywhere receptors exist, not just at the neuromuscular junction. These drugs are associated with a risk for anesthesia-induced allergic and non-allergic immediate type hypersensitivity reactions, especially in patients with known allergies and mast cell hypersensitivity (Laroché et al., 2017). Even POTS has recently been shown to be associated with autoantibodies to the angiotensin II receptor (Yu et al., 2018).

17. Tissue mosaics and cellular dysynchrony in healing

Healing is necessarily heterogeneous and dysynchronous at the cellular level. This occurs for three reasons: 1) all differentiated tissues and organs are mosaics of metabolically specialized cells with differing gene expression profiles that permit the metabolic complementarity needed for optimum organ performance, 2) physical injury, poisoning, infection, or stress do not affect all cells equally within a tissue, and 3) once a tissue is injured, cells that have not yet completed the healing cycle have not yet reintegrated back into the tissue mosaic, creating chinks or weaknesses in tissue defenses from the old injuries that makes a tissue more vulnerable to new injuries. This process gradually decreases organ function and cellular functional reserve capacity as we age.

Severe threats or injuries cause cells to disconnect from neighboring cells. The initial stages of healing require cell-autonomous actions. If a local organ or tissue is threatened, millions of cells will activate the cell danger response (CDR) program in an effort to survive, at the expense of their normal differentiated cell functions. If injury, or the threat of injury, is severe enough, signals are sent from the brain to alter organismal behavior to limit the chances of worsening injury, or the chance of spreading contagion to family or community members. The brain coordinates this stereotyped sickness behavior during activation of the CDR (Dantzer and Kelley, 2007; Naviaux, 2014). The rate at which cells are able to progress through the healing cycle differs according to the local severity of the danger and the ability of the host to mount protective defenses. Metabolic memory of past exposures primes the cellular response to future exposures, even when the original trigger or stress is no longer present.

18. Genes, drugs, and devices that regulate stages of the CDR

To date, the only drug that has been tried explicitly as a treatment for a blocked CDR to promote healing is suramin (Naviaux et al., 2014; Naviaux et al., 2015; Naviaux et al., 2017; Naviaux et al., 2013). A recent study of a device for pulse-based transcranial electrical stimulation to stimulate restorative, wake-time delta wave activity and to improve the quality of sleep has shown promise in the treatment of traumatic brain injury (TBI) (Huang et al., 2017). Brain delta waves are associated with a shift in metabolism that facilitates brain and body repair, recovery, and healing. Once the healing cycle (Figs. 1 and 2) is understood in greater detail, many other drugs and treatments may emerge that are designed to provide novel approaches to treating CDR-associated chronic diseases (Table 1). While increased ATP release from cells is a part of each of the 3 stages of the CDR (Fig. 1), other metabolites and genes play more selective roles. By studying the metabolites, genes, and cell types involved in each stage, more selective therapies can be developed. For example, the NRF2 and hypothalamic-pituitary-adrenal (HPA) axis appear to be involved early in CDR1 and do not require the physical loss of cells as a decision point indicated by the “1” for “information” in Fig. 1.

Organisms have the capacity to mount a similar metabolomic response to stress, regardless of whether the triggering event is neuropsychiatric (Picard et al., 2015), or physical cell damage (Nishi et al., 2013). In both cases, mitochondria are the pivotal organelle (Picard et al., 2017). In both cases extracellular ATP is released by stressed cells as a first alarm for entering CDR1 and the healing cycle (Fig. 1) and intracellular calcium handling is regulated (Schmunk et al., 2017). When glucocorticoids are directly released by ATP stimulation of the adrenal cortex by stressed or damaged cells, hypothalamic corticotrophin releasing factor (CRF) and pituitary ACTH are decreased by feedback inhibition. On the other hand, childhood or adult neuropsychological stress can lead to direct stimulation of CRF. In addition to CRF receptors in the brain, peripheral CRF receptors exist in the GI tract and other organs (Buckinx et al., 2011). Peripheral metabolic responses to stress appear to be regulated in part by urocortin acting on peripheral CRF2 receptors in the kidneys and GI tract (Lovejoy et al., 2014). Drugs and supplements directed at NRF2 or CRF2 signaling may have broad-reaching effects since they will affect the entry and completion of the earliest stage of the cell danger response (Fig. 1, Table 2).

HIF1α (hypoxia induced factor 1α), mTOR (mammalian target of rapamycin), and the arylhydrocarbon receptor (AhR) are important for CDR2-associated cell proliferation (Figs. 1 and 2, Table 2). Because CDR2 involves cell growth and proliferation, the risk for side-effects and iatrogenic complications of CDR2-modulating therapies is high. The drug 1,4-DPCA has been used to target proline hydroxylase domain (PHD) proteins. By inhibiting PHDs, HIF1α is stabilized even under normal oxygen levels. This creates a metabolic state of pseudohypoxia and facilitates tissue regeneration after injury (Zhang et al., 2015).

mTOR and its partners are needed to help coordinate anabolic cell growth. Phosphatidic acid that is newly synthesized from fatty acids
and glycerol-3-phosphate, binds mTOR, alters metabolism, and stimulates growth (Menon et al., 2017). Rapamycin and other mTOR inhibitors have antiproliferative and immunomodulatory effects and have been used to treat a mouse model of a mitochondrial disease called Leigh syndrome (Johnson et al., 2015), but side-effects like delayed wound healing, stomatitis, hypercholesterolemia, and susceptibility to viral infections, may complicate broad extension to CDR-related chronic diseases in humans.

The AhR connects many pathways in CDR2. These include effects on redox signaling and HIF-1α, circadian rhythm regulation through BMAL, and immune function via Treg cells (Gutierrez-Vazquez and Quintana, 2018). Indoles from food and the microbiome, and kynurenine from the inflammatory arm of tryptophan metabolism, are natural ligands for the AhR. These effectors act through AhR to facilitate anti-inflammatory T cell and macrophage responses to prevent runaway inflammation during CDR2.

The differentiated functions of cells begin to appear again as cells leave the cell cycle of CDR2 and enter CDR3 (Figs. 1 and 2). Cells become integrated into the extracellular matrix and 3-dimensional structure of tissues once they have stopped growing in CDR3. Genes important for CDR3 function include AMPK (AMP-activated protein kinase), PPARs (peroxisome proliferator activated receptors α, β/δ, γ), RXRs (retinoid × receptors), BCL2, iron-sulfur cluster proteins, FXR (farnesoid × receptor; also called the BAR: bile acid receptor), and mitochondrial fusion proteins (Table 2). The literature on each of these genes and gene families is extensive. Each plays a role in facilitating mitochondrial polarization from M0 and M1 in CDR2 to M2 organelles adapted for oxidative phosphorylation and the beginnings of metabolic complementarity and differentiated cell function in CDR3 (Fig. 2).

19. Dangers of tonic, single-stage, CDR interventions

Many drugs have mitochondrial toxicity (Will and Dykens, 2018). These drugs can benefit some people, but lead to catastrophic side effects in others. Predicting the mitochondrial risk has proven difficult.

The reason for this may lie in the fact that different drugs target mitochondrial functions in different stages of the healing cycle. Visualization of the healing cycle permits a conceptual understanding of how these drugs and certain genetic polymorphisms called ecolleales (Naviaux, 2017), can have a beneficial effect on one class of aging-related disorders, while having a detrimental effect on others. For example, mitochondrial DNA variants that increase the risk of Parkinson disease (a CDR3-associated disease) also decrease the risk of prostate cancer (a CDR2-associated disease). This amphitropic effect of CDR-selective factors is seen in both genes and drugs. It is likely that chronic treatments directed at any one of the checkpoints governing the healing cycle, will increase the risk of disease caused by unbalanced accumulation of cells in another stage of the CDR. For example, certain treatments of cancer (a CDR2 disease) will increase the risk of Alzheimer dementia (a CDR3 disease) (Driver, 2014). Or a treatment for cardiovascular disease and hypertension (CDR2 disorders) will increase the risk of autoimmune disorders (CDR3). Evidence for this includes data on statin-associated polymyalgia rheumatica (de Jong et al., 2012), and drug-associated Lupus. Likewise, it is theoretically possible, although not yet demonstrated, that chronic preventive therapy for dementia (CDR3), will increase the risk of certain cancers (CDR2) by decreasing excitotoxicity and the removal of mutant cells by immune surveillance. Chronic treatments for pain and inflammation syndromes associated with CDR1 disease may increase the risk of diabetes and cardiovascular disease (CDR2-associated disorders), and/or autoimmune disease (CDR3-associated disorders) (Chang and Gershwin, 2011). Subdivisions within each of the CDR stages are likely to exist. For example, the fact that statin treatment for cardiovascular disease increases the risk of diabetes (Chrysant, 2017) suggests that these two disorders belong to functionally separate subdivisions within CDR2 (Table 1, Fig. 2). Further resolution of subdivisions within each stage of the CDR, and corrections of any errors in this first version of the model will require future research. However, without an understanding of the pathophysiology of the healing cycle (Figs. 1 and 2), there is no unified framework for predicting the complex side-effects of old and new treatments for chronic disease.

20. Evolutionary origins

It is no accident that the stages of healing recapitulate the chemical evolution of animal cells. The Precambrian Earth had an atmosphere that was largely devoid of oxygen. When capillaries, lymphatics, or glomeries in the brain (Plog and Nedergaard, 2018) are torn by injury or decreased by disease, oxygen delivery and waste removal are impaired. An alternative method of energy production must occur if cells experiencing hypoxia are to survive. Under conditions of impaired oxygen delivery, oxidative phosphorylation is handicapped and glycolysis becomes a more reliable source of energy. Once the damage is contained, aerobic glycolysis provides a way of removing excess oxygen, which is genotoxic, to protect against DNA damage, while permitting rapid cell growth needed for biomass replacement. This patterned sequence of metabolic transitions needed for orderly wound repair, tissue regeneration, and differentiation has been studied recently in a classic model of healing and regeneration in flatworms (Planaria) (Osuma et al., 2018).

21. Allostasis and the mitochondrial nexus

Allostasis is a concept that was introduced in the late 1980s by Sterling and Eyer (Sterling and Eyer, 1988). The authors gave credit to Professor Charles Kahn at the University of Pennsylvania for suggesting the term. Allostasis literally means “stability through change”. Brain control of metabolism was a fundamental principle described in this paper. Allostasis embodied the idea that all body functions need to be adjusted dynamically according to continuously changing environmental conditions to achieve maximum fitness for long-term survival.
and reproduction. While the concept of “homeostasis” taught in medical schools today describes the idea that every measureable parameter in the body has an “optimum set-point” that is continuously defended based on local signals, homeostasis points out that all physiologic parameters vary within large dynamic limits according to recent, current, and anticipated future environmental conditions based on brain coordination of the needed physiologic adjustments.

The range of variation for any given parameter is very large in the young, but the capacity to achieve the same dynamic highs and lows decreases with age. This decline is associated with an age-related decrease in the physiologic reserve capacity of every organ system. In an example given by the authors, when blood pressure was measured continuously for 24 h in a young man, values of 110/70 were maintained for several hours during the day. It dropped to 90/55 for an hour when he fell asleep during a lecture. Preparing for work in the morning produced a value of 140/80 for 2 h, while dropping to 70/40 for 6 h at night during sleep, and to 50/30 for 1 h during deep sleep (Sterling and Eyer, 1988). The point of allostasis is that each of these blood pressures is “normal” for the conditions during which they occurred. Over time, if higher blood pressure is maintained, the smooth muscle lining of blood vessels becomes thickened and even higher blood pressures are required to maintain the same resting blood flow. Sterling and Eyer point out that under conditions of unpredictable environmental stress, the brain becomes “addicted” to systems and signaling molecules (hormones, neurotransmitters, cytokines, and metabolokies) needed to produce rapid arousal states, and the anticipatory stress responses become the norm. This complicates treatment. Some therapies can result in “withdrawal” symptoms, making a return to a healthy ground state difficult to maintain without a persistent change in diet and lifestyle.

McEwen and Stellar introduced the concept of allostatic load (AL) in the early 1990s (McEwen and Stellar, 1995). Under this concept, when homeostasis fails in the face of multiple types of environmental stress, many different types of disease can result. Recent multivariate analysis of 23 measurable parameters, reporting on 7 physiologic systems that regulate the stress response concluded that AL was a valid construct for operationalizing the components of variance contributed by many different stressors (Wiley et al., 2016). Interestingly, all the metabolic, inflammatory, neuropeptide, and gene expression changes that occur in response to stress are regulated by mitochondria (Picard et al., 2015). McEwen and coworkers have recently incorporated the idea of mitochondria as the nexus for regulating the biomarkers of AL and chronic disease (Picard et al., 2017). Mitochondria help coordinate the large majority of stress response systems that become activated by allostatic load (Table 3).

Under the healing cycle model for chronic disease, allostatic load initiates the CDR and the healing cycle. In most cases of persistent chronic illness lasting for > 3–6 months, mitochondria are not dysfunctional. They are just stuck in a developmental stage that was intended to be temporary, unable to complete the healing cycle. The healing cycle requires a programmed change in mitochondrial function—a shift from M2 to M1, to M0 organelles, and back to M2 (Figs. 1 and 2). When the programmed change becomes fixed and is unable to cycle normally, chronic illness results (Table 1). Over time, sustained changes in mitochondrial function can lead to structural changes in tissues and organs that can make full recovery more difficult.

22. The dauer failsafe response in humans—ME/CFS

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an energy conservation program—a suite of metabolic and gene expression changes—that permits persistence under harsh environmental conditions at the expense of reduced functional capacity, chronic suffering, and disability (Naviaux et al., 2016). A formal animal model for ME/CFS has not yet been developed. However, several energy conservation states are known that are activated by harsh environmental conditions. One of these is called dauer, the German word for persistence, or to endure. When dauer is triggered by harsh conditions, the life expectancy of a classical genetic model system, the 1 mm long worm Caenorhabditis elegans, is extended from 2 to 3 weeks to up to 4 months. Animals that fail to enter dauer under harsh conditions die at an increased rate. In this sense, the metabolic program activated by dauer is a failsafe mechanism that increases the chances of survival in a harsh and unpredictable environment.

Interestingly, the genes involved in inhibiting and promoting dauer have been a rich resource for the study of longevity (Uno and Nishida, 2016). Many DAF (dauer associated factor) genes are also regulated by caloric restriction, a common environmental stress known to increase life expectancy in mammals and many other animals. Despite the fact that dauer worms live longer than unstressed animals, it is not a fully functional life. Mitochondria polarize toward a hardened M1 configuration that is adapted for inducible reactive oxygen species (ROS) production, metabolic energy production shifts toward increased usage of glycolysis, which allows dauer animals to survive in reduced oxygen environments (Hand et al., 2011). Some fatty acid oxidation is still conducted by the newly-polarized mitochondria to permit stored fat reserves to be used for energy, while peroxisomes use very long chain fatty acids to synthesize a glycolipid pheromone (a daumone) needed to induce and maintain the dauer state (Joo et al., 2009). Behavioral responses become “brittle”, such that small stimuli produce large responses in otherwise docile animals. Dauer animals are also more resistant to cold-stress (Hu et al., 2015), ultraviolet (UV) light (Murakami and Johnson, 1996), and salt stress. Significant changes in circadian rhythm regulation (Driver et al., 2013), innate immunity (Holt, 2006), behavior (Lee et al., 2017), and sensory processing (Chen and Chalfie, 2014) also accompany the dauer phenotype. Overall, the dauer state and other hypometabolic states permit survival under harsh conditions, but at a high price of much-altered and much-restricted normal function.

The good news is that the dauer state in the worm model is completely reversible. If dauer is a good model for ME/CFS, then there is hope that by studying the molecular controls of the dauer phenotype, new treatments might be discovered rationally to help stimulate the exit from the dauer-like state and begin the process of recovery. The following is a summary of a plausible sequence of pathogenesis for ME/CFS. All stressed cells leak ATP through stress-gated pannexin/P2X7 and other channels. Extracellular ATP (eATP) signals danger and CDR1 is initiated (Fig. 1). If the acute cell danger response and healing cycle fail to eliminate the stress and stop the ATP leak by successful completion of CDR3, then an energy conservation program is activated. Normal cell activation pathways utilize lipid rafts and sphingolipid microdomains on the cell membrane to facilitate metabolikine- and cytokine-receptor binding and signaling by receptor subunit dimerization. Sphingolipids are downregulated in most cases of ME/CFS (Naviaux et al., 2016) and may facilitate an energy conservation state.

The dauer-like energy conservation program in mammals may also involve a ligand-receptor desensitization process, decreasing the ability of cells to release intracellular calcium when needed. Calcium stimulates mitochondrial oxidative phosphorylation. When stimulated by ATP and related nucleotides, IP3-gated calcium release is decreased (Schmunk et al., 2017), and mitochondrial and whole cell reserve capacity is reduced. Other mechanisms for downregulating mitochondrial energy production can contribute to this energy conservation state. A multifactorial reduction in mitochondrial pyruvate dehydrogenase complex activity in ME/CFS has been described (Fluge et al., 2016). Upregulation of ectonucleotidases like CD39 and CD73 can increase the conversion of ATP and ADP to AMP and adenosine. Both AMP and adenosine bind adenosine receptors (Fig. 4A) and produce a reversible hypometabolic state in mice that is protective against many environmental stresses, including lethal irradiation (Ghoosh et al., 2017). Continued leakage of ATP to the extracellular space for CDR signaling also creates a source for the hypometabolic signaling molecules AMP and adenosine, while depleting intracellular reserves of ATP. Although not
yet tested in a clinical trial in patients with ME/CFS, the ATP and UTP leak might be stopped by blocking the efflux of nucleotides through the pannexin/P2X7 channel with an antipurinergic drug, thereby unblocking the healing cycle (Fig. 1) and permitting recovery to begin. This is similar to a strategy recently tested in a clinical trial in autism spectrum disorder (Naviaux et al., 2017) and illustrated in a whiteboard animation available at: https://www.youtube.com/watch?v=zIdUufy8Lks.

23. Reversibility of chronic illness

If a chronic illness occurs because of a change in function associated with blocks in the CDR, and not a change in structure or loss of cells, that illness is theoretically reversible, ie, curable. When the healing cycle is unblocked, a full recovery is possible. Because the path leading to healing and recovery is different from, and not the reverse of the path that led originally to the disease (Fig. 3), the term “reversibility” is technically incorrect. This point is expanded in Section 29 below. Even when there is some cell loss, scarring, calcification, or other structural change, some healing is still possible by tissue remodeling, but a full recovery becomes more difficult to achieve. Autism spectrum disorder (ASD) can be classified as a CDR3 disorder (Table 1), characterized by both functional and brain structural changes that can vary significantly in severity. In a mouse model of autism, when treatment was delayed until the human biological age-equivalent of 30 years old, the core functional abnormalities in behavior and metabolism in ASD could still be completely corrected with antipurinergic therapy (APT) with suramin, but the gait abnormalities associated with the structural loss of cerebellar Purkinje cells were not reversed (Naviaux et al., 2014).

In the case of cancer, cardiovascular disease, and other proliferative disorders associated with CDR2 diseases (Table 1), metabolic, innate immune, and adaptive immunity can reduce the burden of abnormal cells by removing them. Successful reactivation of CDR1 in the surrounding normal cells, followed by entry into CDR2 for biomass replacement and CDR3 to facilitate tissue remodeling, may result in functional cures for the major symptoms of some CDR2 disorders, even if some limitations remain because of imperfect biomass replacement and tissue remodeling. In the case of CDR3 diseases like autism, treatments directed at unblocking the healing cycle and rebooting metabolism may lead to remarkable clinical improvements (Naviaux et al., 2017).

24. The tempo of physiologic change

The tempo of chronic disease is slower than many people might think. Like a new exercise program, and shifts in metabolism after making an abrupt change in diet, new metabolism and physiology take at least 3 weeks in young adults to settle in to the “new normal”. The temporal parallel between disease, diet, and exercise is no accident. The tempo of physiologic change to a new normal may lead to remarkable clinical improvements (Naviaux et al., 2014), if some limitations remain because of imperfect biomass replacement and CDR3 to facilitate tissue remodeling, may result in functional cures for the major symptoms of some CDR2 disorders, even if some limitations remain because of imperfect biomass replacement and tissue remodeling. In the case of CDR3 diseases like autism, treatments directed at unblocking the healing cycle and rebooting metabolism may lead to remarkable clinical improvements (Naviaux et al., 2017).

25. Metabolic addiction

Once the CDR is unblocked and the healing cycle rebooted, the simplest form of the CDR model predicts that recovery will follow naturally, and health will persist because the genes inherited from our ancestors will defend health in preference to disease and disability. Clinical experience suggests this is not always true. Many patients tend to drift back to the old disease state unless they continue to take measures to actively prevent relapse. This phenomenon may be metabolically similar to addiction. Addiction is a physiologic condition characterized by a baseline physiologic arousal or anxiety state that is temporarily quenched or relieved by a particular behavior or drug. A large body of research has shown that the predisposition to addiction is conditioned by genetics, epigenetics, environmental chemicals, and life stress (Yuan et al., 2016). The most successful alcohol and drug rehabilitation programs teach that recovery is a lifelong process. An addict is never “cured”. They are taught to identify themselves as a “recovering alcoholic” or “recovering gambling addict” for life to strengthen resilience and decrease the risk of relapse.

The concept of metabolic addiction suggests that the increased risk of relapse after recovery from chronic illness is the result of a physiologic dependence on the endogenous chemical state produced by a particular stage of the CDR. For example, once a person has suffered from an episode of major depressive disorder (MDD) and recovered, the risk of recurrence is 3–6 times greater than the background population risk (Hoertel et al., 2017). This latent risk suggests that predisposing genetic and/or metabolic factors persist that facilitate a drift back to chronic illness, even after predisposing environmental risks are removed. New studies using metabolomics methods will be needed to test this hypothesis directly.

26. The brain controls metabolism and exit from the CDR

The last step in the healing cycle, CDR3, is ended when the brain re-establishes bidirectional neuroendocrine and autonomic communication with each organ system. Only after the brain re-integrates metabolism over the periodized course of wakeful activity and restorative sleep can the health cycle be re-established. The vagus nerve plays an important role in communicating information from tissues to the CNS. Vagal mechanoreceptors and chemoreceptors monitor organ physiology (Powley et al., 2011). Eighty percent of vagus nerve fibers are made up of sensory fibers returning information from all organ systems to the brain. Among the chemoreceptors are vanilloid (TRPV1) and the purinergic P2X3 receptors responding to noxious stimuli, and extracellular ATP, respectively (Hermes et al., 2016). Vagal afferents terminate in excitatory glutamatergic synapses in the nucleus tractus solitarius (NTS). From the NTS, extracranial sensory information is transduced and distributed widely throughout the brain. NTS fibers project back to the ventral vagal complex of the nucleus ambiguus and the dorsal vagal complex of the dorsal motor nucleus of the 10th cranial nerve (DMNX) as feedback to the vagus. Feedback to the nucleus ambiguus modulates signals conducted along myelinated motor fibers to the vagus nerve for rapid changes in cardiorespiratory and vasomotor function, swallowing, speech, and hearing that occur with stress and well-being (Porges, 2011). The NTS also projects to the locus coeruleus in the reticular activating system to regulate behavioral responses to stress and panic, and to the amygdala in the limbic system, and the paraventricular nuclei of the hypothalamus to regulate physiologic and neuroendocrine responses to stress.

Brain neuroendocrine and autonomic systems function as bidirectional circuits. When CDR stages 1 and 2, or the first parts of CDR3 are active in the periphery, this information is carried to the brain along three channels; endocrine feedback, autonomic afferents, and chemo-sensory neurons. When this information is received, the brain initiates sickness behavior and sends pro-inflammatory, pro-stress, pro-arousal endocrine and autonomic efferent signals to the periphery. Sleep
structure is also altered to facilitate recovery and promote survival. The default state in both the brain and peripheral tissues is CDR activation. In the absence of additional information, danger and threat are assumed. Healing is an active process that requires positive reinforcement with non-danger, safety and security signals from the brain. Brain inflammation can last for a lifetime after physical injury (Johnson et al., 2013) or early life stress (ELS) and psychological trauma (Cameron et al., 2017). In addition, peripheral pain syndromes and organ inflammation are common after brain or spinal cord injury (Irvine et al., 2018) or brain death (Esmaeilzadeh et al., 2017; Jafari et al., 2018). Unresolved CDR activation by adverse childhood experiences (ACEs) and socioeconomic factors may also play a role in many other adult illnesses like heart disease, cancer, and stroke (Cassel, 1976; Hughes et al., 2017). Once the CNS efferent and local tissue CDR signals are effective, metabokines in the blood return to normal, cell danger signals diminish, and non-danger, pro-resolving, and pro-healing signals predominate.

Metabokines like purines, pyrimidines, amino acids, bioamines, fatty acids, eicosanoids, sphingolipids, phosphatidic acids, lysosphospholipids, and many others, in addition to critical blood chemistry information like sodium and osmolality are independently monitored by chemosensory neurons in the 8 circumventricular organs (CVOs) of the brain (Siso et al., 2010). These chemosensory neurons lack a blood brain barrier and provide continuous sensory information that is independent of endocrine feedback and autonomic afferents. One of the well-known CVOs is the area postrema (AP) located at the floor of the 4th ventricle that contains the chemoreceptor trigger zone and regulates nausea and vomiting. The AP sends fibers that project to the nucleus tractus solitarius (NTS) to modulate the response to vagal sensory information (Hay and Bishop, 1991). Once blood chemistry starts returning to normal, chemosensory neurons of the CVO system communicate this information to neuroendocrine and autonomic systems to gradually shift efferent information back to anti-inflammatory, anxiety, pro-resolving, and pro-social signals. This shift in outflowing information from the brain marks the last stages of CDR3 and is required for re-entry into the health cycle of wakeful activity and restorative sleep (Fig. 1, Table 2).

27. Deterministic health and stochastic disease

While it is not possible to predict when and how an injury will happen, the chance that injuries and infections will happen is a certainty for all life on Earth. Without a way to heal after these injuries, any species would go extinct. The genetic program that facilitates recovery from any injury has been highly selected and tuned over evolutionary time. We now know that the healing cycle activates discrete sets of genes in a predictable sequence after injury. While injury is random, recovery and health are deterministic. Recovery is the programmed result of the healing cycle (Fig. 1). Recovery occurs in the large majority of cases when the healing cycle is activated. Yet, why is it that some individuals get sick from common exposures, and cannot complete the healing cycle? For example, Epstein-Barr virus (EBV) is a risk factor for ME/CFS. In the US, 82% of people have been exposed to EBV by the time they are 19 years old (Dowd et al., 2013). If EBV is the cause, why do fewer than 1% of the US population have ME/CFS? Clinicians have documented dozens of other risk factors that can contribute to the chances of developing ME/CFS. An interesting point about chronic disease is that every non-infectious, chronic illness is caused by a perfect storm of several factors, not by one factor. The chances that this perfect storm of factors for a particular disease will occur for any one patient in a population of millions is small. But once disease strikes, the small initial probability rises to 100% certainty for that person. Therefore, as the environmental factors like pollution and food chain contamination start to increase, more people are exposed to risk, and more individuals will develop chronic illness. Reducing the environmental factors that contribute to risk will reduce the incidence of chronic illness.

So is chronic illness deterministic or stochastic? Scientists are most comfortable with deterministic, linear chains of logic. If cause “A” leads to disease “B” in 100% of people exposed and disease “B” never occurs without an exposure to cause “A”, then there is little room for debate. Cause “A” is necessary and sufficient to produce disease “B”. The problem is that literally none of the top 10, non-infectious chronic illnesses in the world has a single cause that produces the disease in every person exposed. Heart disease, diabetes, stroke, dementia, cancer, arthritis, autism, ADHD, depression, and schizophrenia all have dozens of risk factors, but no single “cause”. By reducing the exposure to the risk factors, a nation can prevent a large percentage of all chronic illness in its citizens. Chronic illness is best modeled as a stochastic process, with an incidence that is modifiable by increasing or decreasing risk factors. This means that in large populations like the 325 million people in the United States, the management of even small chemical risk factors by a proactive government can produce dramatic changes in the incidence of chronic illness and its ripple effects in society. For example, if a hypothetical chemical were ubiquitous and synergized with the background mix of factors to increase the risk of mental illness leading to gun violence in just 0.001% of the population, removal of that chemical from the environment would result in 3250 (0.001% x 325 million) fewer cases of mental illness and gun violence each year.

28. A new pharmacology

In the past, student physicians and pharmacologists have been taught that drugs work by mechanisms that are the same in health and disease. While this was true for drugs designed to treat acute illnesses, the treatment of chronic disease forces a revision of the old teaching. The health cycle and the healing cycle represent different biological states that have different bioenergetics, and different governing dynamics (Fig. 1, Table 2). Biology and pathobiology are qualitatively distinct states of function. Both are normal. However, the functional state associated with pathobiology (the healing cycle) is only normal when it occurs transiently. Pathological persistence of the stages of the healing cycle lead to chronic illness and the inability to heal. Drugs that will work best for treating chronic illness will target receptors like those illustrated in Fig. 5A that play key roles in the healing cycle, but remain virtually unused, or are used differently in health.

Personalized pharmacogenomics will help refine the new pharmacology as it has the old (Caudle et al., 2016), once the best targets in the healing cycle have been identified. A goal of the new pharmacology will be to discover new treatments for chronic illness that have targets that are active in disease, but are dormant in health, and therefore have little or no effect in healthy children and adults. Like Paul Ehrlich’s magic bullet (Tan and Grimes, 2010), the new drugs will have fewer side effects because once the disease is cured and the patient has recovered, the target of the drug will have disappeared, and the bullet can pass without causing harm. The need for chronic drug use is then eliminated. While the simile is evocative, it is important to remember that “magic” bullets are not really magic. They just work by scientific mechanisms that have not yet been discovered, or are not yet well understood.

29. Failures of failure analysis

A fundamental difference between living and inanimate systems is that living systems can heal and inanimate systems cannot. When a machine or other manmade object of technology fails, the analysis of the mechanism of failure has proven to be a logical and effective way to discover a fix for the problem. For example, once the defect in the optics of the Hubble Space Telescope was precisely characterized, a solution was engineered to compensate for the defect, thereby fixing the problem. This same engineering logic is often applied successfully to “fix” acute illnesses in living systems. In contrast to acute illnesses, many
chronic disorders are self-sustaining alternative performance or failure states that limit the potential for independence in a child and reduce the quality of life in children and adults for years.

New tools in systems biology like genomics, RNAseq, proteomics, and metabolomics have created the ability to minutely characterize the way a system has failed in any one of the complex disorders listed in Table 1. The same tools can be applied to individuals with any given chronic disease as part of a precision medicine effort to phenotype that patient at the molecular level. The results of this precision medicine analysis have shown that chronic illnesses are characterized by hundreds of molecular differences from healthy control states. Historically, the pharmaceutical industry has systematically analyzed the molecular paths that lead to a recognizable disease state and have cataloged the defects present once that disease state becomes persistent. This information was then used to identify drugable targets. This approach to treat chronic disease in living systems has failed to produce cures because it is more like engineering than biology. Living systems engage the same evolutionarily conserved path to cellular recovery after injury—the same healing cycle with minor modifications—regardless of the mechanism of injury (Fig. 1). Biological healing in a living system does not involve the precise identification and point-for-point correction of each of the hundreds of defects present in chronic illness. Living systems do not turn back the arrow of time to retrace the path that led to the injury and illness. They move forward along a new path in order to heal (Fig. 3), eliminating hundreds of abnormalities in step with progress through each stage of the CDR. Each step in healing represents a concerted regime change in metabolism and gene expression, like the rapid succession of cellular ecosystems that return the system back to optimum integrated performance. For these reasons, treating a unique target for each individual disease may not be necessary. The path that permits a patient to exit any given disease state, i.e., to recover from chronic illness, may be the same for hundreds of diseases. A new generation of drugs and devices designed to unblock the healing cycle may turn out to be able to treat many diseases. Only time, and good clinical trials, will tell if this hypothesis is true.

30. Conclusions

30.1. Beginning a 2nd book of medicine

Much of western medical teaching in the US in 2018 is based on principles that were developed historically to treat acute illnesses from poisoning, physical injury, and infections. These principles have been incorporated into the books and literature used to train modern physicians and health care workers. Philosophically, this corpus of knowledge can be thought of as “the 1st book of medicine”. When treatments developed to treat acute causes and specific organ system dysfunction are applied to chronic illness, they produce marginal improvements, almost never cure a chronic disease, and must be given for life. This is good from the point of view of a drug company that manufactures a drug, but not for patients, and not for a nation whose economic health is tied to the health of its citizens.

Healing is a biologically active, energy-requiring process that is intrinsic to all life. Healing chronic illness cannot occur without engaging, unblocking, and actively supporting this universal system. “The 2nd book of medicine” will focus on the prevention of chronic illness and the care and recovery of patients with chronic disease. This book will introduce the concept that many treatments for chronic illness will be directed at the processes that block the healing cycle. These new treatments may only need to be given for a short period of time to cure or improve a chronic illness. This might be functionally similar to applying a cast to promote the healing of a broken leg. Treatment only needs to be given for a period of time needed for tissues to complete the healing cycle. When the cast is removed, the limb is weak, but after a period of time needed for reconditioning, the muscles have recovered, and the bone that was once broken is actually stronger at the point of injury than it was before. New drug treatments for chronic disorders like autism or PTSD, may only need to be given for a few months at a time, until the healing cycle can be completed, or the process of recovery, building strength, fitness, and resilience can be started and become self-sustaining again. Individuals may need occasional “tune-ups” to maintain recovery over the years, since genetic predispositions, environmental conditions, and metabolic memories of past exposures may cause health to drift back to the previous disease pattern, but the majority of time might be spent without the need for chronic treatment, or the limitations caused by chronic illness.

30.2. Potential economic impact

Eighty-six percent (86%) of the $3.3 trillion spent annually on medical costs in the US is spent to care for chronic conditions (CDC.gov, 2017). The cost of health care is predicted to rise to $5.5 trillion by 2025 because of chronic disease. This will require nearly 20% of the GDP of the US, estimated to be about $27 trillion (CMS.gov, 2017), if the trend of relentlessly growing chronic disease is not reversed. Today, 30% of children under 12 years have a chronic disease, and another 20% will develop a serious mental illness in their teens (HHS, 2018). Sixty percent of adult US citizens 18–64 years have a chronic disease, 90% of people over age 65 have at least one chronic illness, and 81% over 65 have 2 or more chronic conditions (CDC.gov, 2017). Shifting healthcare insurance policies from multi-payer to single-payer or back will have little effect on this cost. The fact that more Americans are getting sick, and not small variations in insurance policies, is driving the lion’s share of rising costs. If just 10% of people now suffering with chronic illness could be cured by new methods directed at the healing cycle, more than $250 billion (10% × $2.5 trillion) would be saved annually. The savings in a single year would be more than the annual budgets of the National Institutes of Health (NIH; $37 billion), Environmental Protection Agency (EPA; $8.7 billion), Food and Drug Administration (FDA; $5.1 billion), and the US Department of Agriculture (USDA; $151 billion) combined.

31. Summary

Interruptions in the molecular stages of the healing cycle may be at the root of many complex, chronic illnesses. Three stages of the cell danger response (CDR1, 2, and 3) comprise the healing cycle. These stages are triggered by stress or injury and controlled by changes in mitochondrial function and metabolism (Figs. 1 and 2, Table 2). Many metabolites are metabolokines that bind to dedicated receptors and signal when a cell is ready to enter the next stage of healing (Figs. 4 and 5). Purinergic signaling from the release and metabolism of extracellular nucleotides plays an important role in all stages of the healing cycle (Fig. 1). Programmed changes in the differentiation state of mitochondria, known as M0, M1, and M2-polarized organelles, and corresponding changes in cellular redox and the repurposing of cellular energy for cell defense and healing, also play fundamental roles (Fig. 2, Table 3) (Naviaux, 2017). When a stage of the healing cycle cannot be completed, dysfunctional cells accumulate that contain developmentally inappropriate forms of mitochondria, organ function is compromised, and chronic illness results (Fig. 3). Over 100 chronic illnesses can be classified according to the stage of the CDR that is blocked (Table 1). Unblocking therapies directed at stimulating the completion of the healing cycle by regulating metabolokine signaling hold promise as a new approach to treatment. A small clinical trial of the antipurinergic drug suramin in autism spectrum disorder (ASD) has shown promise for this approach (Naviaux, 2017; Naviaux et al., 2017). Metabolic addiction to the chemistry produced by different stages of the CDR can occur. When this happens, it can create a life-long risk of relapse or slow return to chronic illness if diet and lifestyle interventions are not maintained.

Prevention and treatment of chronic illness require distinctly
different, but complementary approaches. New cases of chronic illness can be prevented by reducing the environmental risks that trigger the damage cycle of the CDR, and by promoting exercise, nutritional and lifestyle changes that promote resilience and maintain the health cycle (Fig. 1). However, once illness has occurred in a given patient, the opportunity for prevention is lost, and a perfect storm of multiple triggers can usually be identified. Many triggers are remote and no longer present. Once any remaining triggers have been identified and removed, and any symptoms or primed sensitivities caused by the metabolic memory of those triggers have been treated, a new approach to treatment is required to improve the chances of completing the healing cycle and achieving a full recovery. By shifting the focus away from the initial causes, to the metabolic factors and signaling pathways that maintain chronic illness by blocking progress through the healing cycle, new research will be stimulated and novel treatments will follow.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mito.2018.08.001.

Acknowledgements

RKN thanks the many families with primary mitochondrial disease, autism spectrum disorder (ASD), and myalgic encephalitis/chronic fatigue syndrome (ME/CFS) who have helped make this research possible. He thanks Neil Nathan, Eric Gordon, John Green, A.Taylor Bright, Elizabeth Mumper, David Sarfatti, Ellen Heber-Ratz, Jon Berner, John Rodakis, Nancy O’Hara, Johanna Assies, and Stuart Sealion for helpful discussions and/or comments on the manuscript, and Jonathan Monk and Mindi Summers for assistance with the gene sequence alignments.

Funding sources

This work was funded in part by philanthropic gifts from the UCSD Christini Fund, the Lennox Foundation, Malone Family Foundation, N of One Autism Research Foundation, the UCSD Mitochondrial Disease Research Fund, the JMS Fund, and gifts in memory of Wayne Riggs, and from Linda Clark, Jeanne Conrad, Jeff Ansell, Josh Spears, David Cannistraro, the Kirby and Katie Mano Family, Simon and Evelyn Foo, Wing-kun Tam, Gita Gupta, and the Daniel and Kelly White Family. Funding for the mass spectrometers was provided by a gift from the Jane Botsford Johnson Foundation. RKN wishes to thank over 2000 individuals who have each provided gifts in the past year to support Naviaux Lab research.

Conflicts of interest

RKN is a scientific advisory board member for the Autism Research Institute and the Open Medicine Foundation, and has submitted a patient application for the use of antipruritic therapy in autism and related disorders.

References

Driver, J.A., 2014. Inverse association of sleep quality and chronic illness by blocking progress through the healing cycle, new research will be stimulated and novel treatments will follow. Supplementary data to this article can be found online at https://doi.org/10.1016/j.mito.2018.08.001.

Incomplete Healing as a Cause of Aging: The Role of Mitochondria and the Cell Danger Response

Robert K. Naviaux

The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, Pathology, University of California, San Diego School of Medicine, San Diego, CA 92103, USA; Naviaux@ucsd.edu; Tel.: +1-619-993-2904

Received: 9 January 2019; Accepted: 20 February 2019; Published: 11 May 2019

Abstract: The rate of biological aging varies cyclically and episodically in response to changing environmental conditions and the developmentally-controlled biological systems that sense and respond to those changes. Mitochondria and metabolism are fundamental regulators, and the cell is the fundamental unit of aging. However, aging occurs at all anatomical levels. At levels above the cell, aging in different tissues is qualitatively, quantitatively, and chronologically distinct. For example, the heart can age faster and differently than the kidney and vice versa. Two multicellular features of aging that are universal are: (1) a decrease in physiologic reserve capacity, and (2) a decline in the functional communication between cells and organ systems, leading to death. Decreases in reserve capacity and communication impose kinetic limits on the rate of healing after new injuries, resulting in dyssynchronous and incomplete healing. Exercise mitigates against these losses, but recovery times continue to increase with age. Reinjury before complete healing results in the stacking of incomplete cycles of healing. Developmentally delayed and arrested cells accumulate in the three stages of the cell danger response (CDR1, 2, and 3) that make up the healing cycle. Cells stuck in the CDR create physical and metabolic separation—buffer zones of reduced communication—between previously adjoining, synergistic, and metabolically interdependent cells. Mis-repairs and senescent cells accumulate, and repeated iterations of incomplete cycles of healing lead to progressively dysfunctional cellular mosaics in aging tissues. Metabolic cross-talk between mitochondria and the nucleus, and between neighboring and distant cells via signaling molecules called metabokines regulates the completeness of healing. Purinergic signaling and sphingolipids play key roles in this process. When viewed against the backdrop of the molecular features of the healing cycle, the incomplete healing model provides a new framework for understanding the hallmarks of aging and generates a number of testable hypotheses for new treatments.

Keywords: cell danger response; healing cycle; mitochondria; purinergic signaling; metabokines; sphingolipids; integrated cell stress response; de-emergence; crabtree effect; pasteur effect

1. Introduction

Some of the oldest [1], and the most recent [2,3] scientific publications on the biology of aging have focused on nutrition and metabolism as prime drivers. Mitochondria are located at the hub of the wheel of cellular metabolism. The mitochondrial proteome is transcriptionally and post-transcriptionally regulated according to tissue-specific needs [4], consists of about 1300 proteins [5], responds to injury [6], food quality [7], exercise [8], environmental pollution [9], and coordinates the cell danger response (CDR) [10]. The CDR is a term that was coined in 2014 [10], but includes elements of inflammation and healing that have been studied since before the time of Hippocrates (c. 460–370 BCE) [11]. The CDR is an evolutionarily conserved, multi-system response of multicellular organisms that is used to manage and heal from threat or injury. The CDR is a graded response that consists of nested layers that range...
from the molecular control of electron utilization and cellular oxygen consumption, through changes
in the microbiome, mast cells and immune system, to the autonomic nervous system, enteric nervous
system, and neuroendocrine circuits that are needed for whole-body integration of the response.
When analyzed at the molecular and single-cell level, a widely-studied component of the CDR is
known as the integrated cell stress response (ICSR) [12–14].

2. Defining Cellular Stress

In this paper, the word “stress” has a specific scientific meaning. Stress is any force,
condition, chemical, pathogen or other stimulus that acts to perturb cellular function, requiring
the expenditure of energy and resources to return the cell to its pre-stimulus or to a new steady
state. Remarkably, psychological stresses, particularly early life stresses (ELS), regulate some
of the same metabolic and gene expression networks used to defend the cell from microbial
pathogens, physical injury, poisoning, and adversity of many other types [15–17]. In the case of major
depressive disorder, innate immune/pro-inflammatory gene expression is increased, while adaptive
immune/anti-inflammatory/pro-resolving gene expression is decreased [18]. Greater stresses stimulate
proportionately more nucleotide and metabolite release through cell membrane channels [19], leading
to greater metabokine and purinergic signaling [20,21]. Learning and development emerge from both
conscious stresses and subconscious chemical stresses encountered throughout life. Stresses lead to
metabolic memories that help cells and tissues improve future responses to previously encountered
conditions [22]. Transient increases in the mitochondrial and cellular sources of reactive oxygen
species (ROS) such as superoxide and hydrogen peroxide, reactive nitrogen species (RNS) such as
nitric oxide (NO) and peroxynitrite (ONOO−), reactive aldehydes (RAs), and dissolved oxygen itself,
help to regulate cellular redox. Redox, in turn, regulates the efflux of metabolites from the cell via
membrane channels and transporters that contain redox-responsive cysteine disulfide residues [23].
Pulses of dissolved oxygen occur with a carbohydrate-rich meal because of the transient inhibitory
effect of glucose on mitochondria produced by the Crabtree effect [24]. ROS, insulin, and IL1β are also
stimulated naturally by every meal and can vary in magnitude according to the nutrient content of the
meal [25]. As the dissolved oxygen concentration rises within the cell, glycolysis becomes inhibited by
the Pasteur effect, creating a natural brake on an unchecked inhibition of mitochondrial oxphos from
the meal-associated glucose and the Crabtree effect. However, glucose, oxygen, ROS, RNS, and RAs are
only a part of the multi-faceted metabolic signaling network that is used to control cellular reactivity,
epigenetic marking, and gene expression. Over 100 chemosensory G-protein coupled receptors respond
to metabokines and peptides released after stress and injury and regulate the healing cycle [11].

3. The Healing Cycle

The mitochondrial responses that initiate and maintain the CDR are used to control
 cellular bioenergetics, oxygen utilization, redox signaling, and metabolism needed for healing [6]
and regeneration [26] after injury or threat. The stages of the CDR are illustrated in Figure 1.
 Wakeful activity with nutrient intake, followed by restorative sleep are essential parts of health.
 These activities stimulate an integrated mix of three metabolic states that are controlled locally by
 metabolic signaling, and systemically by the central nervous system (CNS). Healthy whole-body
 function requires the coordination and use of cell-specific (1) glycolysis, (2) aerobic glycolysis, and
 (3) oxidative phosphorylation for energy and metabolism (Figure 1). Chemical activity associated
 with nutrient intake, brain activity, and basal metabolism, and added physical activity from natural
 child play or adult exercise lead to the graded release of extracellular ATP and related nucleotides,
 and to glutamate release [27,28] through stress-gated P2X7-pannexin and other channels in the cell
 membrane [19]. Once outside the cell, ATP and related nucleotides participate in purinergic signaling.
 Receptor binding to ATP and ADP leads to IP3-gated intracellular calcium release [29] and contextual
 changes in gene expression through autocrine and paracrine signaling pathways [30]. After extracellular
 metabolism by CD73 and CD39, ATP is converted to ADP, AMP, and to adenosine that acts to inhibit
excess chemical stimulation and plays a key role in initiating and maintaining sleep by binding to P1/Adenosine /ADORA A2AR and A1R receptors [31]. This is illustrated as the restorative sleep cycle in Figure 1.

![Figure 1](image_url)

Figure 1. The metabolic features of the health and healing cycles. Abbreviations: CDR—cell danger response, eATP—extracellular ATP, CP1-3—checkpoints 1, 2, and 3, DAMP—damage-associated molecular pattern, SIGLEC—sialic acid binding immunoglobulin-type lectin, e.g., CD33-related SIGLECs (CD33r-SIGLECs), Sia-SAMP—sialoglycan self-associated molecular pattern.

When the stress is of sufficient magnitude to cause cell death, more ATP is released and acts as a pro-inflammatory damage-associated molecular pattern (DAMP). Increased extracellular ATP triggers entry into the CDR1 stage of the healing cycle (Figure 1). Once the CDR is triggered, three different metabolic stages must be activated in sequence to heal. Healing cannot occur without activation of this metabolically-controlled cycle. CDR1 is characterized by the upregulation of anaerobic glycolysis and a reallocation of cellular resources for defense, damage containment, innate immunity, and repair at the expense of normal differentiated tissue function. Gap junctions between cells are decreased or lost as the tissue structure is disrupted by injury, and cell-autonomous functions become primary and metabolic cooperation between neighboring cells is decreased or suspended. Platelets and neutrophils are recruited to sites of injury or infection. CDR2 uses aerobic glycolysis to support stem cell recruitment and cell division needed for biomass replacement of cells lost in CDR1. If cell loss is not replaced, then age-related atrophy and sarcopenia occur. If excessive DNA damage is sustained by a cell in CDR2, replicative senescence occurs [32]. If the blocks to senescence are broken, then cancer can occur. If oxygen levels are high and significant mechanical strain is present, tissue fibrosis or wound scarring is stimulated (Figure 1). Fibrosis is one of several different types of mis-repairs that contribute to the symptoms of aging [33–35] (Figures 1–3).

In CDR3, cell-autonomous, aerobic metabolism by mitochondrial oxidative phosphorylation is gradually restored as new cells born in CDR2 take up residence in the recovering tissue and establish new tissue-specific contacts and gap junctions needed to extinguish the gene expression programs used...
for defense and growth in CDR1 and CDR2, and to restore normal differentiated cell, tissue, and organ function. If damage-associated molecular pattern (DAMP) and damage-associated reactive metabolite (DARM) release persists [36] or if ROS production is extinguished prematurely [37], autoimmunity can develop [38]. The adaptive immune response is regulated in CDR3. Persistent DAMP and DARM release can stimulate excitotoxicity in cells still in the CDR1 and CDR2 stages within a dyssynchronous mosaic of healing cells. With the completion of CDR3, the concentration of metabolites and DAMPS in the extracellular space is actively reduced to levels compatible with restoration of cell specialization and reintegration of cells back into a metabolically optimized cellular network. Re-integration and re-specialization are necessary for cells that have recently exited the CDR in order to re-establish their responsiveness to circadian patterns of wakeful activity and restorative sleep (Figure 1).

The sequence and stages of the healing cycle are highly conserved and tightly choreographed. Once pathological stress or cell death occurs, the same stages of the healing cycle are activated and restore normal function after any recoverable injury (Figure 2). Inevitably, some cells fail to complete the healing cycle and are left behind with each turn of the cycle. These arrested or delayed cells are unable to return to a normal metabolism and the gene expression pattern that is needed for peak

Figure 2. Repeated cycles of incomplete healing lead to aging and age-related disease. The spiral represents sequential turns of the healing cycle throughout life. Colored cells in the boxes on the right represent cells that have been delayed or arrested in a stage of the healing cycle. The decreased size of some boxes represents the loss in tissue volume from cell loss and atrophy. In this example, most arrested or delayed cells in the merge on the right after 60 and 90 years are in CDR2 (green). This will create an increased risk of proliferative disorders such as diabetes, heart disease, and cancer. Color code: CDR1 cells—red; CDR2 cells—green; CDR3 cells—yellow. Abbreviations: A—wakeful activity and nutrient intake. M1—mitochondria adapted for cell defense, reactive oxygen, nitrogen, and aldehyde production; M0—mitochondria adapted for cell growth and Warburg metabolism; M2—mitochondria adapted for oxidative phosphorylation (oxphos).
differentiated cell and organ function (Figure 2). As non-specialized cells and mis-repairs such as fibrosis accumulate in incomplete stages of the healing cycle, the peak performance of tissues is degraded over time, and the risk for age-related disease is increased.

Figure 3. The hallmarks of aging as natural products of incomplete healing and the cell danger response [3,39]. Black font: hallmarks that oppose aging. Red font: hallmarks that promote aging. Abbreviations: CDR—cell danger response, ICSR—integrated cell stress response, DDR—DNA damage response, BMR—basal metabolic rate, T°—basal body temperature, HIF1α—hypoxia inducible factor 1α, PARP—poly ADP ribose polymerase, NAD+—nicotinamide adenine dinucleotide, ADPR—adenosine diphosphate ribose, SAM—S-adenosyl methionine, AcCoA—acetyl CoA, α-KG—alpha ketoglutarate, SAH—S-adenosyl homocysteine, PPi—pyrophosphate, NUDIX—nucleoside diphosphate X hydrolases, e.g., NUDT5, ECM—extracellular matrix.

4. Three Functionally-Polarized Forms of Mitochondria Are Used by the CDR

For over 60 years, mitochondria have been thought of as “damaged” or “dysfunctional” if they shift from energy production by oxidative phosphorylation to ROS production or shift from burning carbon skeletons to CO₂ and water to synthesizing new carbon skeletons for export as building blocks needed for cell growth. Yet mitochondria shift regularly and necessarily between these states throughout life. A simplified way of understanding the alternative differentiation states of mitochondria is to see the organelles as the metabolic gatekeepers of the electrons harvested by breaking down the carbon–carbon bonds in food. In this scheme, electrons can be used in mitochondria: (1) to fully reduce oxygen (O₂) to water (H₂O) while capturing the released chemical energy to make ATP by oxidative phosphorylation in the third stage of the cell danger response, CDR3 and in health, (2) to partially reduce oxygen to superoxide radicals (O₂⁻) and hydrogen peroxide (H₂O₂) while relying on anaerobic glycolysis for ATP synthesis in CDR1 and cell defense, or (3) to use the electrons to synthesize new carbon–carbon bonds to produce and export building blocks such as citrate for cell membrane lipid synthesis or orotic acid for pyrimidine synthesis, while still consuming oxygen to make water and making ATP by aerobic glycolysis in CDR2 and cell growth (Figure 1).

A new nomenclature was introduced in 2017 to describe these three, functionally-polarized forms of mitochondria of the CDR [11,29]. All three “species” of mitochondria co-exist in different proportions in cells throughout development and aging in all multicellular organisms. The transition between states is determined by the interaction between nutrition and metabolism, the developmental and chronological age of the organism, the recent state of cell danger signaling and healing, and ambient environmental conditions. The naming of the differentiation states of mitochondria was based on the
recognition that the pro-inflammatory state of macrophages known as M1 macrophages corresponded with the ROS producing capacity of their mitochondria and energy production by glycolysis [40]. The anti-inflammatory/pro-resolving M2 macrophages were found to contain mitochondria adapted for oxidative phosphorylation (oxphos). M0 macrophages are not yet committed to a fully M1 or M2 phenotype and contain mitochondria that are intermediate between M1 and M2. In the healing cycle, three different mitochondrial differentiation states are used to meet the specialized needs of each stage of the CDR. M1 mitochondria are used in CDR1. M0 mitochondria are used in CDR2, and M2 mitochondria are used in CDR3 (Figures 1 and 2, Table 1).

In vitro protocols have recently been developed that distinguish between M1, M0, and M2 macrophages experimentally based on mitochondrial phenotypes [41]. M1 mitochondria consume small amounts of oxygen, have a low spare respiratory capacity (SRC, or physiologic reserve capacity), can use fatty acids for ROS production and NLRP3 assembly [42], are not dependent on glutamine, and the cells containing M1 mitochondria produce large amounts of lactic acid. In contrast, M2 mitochondria consume more oxygen at baseline, can use both glucose oxidized to pyruvate and fatty acids for oxphos, have a higher SRC, are dependent on glutamine for the fully differentiated phenotype, and the cells produce small amounts of acid. M0, uncommitted or multipotential mitochondria have a low basal oxygen consumption similar to M1, shunt some glucose down the pentose phosphate pathway (PPP) for NADPH and building block production, have an SRC that is intermediate between M2 and M1 organelles, and produce small amounts of extracellular acid, similar to M2 [41] (Table 1).

Table 1. Phenotypic characteristics of animal cell mitochondria.

<table>
<thead>
<tr>
<th>No.</th>
<th>Trait</th>
<th>Mitochondrial Phenotype [40,41,43]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M0</td>
</tr>
<tr>
<td>1</td>
<td>Cellular energy metabolism</td>
<td>Aerobic glycolysis</td>
</tr>
<tr>
<td>2</td>
<td>Mitochondrial DNA copy number</td>
<td>Intermediate</td>
</tr>
<tr>
<td>3</td>
<td>Predominant morphology</td>
<td>Intermediate</td>
</tr>
<tr>
<td>4</td>
<td>Cell replicative potential</td>
<td>High (Warburg)</td>
</tr>
<tr>
<td>5</td>
<td>Cell multilinesage regenerative potential</td>
<td>High</td>
</tr>
<tr>
<td>6</td>
<td>Cell differentiation potential</td>
<td>Low</td>
</tr>
<tr>
<td>7</td>
<td>Cell cancer potential</td>
<td>High</td>
</tr>
<tr>
<td>8</td>
<td>Inflammatory potential</td>
<td>Intermediate</td>
</tr>
<tr>
<td>9</td>
<td>Cell susceptibility to killing by apoptosis</td>
<td>Low</td>
</tr>
<tr>
<td>10</td>
<td>Inducible organellar quality control</td>
<td>Intermediate</td>
</tr>
<tr>
<td>11</td>
<td>Baseline oxygen consumption</td>
<td>Low</td>
</tr>
<tr>
<td>12</td>
<td>Stressed (uncoupled) oxygen consumption</td>
<td>Intermediate</td>
</tr>
<tr>
<td>13</td>
<td>(spare respiratory capacity)</td>
<td>Low</td>
</tr>
<tr>
<td>14</td>
<td>ROS production</td>
<td>Intermediate</td>
</tr>
<tr>
<td>15</td>
<td>NLRP3 inflammasome assembly</td>
<td>Low</td>
</tr>
<tr>
<td>16</td>
<td>Lactate release from cells</td>
<td>Intermediate</td>
</tr>
<tr>
<td>16</td>
<td>Pentose phosphate pathway (PPP)</td>
<td>High—NADPH for biosynthesis and cell growth</td>
</tr>
</tbody>
</table>
Table 1. Cont.

<table>
<thead>
<tr>
<th>No.</th>
<th>Trait</th>
<th>Mitochondrial Phenotype [40,41,43]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M0</td>
</tr>
<tr>
<td>17</td>
<td>Use of fatty acid oxidation (FAO)</td>
<td>Fatty acid synthesis for growth > FAO</td>
</tr>
<tr>
<td>18</td>
<td>Use of glucose</td>
<td>Glycolysis and PPP</td>
</tr>
<tr>
<td>19</td>
<td>Use of glutamine</td>
<td>High: citrate for ATP citrate lyase and Acetyl-CoA</td>
</tr>
<tr>
<td>20</td>
<td>Stage of greatest use in the healing cycle and cell danger response</td>
<td>CDR2</td>
</tr>
</tbody>
</table>

M0, M1, and M2 mitochondrial phenotypes also occur in solid tissues and can be recognized in part by morphological criteria. Mitochondria can be described informally as being distributed along a spaghetti (filamentous) and meatball (punctate) gradient. M2 mitochondria are filamentous and interconnected, and predominate in post-mitotic or slowly regenerating tissues. M1 mitochondria are punctate, and M0 mitochondria are intermediate in form, with both short filaments and punctate organelles reminiscent of the coccobacillary forms of their proteobacterial ancestors [44]. Mitochondrial fusion–fission dynamics naturally regulate the balance between fused and elongated mitochondria, and fragmented/fissioned mitochondria according the growth and metabolic characteristics of the cell [45]. M0, uncommitted, or stem-like mitochondria predominate in cells that survive after exposure to chemotherapeutic agents or toxins [46]. M2 mitochondria under these conditions are depleted by DRP1-dependent fission/fragmentation, and conversion to M1 organelles prior to cell removal by apoptosis. Similar transitions in mitochondrial structure and function are readily demonstrated in brain astroglia before and after treatment with pro-inflammatory triggers such as lipopolysaccharide (LPS) and interferon gamma (IFN-γ) [43].

The total mitochondrial biomass is decreased naturally after triggering the cell danger response (CDR) with toxins [46], physical injury [6], infection, or any trigger that activates the healing cycle [11]. Mitochondrial biomass can also be reduced experimentally by the dominant-negative expression of the D1135A allele of the mitochondrial polymerase gamma (POLG1) to deplete mitochondrial DNA copy numbers by about 50% [47]. This mouse model mimics the mitochondrial defects that are a well-established hallmark of aging [48]. The phenotypes of aging found in this model included increased NFkB and matrix metalloproteinase 9 (MMP9) expression, increased inflammation, age spots, wrinkled skin, and premature hair loss. These transcriptional and anatomical signs of aging were reversed within 1 month of treatment in mice by unblocking mtDNA synthesis and restoring normal mtDNA copy numbers [47].

5. The Importance of Nucleotides and Purinergic Signaling

Of an estimated 1300 mitochondrial protein coding genes, 1158 are catalogued in MitoCarta v2.0 [5]. Only 13 mitochondrial proteins are encoded by mitochondrial DNA (mtDNA). The remaining 1145 are encoded by nuclear genes that are subject to tissue-specific gene expression programs. At least 789 mitochondrial proteins (68% of 1158) are enzymes with catalytic functions that have been assigned enzyme commission (EC) numbers, or encode subunits of multi-protein enzyme complexes such as those in respiratory chain complexes I, II, III, IV, and V, or are transporters, or kinases that use ATP (Table S1). At least 433 (55% of 789) of these proteins are regulated by the availability of purine and pyrimidine nucleotides such as ATP, GTP, UTP, NAD(P)+, or FAD either as substrates, or as allosteric regulators (Table S1). No other single class of molecules regulates more of the mitochondrial proteome than the nucleotides. In addition, an unknown fraction of nuclear mitochondrial genes is regulated...
transcriptionally and post-transcriptionally by purinergic signaling via the 12 G-protein coupled receptors (GPCRs; 4 P1R and 8 P2YR) and seven ionotropic receptors (P2XR) that are widely distributed in all tissues [49]. Some purinergic receptors are also expressed in intracellular compartments such as mitochondria, lysosomes, and the nucleus [50]. For example, P2X6 receptors are translocated to the nucleus in an age-dependent manner, interact with mRNA splicing factor 3A1, decrease mRNA processing, and contribute to aging [51].

6. The Importance of Nutrition in Healing and Aging

Different stages in child development, human aging, and athletic performance have different specific nutrients and calories that produce the best outcomes at each stage [52–54]. Based on measured differences in mitochondrial substrate preferences between M1, M0, and M2 organelles (Table 1), it is hypothesized that each stage of the healing cycle—CDR 1, 2, and 3 in Figure 1, and even certain chronic illnesses stuck in one of the three stages of the CDR [11]—will also have different stage-specific nutritional needs for optimal outcomes. Both chemical mass action from substrate supply and metabolite signaling via metabolites [11] are likely to be important mechanistically. Some of the broadest clues that connect nutrition with aging, mitochondria, and healing come from studies of caloric restriction [3]. Natural aging results in a reduction in the rate of turnover of mitochondria (mitochondrial biogenesis, or “mitochondriogenesis”), and a decrease in mitochondrial protein synthesis, standing mitochondrial biomass, respiratory reserve capacity, and oxphos function [55] (Figure 3). Caloric restriction, on the other hand, stimulates mitochondrial turnover through pathways associated with AMPK-stimulated autophagy and mitophagy [56]. This leads to improved mitochondrial quality control, oxphos function, and reserve capacity, but does not increase overall mitochondrial biomass measured as mtDNA copy number [57]. Caloric restriction also leads to a decrease in circulating thyroid hormone, decreased resting energy expenditure (REE), and a decrease in circulating anabolic hormones such as IGFI, insulin, human growth hormone, and testosterone [58]. From an evolutionary point of view, this hypometabolic response allows fewer calories to be consumed while opposing weight loss during periods of seasonal hardship.

Caloric restriction is a classical trigger of a reversible, stress-resistant, non-reproductive stage in the nematode Caenorhabditis elegans called dauer. Dauer has been the source of discovery of many longevity genes and has stimulated a productive discussion of the difference between lifespan and healthspan extension [59]. Dauer permits animals to live for up to 4 months under harsh conditions instead of their normal lifespan of 2 weeks. However, longevity in dauer comes at the cost of much reduced function and many changes associated with altered sensory anatomy [60], repetitive behaviors [61] and metabolism [62]. When calories are restored to animals in dauer, they exit the stage and re-enter their normal life-cycle, picking up where they left off, as if little or no biological aging had occurred during the time they spent in dauer [63].

More specific changes in nutrient supply also play an important role in aging and healing. Dietary supplementation with branch chain amino acids at a level of 1.5 g/kg/day, corresponding to about 1% of daily calorie intake in mice, has been shown to extend lifespan by about 10% [64]. This effect required normal production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) [64]. The selective addition of a stoichiometric mix of essential amino acids (EAAs) including branch chain amino acids, also has anti-cancer effects by promoting growth inhibition and apoptosis in transformed but not in normal cells [65]. EAAs also promoted wound healing by moderating inflammation in the early stages, and maintaining TGFβ needed for tissue remodeling in the later stages of healing [66]. This later effect is in what would be called CDR3 in the model presented here (Figure 1). Interestingly, TGF β (DAF-7) signaling also plays a key role in recovery from dauer and the re-establishment of normal development in C. elegans [67].
7. Progressively Dysfunctional Cellular Mosaics

The number of nucleated cells in a 70-kg adult male is about 5×10^{12}. Non-nucleated red blood cells are 5-times more abundant (2.5×10^{13}), but make up just 6.5% of the total mass of an adult [68]. The total number of human cells in an adult is 3.0×10^{13}. There are also 3.8×10^{13} bacterial cells in a typical adult body [68]. Cells die every day and must be replaced. It is estimated that an adult turns over about 1×10^{10} (10 billion; about 10 grams of) cells/day by apoptosis [69]. This is equivalent to about 1 in 500 nucleated cells/day removed by apoptosis. The distribution of cell turnover is highly heterogeneous. Most spontaneous, or physiologic cell death with replacement occurs in short-lived cells such as those in bone marrow, intestines, skin, and hair follicles whose function is tolerant to spatial changes in tissue architecture produced by continuous cell growth and use-dependent removal or exit of cells from the compartment of origin. These rapidly dividing and structurally malleable tissues can turn over several times per year, with nearly 100% of the cells in these compartments turning over in a few days to weeks or months. Other tissues turn over more slowly. Adipose tissue is replaced at a rate of 10% of the cells per year [70], turning over completely in about 10 years. Skeletal muscle turns over at a rate of 6.6% per year [71]. Muscle fiber loss accelerates after age 60, leading to sarcopenia [72]. The kidneys weigh about 150 grams each, shed about 1.7×10^9 epithelial cells/day into the urine [73], and replace this loss and other losses by cell division and remodeling from recruited stem cells [74]. The adult liver weighs about 1400 grams and consists of about 2.4×10^{11} cells and replaces about 1.8% per year as a young adult, but fewer as liver size decreases with age [75]. Heart cells are replaced at a rate of 1% per year at age 25, falling to 0.45% per year at age 75 [76], and pancreatic islet β-cells are long-lived and not replaced after age 30 years [77].

Exposure to physical injury, toxins, or infection adds pathological cell death to the basal level of physiologic cell death described above. When a cell dies physiologically by apoptosis, the inflammatory reactions associated with CDR1 are avoided. Instead, the tissue skips to CDR2 and CDR3 to replace the lost cell and restore normal metabolism and tissue-specific gene expression patterns (Figure 1). The number of cells that die pathologically during a typical viral or bacterial infection will be dependent on the type of microbial pathogen and the severity of the infection, but the exact cell numbers lost in the course of a typical infection are not known. An average child has 5–6 recognized viral or bacterial infections each year for the first 5 years of life, then 2–3 per year throughout adult life [78]. Pathological cell death caused by infection, toxins, or injury will trigger inflammation and entry into the healing cycle by activating CDR1. As a thought experiment, one can imagine a systemic viral infection that might kill 1×10^{10} cells (about 10 grams, or 2 teaspoons), a number equal to the basal loss per day by apoptosis. Somatic DNA mutation rates are about 2.7×10^{-5} per typical 10,000 bp, protein-coding locus per cell division [79]. In this example, one turn of the healing cycle would result in 270,000 cells (10^{10} cells replaced $\times 2.7 \times 10^{-5}$ mutations/gene/division = 270,000 cells) sustaining a mutation that marks that cell as different from neighboring cells in the tissue. Mitotic recombination errors and chromosomal microaneuploidy [80], mobilization of retroelements [81] and endogenous retroviruses [82] in recruited stem cells, and reactivation and suppression cycles of latent DNA virus infections [83] will contribute to genetic variation produced by repetitive activation of the CDR over a lifetime. In addition to DNA mutations, there will also be an even larger number of induced and stochastic changes in transcription, post-transcriptional, and metabolic features that lead to changes in cell development.

With each turn of the healing cycle, cells such as neutrophils move out of capillaries and into tissues, releasing ROS via activated NADPH oxidases such as NOX2. Over time, this cyclic process creates tides of reactive oxygen, metabolic, innate immune, and inflammatory defenses that rise with injury and fall during wellness, ebbing and flowing with each turn of the healing cycle. Sialic acid binding immunoglobulin-type lectins (SIGLEC) include the CD33-related molecules expressed on neutrophils, natural killer (NK), macrophages, and T-cells that modulate ROS production, innate immune cell, and adaptive T-cell activity upon binding to sia-SAMPs (sialoglycan self-associated molecular patterns) [84]. Across species, the number of CD33r-SIGLEC genes is associated with
healthy aging in the “wellderly”, and decreased numbers accelerate age-related symptoms in mouse models [85]. Many cancers emerge from hypersialated cellular fields that have the effect of dampening the immune response by engaging inhibitory SIGLECs such as Siglec-9 [86]. The ceaseless tides or waves of innate immune cell migration into and out of tissue compartments continues throughout life with each turn of the healing cycle (Figures 1 and 2), and contributes to the progressively dysfunctional mosaics illustrated in Figure 2.

In the brain, a compensatory system of glial–lymphatic (glymphatic) tidal flows occurs by regulated changes in cell volume that are controlled by circadian changes in metabolism [87]. This daily cycle of glymphatic flow helps to remove aggregates of tau and beta amyloid that would otherwise accumulate as the byproducts of CDR activation both from normal learning and from microglial and synaptosomal innate immune activation that increase progressively with aging. Interestingly, a number of molecules that regulate mTOR and other metabolic aspects of the CDR, have recently been found to slow the aging process and extend longevity, while simultaneously protecting against age-related markers of Alzheimer dementia in animal models [88]. These “geroneuroprotecting” drugs were plant-based natural products similar to curcumin and polyphenols such as fisetin. The healing cycle-promoting properties of these drugs prevented the accumulation of tau and beta amyloid markers of Alzheimer dementia even though the drugs were not directed at the protein markers specifically [88].

The importance of innate immune activation and healing in aging is underscored by a recent discovery in Werner syndrome. Werner syndrome is a recessively inherited adult progeria syndrome caused by mutations in the Werner helicase (WRN). In addition to genomic instability caused by WRN mutations, the protein was recently found to play a key role in innate immunity as a transcriptional coactivator of the NFkB-dependent expression of the chemokine IL8 [89]. Werner mutations inhibit NFkB- and IL8-dependent ROS production. ROS production is not only an essential component of an effective CDR1 (Figure 1), but is important for NRF2 induction of long-term anti-oxidant and detoxification defenses [90]. In addition, the WRN protein is important for HIF1 stabilization [91] needed for tissue regeneration [26] during CDR2 (Figure 1).

With each turn of the healing cycle, the induced combination of transcriptional and metabolic changes and the DNA damage response will result in some injured and newly replaced cells being unable to complete the normal stages of the cycle. Perhaps 0.1–1 million cells of the 10^10 cells that must be replaced after pathological cell death may be left behind, stuck or delayed in one of the three stages, CDR1, CDR2, and CDR3. An even larger number of cells whose function was transiently changed by injury, but were not killed, will contribute to the cells that are left behind in stages of the healing cycle. This process is illustrated as progressively dysfunctional mosaics on the right of the spiral in Figure 2. The ecogenetic interaction of inherited genotype of a given individual with the particular environmental insult (nutritional stress, pathogen, toxin, or physical injury) will determine how many cells are delayed or lost in the three different stages of the CDR. Examples of aging cellular mosaics are illustrated at age 20, 40, 60, and 90 years (Figure 2). Delayed and arrested cells that are incompletely differentiated create physical and metabolic separation—buffer zones—that act like control rods in a nuclear reactor that absorb signals and inhibit communication between previously adjoining, synergistic, and metabolically interdependent cells. Loss of cellular connectivity through functional gap junctions decreases the physiologic reserve capacity and increases vulnerability to stress-related cell death [92].

The propagation of calcium waves from cell to cell in a tissue via the inositol trisphosphate (IP3)-gated release of intracellular calcium stores is a common example of the cooperative response to neuroendocrine signaling, and is highly dependent on fully differentiated mitochondrial function [93]. CD38 increases with age [94] and is used by the cell to synthesize cyclic adenosine diphosphate ribose (cADPR) from NAD+ and nicotinic acid adenine dinucleotide phosphate (NAADP) from NADP+ as IP3-responsive calcium signaling declines [95]. cADPR and NAADP are intracellular ligands that stimulate IP3-independent release of calcium from the endoplasmic reticulum (ER) and lysosomes, respectively [29]. NAD+ and NADP+ are depleted by CD38 in the course of aging [94].
Cellular depletion of NAD+ and NADH leads to a decrease in mitonuclear communication [96], and to progressive declines in mitochondrial electron transport that contribute to aging [97]. Supplementation with the NAD+ precursor, nicotinamide riboside (NR), in animal models improves cell differentiation, restores laminin scaffolding and a more normal cellular mosaic in tissues, attenuates senescent cell formation, and increases longevity by about 10% [98]. In a recent study of the effect of transplanted senescent cells, the authors found that ≥ 1 senescent cell among 10,000 total cells in the body (0.01%), or ≥ 1 in 350 normal cells in a specific tissue (≥0.28%) was enough to produce a dysfunctional cellular mosaic and measurable functional defects such as decreased grip strength and exercise capacity [99].

8. De-Emergence as a Cause of Dysfunction

Complex living systems are comprised of at least seven discrete subsystems: (1) molecules; monomers, metabolites, and other building blocks, (2) polymers requiring energy for synthesis, such as proteins, polysaccharides, nucleic acids, and lipids made of amino acid, monosaccharide, nucleotide, acetyl and isoprene monomers, respectively, (3) polymers that assemble spontaneously such as charged and neutral lipids and hydrophilic proteins that form membranes, lipid droplets, and other lowered free energy structures in aqueous matrices, (4) organelles, (5) cells, (6) tissues, (7) organs. Many of the phenotypes associated with normal development, health, disease, and aging are emergent properties that depend on the function, arrangement, and interaction of the subsystems, but are qualitatively, quantitatively, and chronologically distinct from any single subsystem. For example, long-term memory is an emergent property that requires new protein synthesis that alters several aspects of all the subsystems that make up the brain, but knowledge of any one of the subsystems is insufficient to explain long-term memory. Other emergent properties of health include the ability to walk, talk, think, eat, excrete, mount an immune response, reproduce, detect and respond to a toxin or injury, and to heal. Aging degrades each of these abilities. If health is thought of as a collection of emergent phenotypes, then illness and aging can be thought of the gradual fading away, or de-emergence of the emergent properties that results from the degradation of metabolic and cellular order and the interactions of the subsystems that define health and resilience to environmental change. The images of progressively dysfunctional cellular mosaics shown in Figure 2 illustrate just one level—the cellular level—of the problem. Dysfunctional mosaics occur in every one of the seven subsystems, and mis-repairs accumulate at each level with each turn of the healing cycle.

9. The Hallmarks of Aging Emerge as a Result of Incomplete Healing

The molecular, cellular [2,3,48] and gene expression hallmarks [39] of aging can be organized according to their usage during the healing cycle and the stages of the multisystem CDR [10,11,29] (Figure 3). These hallmarks have been identified in studies of aging that have led naturally to an improved molecular understanding of mitochondrial stress [13,17,100], the integrated cell stress response (ICSR) [12,101,102], and the CDR [10,11,29,103]. Each trait associated with these hallmarks arises naturally from the activation of a molecular feature needed in the healing cycle, followed by the failure to extinguish this normal function or gene expression state of the CDR once it is no longer needed. Persistence of an aging hallmark after a turn of the healing cycle (Figure 2) can also occur in five other ways: (1) when a cell sustains too much genetic damage and becomes senescent, (2) when a cell that has been removed is not replaced and leads to tissue atrophy, (3) when a cell is replaced but fails to re-specialize according to the differentiated needs of the tissue, (4) when a mis-repair such as fibrosis or scarring [104] cannot be removed by remodeling, and (5) when genetic and metabolic changes bypass senescence and lead to cancer (Figure 1). The legacy of each of these events is to add to the dysfunctional mosaic illustrated in Figure 2.

Brain, muscle, nerve, and endocrine tissues are particularly susceptible to the incomplete replacement of lost cells once they have died and have been removed because of their limited regeneration capacity and the high degree of spatial organization required for optimal organ function. The function of these tissues is highly dependent on the spatial organization and metabolic
complementarity of the cellular mosaic. This complementarity can only be achieved through cell specialization and chemical cooperativity between neighboring cells, which in turn, depends on the relative position and architecture of layers and columns of cells that must remain fixed over long periods of time. The cost of removing a cell from a chain of connected cells in the cerebral cortex or any other part of the brain has a high price that cannot easily be repaid by recruiting stem cells from another location. However, the cost of converting a cell to the hypersecretory phenotype of a senescent cell [105] is even higher, since just one senescent cell in 350 normal cells is enough to decrease the function of a tissue [99]. The smaller collective volume of cells that occurs in most tissues with age is illustrated in Figure 2. The decreasing volume of tissues in the columns labeled “Merge” and “CDR3” represents the effect of cell loss (atrophy) that occurs with incomplete progress through the healing cycle (Figures 1 and 2). In the example illustrated in Figure 2, more cells have accumulated in CDR2 (illustrated in green) by the ages of 60 and 90 years. Accumulation of cells in CDR2 will increase the risk of diseases such as diabetes, heart disease, and cancer because cells arrested or delayed in CDR2 maintain their proliferative capacity [11] (Figure 1). Proliferative capacity is maintained in part because cells in CDR2 contain more multipotential M0 mitochondria adapted for Warburg metabolism (Table 1). Inherited mutations in the RECQL4 helicase, which interacts with p53 and POLG in mitochondria, increase aerobic glycolysis associated with CDR2, lead to an increased risk of cancer, and to a form of progeria known as Rothmund–Thomson syndrome [106–108].

10. Conclusions

A new model is presented that reframes aging as the result of repeated cycles of incomplete healing. In this model, cycles of incomplete healing stack over time, leading to cellular mosaics that become progressively dysfunctional with age (Figure 2). Cells that accumulate in one of the three stages of the cell danger response (CDR) lead to specific risks of age-related disease. The accumulation of cells in CDR1 leads to chronic inflammatory and pain syndromes, and to susceptibility to chronic viral, bacterial, and fungal infections that require adaptive T-cell immunity for eradication [11]. The accumulation of cells in CDR2 leads to diabetes, heart disease, congestive heart failure, peripheral vascular disease, fibrotic disorders, and cancer risk. The accumulation of cells in CDR3 leads to autoimmune disorders, immune suppression or deficiency, neuropathic pain syndromes, behavioral and mental health disorders, or neurodevelopmental and neurodegenerative disease [11]. It is currently unknown what drugs, devices, or procedures can unblock arrested cells in the mosaic and permit the completion of the healing cycle. However, specific nutritional interventions such as nicotinamide riboside or essential amino acids have been found to facilitate healing [66], longevity [98] or both [64,66] in animal models. A prediction of the incomplete healing model is that differentiation checkpoints exist at each stage of the CDR (Figure 1) and that the molecular signals that are used naturally by cells to facilitate completion of healing may provide fresh clues for both preventing and treating age-related symptoms and disease. One procedure that is well-known to improve physical and psychological well-being, decrease mortality, and decrease the risk of age-related disease, is exercise [109,110]. The effects of exercise are multifaceted, but the increase in autophagy and remodeling of the mitochondrial network, leading to adaptive improvements in quality control and increased reserve capacity, may play key roles [111]. The search for geroneuroprotectants [88] and chemical exercise mimetics [112] has already begun. However, a deeper understanding of the role of natural metabolites as signaling molecules—metabokines [11]—and molecules regulated by exercise—exerkines and exosomes [113–115]—that regulate the completion of the healing cycle holds promise for preventing, slowing, and perhaps reversing [47] some of the effects of aging. Interventions that exploit purinergic [20] and sphingolipid [116] signaling pathways may be particularly powerful since over half of all mitochondrial proteins are regulated by ATP, NAD+, and related nucleotides (Table S1), and many of the molecular hallmarks of aging trace to or regulate the interplay between purines, mitochondria, sphingolipids [117,118], and the nucleus [119].
Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/8/2/27/s1, Table S1: The mitochondrial proteome and nucleotide regulation.

Funding: This work was funded in part by philanthropic gifts from the UCSD Christini Fund, the Lennox Foundation, Malone Family Foundation, the Aloe family, the Harb family, Marc Spilo and all the others who contributed to the Aloe family autism research fund, the N of One Autism Research Foundation, the UCSD Mitochondrial Disease Research Fund, the JMS Fund, gifts in memory of Wayne Riggs, and from Linda Clark, Jeanne Conrad, Josh Spears, David Cannistraro, the Kirby and Katie Mano Family, Simon and Evelyn Foo, Wing-kun Tam, Gita and Anurag Gupta, the Brent Kaufman Family, and the Daniel and Kelly White Family. RKN wishes to thank over 2000 individuals who have each provided gifts in the past year to support Naviaux Lab research.

Acknowledgments: RKN thanks the many families with primary mitochondrial disease, autism spectrum disorder (ASD), and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) who have helped make this research possible. RKN thanks Scott McAvoy from the UCSD Digital Media Lab for preparing the art work for the healing spiral in Figure 2, and Vamsi Mootha, Sarah Calvo, and Jonathan Monk for the bioinformatic analysis of mitochondrial proteins and enzymes.

Conflicts of Interest: RKN is an unpaid scientific advisory board member for the Autism Research Institute (ARI) and the Open Medicine Foundation (OMF). Financial supporters for this study had no role in data analysis, interpretation, writing, or publication of this work.

References

64. D’Antona, G.; Ragni, M.; Cardile, A.; Tedesco, L.; Dossena, M.; Brutti, F.; Caliaro, F.; Corsetti, G.; Bottinelli, R.; Carruba, M.O.; et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. *Cell Metab.* 2010, 12, 362–372. [CrossRef]

68. Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. *PLoS Biol.* 2016, 14, e1002533. [CrossRef]

69. Renehan, A.G.; Booth, C.; Potten, C.S. What is apoptosis, and why is it important? *BMJ* 2001, 322, 1536–1538. [CrossRef]

83. Harris, S.A.; Harris, E.A. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer’s Disease. *J. Alzheimer’s Dis.* JAD 2015, 48, 319–353. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Perspective: Cell danger response Biology—The new science that connects environmental health with mitochondria and the rising tide of chronic illness

Robert K. Naviaux

Professor of Genetics, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson Street, Building CTF, Room C107, San Diego, CA 92103, USA

ABSTRACT

This paper is written for non-specialists in mitochondrial biology to provide access to an important area of science that has broad implications for all people. The cell danger response (CDR) is a universal response to environmental threat or injury. Once triggered, healing cannot be completed until the choreographed stages of the CDR are returned to an updated state of readiness. Although the CDR is a cellular response, it has the power to change human thought and behavior, child development, physical fitness and resilience, fertility, and the susceptibility of entire populations to disease. Mitochondria regulate the CDR by monitoring and responding to the physical, chemical, and microbial conditions within and around the cell. In this way, mitochondria connect cellular health to environmental health. Over 7,000 chemicals are now made or imported to the US for industrial, agricultural, and personal care use in amounts ranging from 25,000 to over 1 million pounds each year, and plastic waste now exceeds 83 billion pounds/year. This chemical load creates a rising tide of manmade pollutants in the oceans, air, water, and food chain. Fewer than 5% of these chemicals have been tested for developmental toxicity. In the 1980s, 5–10% of children lived with a chronic illness. As of 2018, 40% of children, 50% of teens, 60% of adults under age 65, and 90% of adults over 65 live with a chronic illness. Several studies now report the presence of dozens to hundreds of manmade chemicals and pollutants in placenta, umbilical cord blood, and newborn blood spots. New methods in metabolomics and exposomics allow scientists to measure thousands of chemicals in blood, air, water, soil, and the food chain. Systematic measurements of environmental chemicals can now be correlated with annual and regional patterns of childhood illness. These data can be used to prepare a prioritized list of molecules for congressional action, ranked according to their impact on human health.

“When a deep injury is done to us, we never heal until we forgive.”
Nelson Mandela (1918–2013)

1. Introduction

Mitochondria sense and respond to changes in the cellular environment. By sensing safety and danger, mitochondria act as fundamental regulators of the cell danger response (CDR) (Naviaux, 2014). The CDR is an ancient and universal response to threat, stress, or injury. Mitochondria are uniquely suited to monitor the environmental and genetic conditions, and the gene-environment (ecogenetic) interactions that regulate the CDR. The mitochondrial proteome consists of about 1300 proteins (Calvo et al., 2016) that are transcriptionally and posttranslationally regulated according to tissue-specific needs (Pagliarini et al., 2008), injury (Naviaux et al., 2009), infection (Wang et al., 2011), and presence or absence of environmental pollution (Winckelmans et al., 2017). Chemical, physical, and microbial changes that surround all multicellular life on Earth are translated into changes in mitochondrial structure and function. These changes in mitochondria are used to signal safety or danger in the cell, alter gene expression, trigger the healing response, and adjust fitness and susceptibility to chronic illness (Naviaux, 2019b). These changes even help to adjust the rate of aging in response to environmental stress (Naviaux, 2019a). The term CDR was originally coined to include all levels of the organismal response to stress, including inflammation, immunity, metabolism, microbiome, epigenetics, behavior and memory (Naviaux, 2014). Some aspects of the CDR are studied independently and called the integrated stress response (ISR) (Lu et al., 2004) and the mitochondrial ISR (Khan et al., 2017; Nikkanen et al., 2016; Silva et al., 2009).

When the CDR is triggered, the priorities of a multicellular organism are reset to optimize survival. The CDR is so fundamental to the survival of all living things, that the same core defenses of metabolism, inflammation, immunity, microbiome, brain function, sleep pattern and behavioral changes are activated by many different kinds of threats. These threats can be as diverse as an infection, poisoning, physical, or psychological trauma, and still trigger the same stereotyped sickness behavior (Shattuck and Muehlenbein, 2015). This stereotyped response to danger includes withdrawal from social contact, activation of innate immunity, decreased speech, fragmented sleep, head, muscle and abdominal aches, changes in the gut microbiome, and the increased
sensitivity to touch, sound, and light that many people experience when they have the flu, or are recovering from a serious injury. It is the CDR that produces these familiar signs and symptoms (Naviaux, 2012, 2019b). At a cellular level, the cell danger response cannot be turned off until the cell receives the final “all clear” signal. Until then, the CDR remains stuck in a repeating loop that blocks further healing in an attempt to eradicate perceived danger. This can lead to long-term suffering, disability and chronic disease. Only when a cell perceives safety can it heal completely.

The concepts of cellular perception and reactivity are critical. Danger can be real or imagined. From the time we take our first breath, our genes are hard-wired to treat the world as a dangerous place, to anticipate a struggle to survive. When conditions become extreme, one cell can defend itself with powerful chemical weapons, while another may sacrifice itself to save its neighbors by activating a single-cell “self-destruct” sequence. The threshold for cellular reactivity is set by past environmental experience. The perception of safety leads to calm. Perception of danger leads to hypersensitivity.

2. Cellular safety

Organismal safety starts with cellular safety—a condition determined by access to adequate shelter and nutrients for growth and repair, effective management of intercurrent infections, absence of chemical, physical, and psychological trauma, and ample opportunities for healthy play. Sending a clear message of child safety early in life is essential for adult health. At a cellular level, anxiety is created when safety is not assured—when there is uncertainty about nutrient resources and support from neighboring cells, or about protection from exposure to a toxin or alarm signal. When cells are threatened, they behave the way nations do when they go to war. They harden their borders and don’t trust their neighbors. The biophysical properties of membranes of cells undergoing the cell danger response change dramatically, leading to aggregation of patches of sphingolipids and cholesterol (Lingwood et al., 2008), membrane hardening, and the release of cellular ATP to signal danger and recruit cells needed to fight infection and heal (Burnstock, 2016). Cellular calm is created when environmental uncertainties are removed and the signals of health and safety are restored. It is now well known that a child raised in neglect or extreme adversity carries a lifelong risk of chronic illness and mental health struggles (Cameron et al., 2017). Social adversity can result in physical changes in brain development and other organs that can permanently change the trajectory of child development and can injure a child for life. What is only recently becoming known is that a rising tide of manmade chemicals and other changes to our environment are creating a similar impact on lifelong illness and mental health by threatening cellular safety. Children with chronic illness grow up to be adults with chronic illness. In the past 40 years, the fraction of children living with chronic disease in the United States has risen from approximately 5–10 percent in the 1980s, to 40 percent today. Rising teen depression, suicidal ideation, anxiety and behavioral mental health disorders add another 10–20 percent so that 50% of teens struggle with a chronic illness (Bethell et al., 2011). Sixty percent of adults under 65, and 90 percent of those over 65, now live with a chronic illness, a number that has doubled since the 1980s, and continues to grow (CDC.gov, 2017).

3. The economic cost of chronic illness

The United States now spends $2.8 trillion annually on medical care for children and adults with chronic conditions. This represents 86 percent of the $3.3 trillion US budget for health care. If the rising tide of chronic illness over the past 30 years continues unabated, the cost of health care in the US is projected to exceed $5.5 trillion by 2025, creating adverse effects that will derail economic prosperity not just in this country, but in many nations around the world (CDC.gov, 2017; CMS.gov, 2017; Khazan, March 15, 2019). What if a new approach to medicine were able to alleviate the suffering and the need for expensive medical care for just 10 percent of people with a chronic disorder? This new approach would return $280 billion (10 percent times $2.8 trillion) back into the US economy each year. This savings in a single year would surpass the annual budgets of the National Institutes of Health (NIH; $37 billion), the Environmental Protection Agency (EPA; $8.7 billion), the Food and Drug Administration (FDA; $5.1 billion) and the US Department of Agriculture (USDA; $151 billion) combined.

4. Chronic disease and the chemical World—the mixtures that make up the chemosphere

When viewed from far in space, Carl Sagan pointed out that the Earth appears as a pale blue dot (Sagan, 1997). A little closer, when viewed from the orbit of the International Space Station, the totality of livable space on our planet appears as a wispy thin layer of atmosphere, land, and ocean that scientists call the biosphere. Invisibly extending through and beyond the biosphere are the chemicals that make up both the living and non-living parts of the Earth. These chemicals are mingled with every drop of water, every breath of air in the skies, and adsorbed to particles of soil and sediments on land and sea. The chemical world on Earth is called the chemosphere.

The vast majority of the chemosphere is invisible to human eyes, tasteless, and odorless. The majority of what we “sense” of the chemosphere is through subconscious cellular responses to this invisible world that surrounds us. Tens of thousands of chemicals in the chemosphere are manmade and many are toxic even at low doses. Ultimately, the total load (Herbert and Weintraub, 2013)—the collective mixture—of both manmade and natural chemicals in the chemosphere, and other stresses in the biosphere helps determine the population risk of chronic illness. Recent studies have established that mixtures of chemicals can have deleterious effects on metabolism even when no single chemical is present in concentrations defined as “toxic” (Bonvallot et al., 2018). These findings have underscored a need for government agencies to revisit the guiding concepts in environmental toxicology called the “no observed adverse effect level” (NOAEL) and “lowest observed adverse effect level” (LOAEL), since low-level exposures to real-world mixtures of manmade chemicals can be toxic and produce chronic illness even at concentrations well below NOAEL.

Within every population there are sensitive and resistant individuals, and risk of harm is a probability, not a certainty for any given person. Resistant individuals can remain healthy despite exposure at one particular time, but then become vulnerable in another season or after a predisposing event at another time. In sensitive children and adults, whose cell danger response has been primed by a perfect storm of previous chemical, microbial, physical, and/or psychological stresses, the same levels of chemical or biotoxin burden produce pathological and prolonged metabolic, epigenetic, and physiologic responses. This hypersensitive response has two major effects: 1) it leads to disability and chronic illness, and 2) it interferes with the body’s natural efforts to heal (Naviaux, 2019b).

5. Slow DNA and fast industries

The DNA of Homo sapiens changes slowly, and requires generations to adapt to the chemical changes around us. Common new diseases are not the result of mutations in our DNA, but the result of an environment that is changing faster than our genes can adapt. Although important, not even the rapid epigenetic changes regulated by mitochondria (Smiraglia et al., 2008) can fully rescue us from this problem. By evolutionary default, the cellular response to anything unknown or new is to first treat it as a threat. Repetitive activation of the cell danger response can lead to cellular mosaics in which healing has been slowed or incomplete (Naviaux, 2019a, b). In a rapidly changing world, our cells respond to so many chemicals that are new and threatening that it is
becoming increasingly difficult to heal completely after any common injury caused by the common cold, the flu, accidental poisoning, allergens or physical trauma. In much the same way that repeatedly ripping the scab from a skinned knee delays healing and leaves a scar, repeated exposure to a toxic world means that cellular safety and “all clear” signals are becoming harder to sustain. The absence of safety signals leaves a mark. Children and many adults are left in a state of primed hypersensitivity. New pesticides, plasticizers, antibiotics, food additives, dyes, solvents and other pollutants that our genome and our microbiomes have not yet evolved mechanisms to detoxify are entering our food chain, water supply and air like an invisible but poisonous chemical tide—a miasma of our own making.

6. Generational transmission

A study conducted by the Environmental Working Group in 2005 found that the umbilical cord blood of newborn babies in the United States already contained an average of 287 pesticides, pollutants and other environmental chemicals (Houlihan et al., 2005). The methods used at that time allowed the authors to look for 413 molecules from 9 different chemical classes. Other studies that have looked for a smaller number of pesticides or persistent organic pollutants have documented the presence of dozens of pollutants in newborn blood samples from around the world (Cabrera-Rodriguez et al., 2019; Silver et al., 2015). Similar pollutant loads have been documented in the placenta and found to change mitochondrial DNA content (Vriens et al., 2017). These studies show that when a child is born, they inherit a sample of their parents’ chemical exposure history. Many chemicals are biomagnified in fat, bone and reproductive organs, accumulating over years of exposure to levels that can be hundreds of times higher than the concentration in any given environmental source of air, water or food (Drouillard et al., 2001). Many banned pesticides like DDT and industrial chemicals like PCBs can still be found in people decades later (Montano et al., 2013). If a child is born today with a burden of 300 manmade chemicals, in 25 years that child will add to their inherited burden by accumulating new toxic chemicals from their environment as they grow to reproductive maturity. As adults, they will then pass on a new sample of both their inherited and their newly-accumulated environmental chemicals to their children. If a net increase of 50 environmental pollutants occurs in the umbilical cord blood with each generation, and is added to the current number of 300, the toxic chemicals passed on to our children will soon have more devastating effects on human health than any mutation in DNA, leading to escalating infertility rates, miscarriages, childhood and adult chronic disease.

7. Increasing human impacts on the chemosphere and biosphere

The problem of environmental accumulation of toxic chemicals has been noted since the beginning of the industrial revolution in the 1700s, but has been accelerating since the rise of industrial scale farming and other large-scale industries since World War II. Rachel Carson was the first to call attention to the ecological effects of this accumulation in her landmark book *Silent Spring* (Carson, 1962), which first appeared in 1962. The title of her book referred to the decrease in the songs of birds in the spring because of pesticide accumulation in their food chain. Since that time, 30% of all birds in North America have been lost (Rosenberg et al., 2019). In 1962, the world’s human population was 3.1 billion people. Today, the population is 7.7 billion and is growing at a rate of about 1% per year—about one billion people every decade. To glimpse the sheer magnitude of the ecological footprint of humans on the Earth, we need only look to the north Pacific Ocean to find a garbage patch of plastics and other manmade debris now twice the size of Texas, the exponential increase in plastic deposits in ocean floor sediments that has occurred since World War II (Brandon et al., 2019), or to the dying swaths of coral in the Great Barrier Reef (Kroon et al., 2016) the size of cities. The hopeful message is that by cleaning up pollution from the environment, the next generation can begin to off-load their inherited burden at a rate faster than they accumulate new toxins.
8. Canaries in the coal mine

Children are most susceptible to this menacing tide because their cells are growing rapidly and their metabolism, brain and endocrine systems are more sensitive to disruption. Children are like canaries in the coal mine—the first responders to environmental change. Many chemicals pass safely through adults, but strike our children during their periods of rapid growth in the womb and first few years of life, leaving them with chronic illnesses like asthma, attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In the case of ASD, the prevalence has risen from 1 in 5000 (20 in 100,000) in the 1970s to 1 in 59 (1700 in 100,000; an 84-times increase) in 2014 (Baio and Investigators, 2018). It has been calculated that 60% of the apparent increase can be explained by changes in the diagnostic criteria for ASD over the past 40 years (Hansen et al., 2015).

However, even with this conservative correction, the adjusted prevalence of ASD of 1 in 59 children today represents an absolute increase of 34 times (84 × 0.4 = 34) from the 1970s (Fig. 1).

Chemical exposures in childhood can have many other lifelong effects, even when the same exposures in adults produce no obvious effect. A Lancet Commission study from 2016 reported that 940,000 children die each year around the world as the result of manmade pollution (Landrigan et al., 2018; Landrigan et al., 2019). This report also found that pollution was responsible for 9 million premature deaths each year—a number that continues to grow (Fulier et al., 2018; Martin and Landrigan, 2017). In addition to the deaths, which occur in only 1–10 percent of those exposed, it can be estimated that ten to hundred times these numbers—nearly 1 billion people around the world—are sickened annually from exposure to manmade pollution. For many, the illnesses caused by exposure to pollution will remain with them for the rest of their lives.

The persistent cell danger response caused by environmental chemical exposure has the power to change human thought and behavior. Because the brain controls metabolism (Naviaux et al., 2017; Naviaux et al., 2016; Naviaux et al., 2019), the persistent CDR that was originally triggered by mitochondria and reached the brain, feeds back on peripheral mitochondria using neuroendocrine and autonomic circuits from the brain, to amplify the cellular response to environmental change in an attempt to eradicate danger and restore safety. If the danger is not successfully eradicated, persistence of an activated CDR creates a cellular form of anxiety that can bubble up to create psychological anxiety and fear of change. In many people, the anxiety translates to a fear of strangers, outbursts of anger and violence, repetitive and obsessive-compulsive behaviors, and rigid imposition of past rules regardless of current circumstances in an effort to preserve the safety associated with earlier times. In others, the pervasive anxiety can lead to chronic pain, suffering, and drug addiction. I believe the rising tide of depression, suicide, gun violence, mental health issues, chronic pain and the opioid crisis reflects the changing set-point for the CDR in America. This new set-point creates a loss of past resilience to disease. The new set-point of the CDR is primed to react to smaller and smaller threats that arise by repeated exposures to a toxic mix of manmade chemicals, and acoustic and electromagnetic pollution in our increasingly industrialized cities, food chain, water and air.

9. A Second Book of Medicine

To treat the rising tide of chronic disease, a Second Book of Medicine is needed (Naviaux, 2019b). The First Book of Medicine contains the corpus of medical knowledge from the past 5,000 years of written history. From the First Book of Medicine, doctors learned how to treat acute illnesses caused by infections, poisonings and physical injuries. Typical acute illnesses last less than six months. The topic of the Second Book of Medicine will be the cause and treatment of chronic diseases that last longer than six months. In this book, a new chapter in pharmacology will be needed. A new class of medicines that might be called “armistice therapies” can now be developed (Naviaux, 2018). This new class of medicines will help doctors adjust the set-point of the CDR so it is no longer hypersensitive to chemicals and other threats that are below the threshold required to cause harm. The new medicines will help send the chemical message that the “war is over,” allowing a child or adult struggling with a chronic illness to return to the “peace time” activities that permit healing, recovery and health. This new class of medicines will have fewer side effects than drugs from the First Book of Medicine because the new medicines will target biological processes that are most active under conditions of illness, when healing is incomplete. Once the illness or injury has healed, armistice medicines of the Second Book of Medicine will become inert because their targets will have reseeded or disappeared once health has been restored, and the use of adaptogens can help maintain and strengthen resilience (Panossian, 2017).

10. Environmental health for human health

Unfortunately, unless the environment can be cleaned up, and the repeated exposures to chemical, acoustic and electromagnetic triggers of the CDR are reduced, modern medicine will not be able to completely cure most chronic illnesses. Regular efforts to rejuvenate and heal by reconnecting with the natural world through walks in the park, or in a forest as is now prescribed in Japan as preventative medical care in the practice known as shizinen yoku (Miyazaki, 2018), are steps in the right direction, but will not be able to hold back the tide. Incomplete healing occurs in part because many environmental chemicals block the body’s ability to heal. Without restoring the environment, chronic illnesses will not heal completely, but will instead become relapsing-remitting disorders. Instead of putting a condition like a broken leg in the past—cast off, leg good as new—many people with chronic illness will remain at risk for recurrence throughout life. For example, a person who has recovered from diabetes would become a “recovering diabetic” for life, and someone with post-traumatic stress disorder (PTSD) who has been successfully treated and has recovered full function would still be at risk of relapse for the rest of their life.

Precision medicine will soon be able to use personal genome and serial metabolomic analysis to identify points of vulnerability in each person that might be strengthened with supplements, drugs, diet, exercise, restorative sleep and other measures. However, these advanced tools will only identify weak links in the personalized chain under tension. Ultimately, every chain has a breaking point. The ongoing accumulation of manmade changes in the environment is like a hydraulic winch that steadily adds tension to the chain of every citizen. Some chains will break before others, but ultimately, all living organisms are affected.

11. Toward sustainable health

Just as the body resets its priorities to face new threats that activate the cell danger response, nations of the world in the 21st century must reset their priorities to respond to new threats to our health caused by the changing chemistry and climate of our planet. Individual health must be given priority over corporate profit. Both are possible if both are valued equally and measures are taken to protect all the stakeholders. As part of this effort, it has been recommended that a portion of all land and ocean habitats be set aside in its natural state to preserve the biodiversity needed to recycle and purify the planet’s water and air (Wilson, 2016). Without such actions, both profits and nations will fall as citizens sicken. New legislation is needed to regulate technological and industrial practices that promote safety and sustainability. The over-extraction and over-consumption of the Earth’s resources and the discharge of pollutants into the environment can no longer be written off as economic “externalities” by industry and agriculture. Both resource usage and waste production need to be tracked with the same assiduous attention now paid to monetary profits. Governments of the
21st century must find ways to encourage all farms and businesses to comply with pollution-prevention standards to create a greener economy, and to financially reward businesses with the best sustainability practices.

Environmental protection agencies around the world must reinvigorate their mandate to monitor, record and remediate the crushing impact of the human footprint upon Earth’s ecosystems, and minimize or prevent future impacts. If this doesn’t happen, the consequences of political apathy, ignorance, or economic short-sightedness will be well-engrained, and Earth-scale processes thus set in motion will develop unstoppable momentum before we can finally agree there is a problem and can unite to make a change. In 2014, a study published in the *Proceedings of the National Academy of Sciences* (USA) found that 42 percent of lakes and rivers in Europe were already contaminated with enough chemicals to cause chronic illness in freshwater animals (Malaj et al., 2014). A similar study of waterways in the US has not yet been conducted. This failure to act has occurred in America despite early wakeup calls like the Cuyahoga river near Cleveland, Ohio catching fire several times from 1952 to 1969 because of industrial pollution, tap water igniting in Pennsylvania because of fracking (Tollefson, 2013), and harmful algal blooms from farm and city runoffs that create dead zones in rivers, lakes, and ocean fisheries that are decimating local economies (Diaz and Rosenberg, 2008; Grattan et al., 2016), making people sick, and are occurring more frequently each year.

Plastic waste in the US now exceeds 83 billion pounds/year (38 million metric tonnes) (Ritchie and Roser, 2018) and produces toxicity and impacts on human health by several mechanisms (Barboza et al., 2018; Knight and Kelly, 2017). Over 3,000 chemicals are made in or imported to the US in amounts over 1 million pounds per year (Landrigan and Landrigan, 2018). Another 4,000 are made in amounts over 25,000 lb per year. The rate of production of manmade pollutants now exceeds the rate at which the Earth can recycle them. This has led to a toxic rising tide that is entering ground water, soil, lakes, rivers, oceans, and the air. Fewer than 5% of these chemicals have been tested for their long-term effects on child development and health. Still thousands more are made in amounts less than 25,000 lb per year. These include widely-prescribed antibiotics, pharmaceuticals, hormones, and chemicals found in personal care products that are being found increasingly in our ground water and food chain (Bacanli and Basaran, 2019; Peng et al., 2014). Many of these manmade chemicals are biomagnified over years of exposure in our fat, bones, and reproductive organs to levels far above the concentration found in any single environmental source. If systematic scientific monitoring and recording, and regular reassessment of the chemistry of both people and the environment are not done, we will not have the tools to ward off the future of looming poor health. People around the world will fall prey to chronic illness in greater numbers; the land and seas will become disease-causing waste dumps; our faltering immune systems will make us vulnerable to untreatable microbial infections and disabling autoimmune diseases; new chronic and degenerative diseases will emerge; and the costs from illness and threats to our social fabric will bankrupt communities, states and nations.

12. The right to be born into a healthy environment

We often take for granted the freedoms afforded to us by good health. This must change, or thriving health will become rare, and plagues, wars and mental health struggles will become the new normal. If the activities of a nation poison its own people, then those activities must be changed. What is more important to the health of a nation than the health of its citizens? This question has motivated a call for a new constitutional amendment to invest each citizen with a new right: the right to be born and live in an environment that does not cause chronic disease. Readers can learn more at: http://naviauxlab.ucsd.edu/the-28th-amendment-project/.

Dedication

This work is dedicated to Olivia, a young lady with ASD whose spirit and imagination shine as a bright light of hope for children and families around the world.

Funding

This work was supported by foundation gifts from the UCSF Christini Fund, the Lennox Foundation, the UCSF Mitochondrial Research Fund, the JMS Fund, the N of One Foundation, the Autism Research Institute, the Open Medicine Foundation, the Khosla Foundation, the Westreich Foundation, and the Malone Foundation, and philanthropic support from Aloe family, the Harb family, Marc Spilo and contributors to the Aloe Family Autism Research Fund, Linda Clark, Jeanne Conrad, Josh Spears, David Cannistraro, the Kirby and Katie Mano Family, Simon and Evelyn Foo, Wing-kan Tam, Gita and Anurag Gupta, the Brent Kaufman Family, the Daniel and Kelly White Family, and grassroots support from over 2000 individuals from around the world who have each provided gifts in the past year to support Naviaux Lab research. Funding for the mass spectrometers was provided by a gift from the Jane Botsford Johnson Foundation.

Acknowledgments

RKN thanks the many families with primary mitochondrial disease, autism spectrum disorder (ASD), myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and healthy control volunteers who have helped make this research possible. RKN also thanks Neil Nathan, Eric Gordon, Liz Mumper, Nancy O’Hara, Scott Lafee, John Green, David Kaufman, John Rodakis, Christabelle Yeoh, and Maya Shetreet-Klein for comments on the manuscript.

Conflicts of Interest

RKN is an unpaid scientific advisory board member for the Autism Research Institute (ARI), the Open Medicine Foundation (OMF), and Yuvia Biosciences. Financial supporters for this study had no role in the design, data analysis, interpretation, writing, or publication of this work.

References

Cameron, J.L., Eagleson, K.L., Fox, N.A., Hessle, T.K., Levitt, P., 2017. Social origins of
Antipurinergic Therapy Corrects the Autism-Like Features in the Poly(IC) Mouse Model

Robert K. Naviaux1,2,3,4, Zarazuela Zolkipli1,5, Lin Wang1,2, Tomohiro Nakayama1,5, Jane C. Naviaux1,6, Thuy P. Le1,3, Michael A. Schuchbauer6, Mihael Rogac1,2, Qingbo Tang2, Laura L. Dugan2, Susan B. Powell6

1 The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, California, United States of America, 2 Department of Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America, 3 Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, United States of America, 4 Department of Pathology, University of California San Diego School of Medicine, San Diego, California, United States of America, 5 Department of Neurosciences, University of California San Diego School of Medicine, San Diego, California, United States of America, 6 Department of Psychiatry, University of California San Diego School of Medicine, San Diego, California, United States of America

Abstract

Background: Autism spectrum disorders (ASDs) are caused by both genetic and environmental factors. Mitochondria act to connect genes and environment by regulating gene-encoded metabolic networks according to changes in the chemistry of the cell and its environment. Mitochondrial ATP and other metabolites are mitokines—signaling molecules made in mitochondria—that undergo regulated release from cells to communicate cellular health and danger to neighboring cells via purinergic signaling. The role of purinergic signaling has not yet been explored in autism spectrum disorders.

Objectives and Methods: We used the maternal immune activation (MIA) mouse model of gestational poly(IC) exposure and treatment with the non-selective purinergic antagonist suramin to test the role of purinergic signaling in C57BL/6J mice.

Results: We found that antipurinergic therapy (APT) corrected 16 multisystem abnormalities that defined the ASD-like phenotype in this model. These included correction of the core social deficits and sensorimotor coordination abnormalities, prevention of cerebellar Purkinje cell loss, correction of the ultrastructural synaptic dysmorphology, and correction of the hypothermia, metabolic, mitochondrial, P2Y2 and P2X7 purinergic receptor expression, and ERK1/2 and CAMKII signal transduction abnormalities.

Conclusions: Hyperpurinergia is a fundamental and treatable feature of the multisystem abnormalities in the poly(IC) mouse model of autism spectrum disorders. Antipurinergic therapy provides a new tool for refining current concepts of pathogenesis in autism and related spectrum disorders, and represents a fresh path forward for new drug development.

Introduction

Autism spectrum disorders (ASDs) are complex, multisystem disorders that are defined by unifying, core abnormalities in the development of language, social behavior, and repetitive behaviors. Hundreds of single-gene causes and chromosomal copy number variations (CNVs) are known to confer risk, but in aggregate account for less than 20% of children with ASD [1]. More than 80% of children with ASD do not have a monogenic or CNV cause. The majority of children with ASD develop disease as the result of interactions between large sets of genes and environmental factors. Common comorbidities in non-single-gene forms of ASD provide important clues to shared mechanisms of disease. Comorbidities include epilepsy [2], GI abnormalities [3], sleep disturbances [2], abnormalities in tryptophan metabolism and platelet hyperserotonemia [4], altered intracellular calcium and mitochondrial dynamics [5], hypoimmunoglobulinemia [6], hyperuricosuria [7], methylation disturbances [8], disturbances in sulfur [9] and glutathione metabolism [10], neuroinflammation [11], cerebellar vermis hypoplasia [12], and Purkinje cell loss [13]. We hypothesized that all of these clinical comorbidities can result from a single, evolutionarily conserved, metabolic state associated with a cellular danger response (CDR). Since mitochondria are located at the hub of the wheel of metabolism and play a central role in non-infectious cellular stress [14], innate immunity [15],
inflammatory response [17], and the stereotyped antiviral response [18], we searched for a signaling system that was both traceable to mitochondria and critical for innate immunity. Purinergic signaling via extracellular nucleotides like ATP and ADP satisfied these requirements. In the following study we tested the role of purinergic signaling in the maternal immune activation mouse model of ASD and show that antipurinergic therapy reverses the abnormalities found in this model.

ATP, ADP, UTP, and UDP are mitokines—signaling molecules made by mitochondria—that act as signaling molecules when outside the cell, and have separate metabolic functions inside the cell. Outside the cell, they bind to and regulate purinergic receptors that are present on the surface of every cell in the body. ATP has been found to be a co-neurotransmitter at every type of synaptic junction studied to date [18]. Excess extracellular ATP (eATP) is an activator of innate and adaptive immunity [19], is a danger signal and damage-associated molecular pattern (DAMP) that is chemotactic for neutrophils [20], and a potent regulator of microglial activation, death, and survival [21]. The concentration of extracellular nucleotides under normal circumstances is ultimately controlled by mitochondrial function and cellular health.

Fifteen different isoforms of purinergic receptors are known that are stimulated by extracellular nucleotides [18]. These are divided into ionotropic P2X receptors and metabotropic P2Y receptors. P2Y receptors are G-protein coupled receptors (GPCRs). Together, P2X and P2Y receptors are known to control a broad range of biological characteristics that have relevance to autism. These include all the known abnormalities that occur in autism. For example, purinergic signaling modulates normal synaptogenesis and brain development [18], the PT3K/AKT pathway [22], innate and adaptive immune responses, and chronic inflammation [23], neuroinflammation, antiviral signaling [17], microglial activation, neutrophil chemotaxis, autophagy, gut motility [24], gut permeability [25], taste chemosensory transduction [26], sensitivity to food allergens [27], hearing [28], and chronic pain syndromes [18].

We hypothesized that the conserved cellular danger response (CDR) coordinates the metabolic responses to intracellular pathogens [17] and NRF2-coordinated electrophilic chemical stress [29]. In the MIA model of ASD, adult females are exposed to a simulated viral infection by injection of a synthetic, double strand RNA poly(Inosine: Cytosine) (poly(IC)) at vulnerable times during pregnancy. This produces offspring with neurodevelopmental abnormalities associated with both ASD [30] and schizophrenia [31]. Injected poly(IC) RNA is not replicated, but during pregnancy. This produces offspring with neurodevelopmental abnormalities associated with both ASD [30] and schizophrenia [31]. Injected poly(IC) RNA is not replicated, but is recognized by the antiviral response machinery within the cell. Poly(IC) binds to TLR3, the dsRNA-activated protein kinase (PKR), and other proteins, activates the cellular danger response, inhibits the translation of cap-dependent mRNAs, and stimulates IL1β, IL6, TNFα, and the type I interferons (IFNα and IFNβ). Poly(IC) exposure produces self-limiting sickness behavior that is characterized by initial fever then hypothermia, decreased activity, reduced food and water intake, weight loss, and spontaneous recovery in about 24 hours [32].

We tested the hypothesis that the cell danger response (CDR) is sustained by hyperpurinergia. Suramin is a well-known and well-studied competitive inhibitor of purinergic signaling [33]. It has been used medically for the treatment of African Sleeping Sickness (Trypanosomiasis) since shortly after it was first synthesized in 1916. Its antipurinergic actions were discovered in 1988, after a search for inhibitors of ATP-mediated P2X and P2Y signaling [34]. We used suramin to test the role of purinergic signaling in the maternal immune activation (MIA) model of autism-like behaviors in C57BL/6J mice. In this study, we report for the first time the functional correction of both the core behavioral symptoms and multi-system comorbidities of the MIA model of autism spectrum disorders using a single drug that inhibits purinergic signaling. A total of 16 multisystem features of this model were either corrected or improved by suramin treatment (summarized in Table 1).

Materials and Methods

Animals and Husbandry

All studies were conducted at the University of California, San Diego (UCSD) in facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) under UCSD Institutional Animal Care and Use Committee (IACUC)-approved animal subjects protocols. Six to 8-week old C57BL/6J (strain # 000664) mice were obtained from Jackson Laboratories (Bar Harbor, ME) and maintained on ad libitum Harlan Teklad 8604 mouse chow (14% fat, 54% carbohydrate, 32% protein) and water. Animals were housed in a temperature (22–24°C) and humidity (40–55%) controlled vivarium with a 12 h light-dark cycle (lights on at 7 AM). Two different protocols were used to produce the MIA model. In the first cohort, primiparous dams (experienced mothers) were mated at 12–14 weeks of age. Experienced sires were 4 months old. Seventy-five (75) offspring were studied from cohort 1. We used a higher-dose, two-dose protocol in the second cohort. In the second cohort, nulliparous dams were mated at 9–10 weeks of age and the sires were also 9–10 weeks of age. Ninety-three (93) offspring were studied from cohort 2. Behavioral and endocrine results from cohort 2 males are reported in Figures 1, 2, and 3. Brain biochemistry and synaptosome studies from cohort 1 males are reported in Figures 4, 5, 6, 7, 8, and 9. Brain cerebellar Purkinje cell results from cohort 2 males are reported in Figure 10. Temperature data from cohort 1 males and females appears in Table S1. Females generally displayed fewer and milder abnormalities than males in the poly(IC) MIA model (Figure S4). The results from long-term temperature measurements in females are reported in Figures 2B and 2C. Additional studies in both cohorts and both sexes are reported in the supporting online material (Tables S1, S2, and S3, and Figures S1, S2, S3, and S4). A total of 168 mice (86 males and 82 females) were studied.

Poly(IC) Preparation and Gestational Exposure

To initiate the maternal immune activation (MIA) model pregnant dams received either a single intraperitoneal (ip) injection of Poly(IC) (Potassium salt; Sigma-Aldrich Cat# P9582; >99% pure; <1% mononucleotide content) of 0.17 A260 U/g; 2 mg/kg ip on E12.5 (cohort 1), or two doses (0.25 U/g [3 mg/kg] on E12.5 and 0.125 U/g [1.5 mg/kg] on E17.5) in cohort 2. This 2-dose poly(IC) regimen resulted in reduced fecundity of 40% (3 liveborn litters in 20 pregnancies; 95% CI = 19–64%) associated with fetal resorption after E12.5. Control animals injected with saline had a fecundity of 80% (3 liveborn litters in 10 pregnancies; 95% CI = 44–97%). There were no differences in liveborn litter size between saline and poly(IC)-injected pregnancies, which was 8.3+/−1.5 for 12–14 week-old primiparous dams, and 5.6+/−0.8 for 9–10 week-old nulliparous dams. P9582 vials contained nominally 50 mg of total solids (45 mg of PBS salts) and 5 mg of K-Poly(IC) lyophilized from 5 ml of PBS—hereafter referred to as a 50/5 vial. The contents of a 50/5 vial were reconstituted in 5 ml of sterile, nuclease-free water to yield an isotonic solution. Triplicate 5 μl samples of this solution were diluted 1:200 in 1 ml of water and measured spectrophotometrically at 260 nm and 280 nm. A typical 50/5 vial contained 450 U of Poly(IC), and

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e57380

Purinergic Signaling in Autism Spectrum Disorders
had an A260/A280 ratio of 1.65. The stock solution was then further diluted with a sufficient volume of 0.15M NaCl to produce an isotonic solution that was 50 A260 Units/ml. Using this concentration, a dose of 0.25 U/g is achieved using a volume of 5 μl/g, or 125 μl in a typical 25 g pregnant female.

Postnatal Handling and Antipurinergic Therapy

Offspring of timed matings were weaned at 3-4 weeks of age into cages of 2-4 animals. No mice were housed in isolation. Littermates were identified by ear tags and distributed into different cages in order to minimize litter and dam effects. At 6-weeks of age, half the animals received a weekly injection of either saline (5 μl/g ip) or suramin (hexasodium salt, 10 or 20 mg/kg ip; Tocris Cat #1472). Beginning at 8-weeks of age all animals were evaluated by a series of test paradigms described below. At 16 weeks of age, male animals were sacrificed for synaptosome isolation, mitochondrial studies, hematology, blood chemistry, neuropathology, and immunohistochemical evaluation. Females from cohort 2 were followed for 8 months to monitor basal body temperatures and response to withdrawal of suramin treatment (Figs. 2B and 2C).

Body Temperature Measurements

A BAT-12 Microprobe digital thermometer and RET-3 mouse rectal probe (Physitemp Instruments, Clifton, New Jersey) were used to obtain rectal core temperatures to a precision of ±/− 0.1°C. The probe was alcohol-cleaned, dipped in olive oil, then gently inserted 2 cm into the rectum for 10 seconds to achieve temperature and signal stability. Care was taken to avoid animal transport stress immediately prior to measurement in order to avoid stress-induced hyperthermia [35]. Temperatures were measured between 9 am to 12 noon each day.

Locomotor Activity

Locomotor activity was tested in a brief open field test for 10 min in the light to assess anxiety-like behavior and subsequently in the mouse behavioral pattern monitor (mBPM) for 30 min in the dark to assess exploratory behavior and locomotor activity. Observers were blinded to treatment groups.

Social Preference

Social preference was tested using a three-chambered box similar to what has been previously described [36]. Briefly, a Plexiglas box (60 cm L×60 cm W×30 cm H) was divided into 3 equal compartments by Plexiglas partitions containing an opening through which the mice could freely enter the 3 chambers. All testing was performed between the hours of 8 am and 1 pm. The test was conducted in two 10-minute phases. In phase I, the test mouse was first allowed to explore the chambers for 10 minutes. Each of the two outer chambers contained an empty, inverted stainless steel wire cup (Galaxy Cup, Spectrum Diversified Designs, Inc., Streetsboro, OH). In phase II, the test mouse was briefly removed, an unfamiliar mouse, age and sex matched, was placed under one of the wire cups and Lego blocks were placed under the other wire cup. The test mouse was then gently placed back in the arena and given an additional 10 minutes to explore. Room lighting for social behavior studies was 1-2 lux. An overhead camera and Ethovision v3 video tracking software (Noldus, Leesburg VA) were used to record the amount of time spent in each chamber and the number of entries into each chamber. In addition, a human observer, blinded to the treatment groups, scored time spent sniffing each wire cage, using a computer keypad. Stranger mice were used up to 4 times before new strangers were cycled in. The location (left or right) of the novel object and novel mouse alternated across subjects. Hand-
scored times (seconds) with stranger and object were more sensitive than computer-calculated zone times (data not shown). Social preference (SP) in percent was calculated as 100 multiplied by the hand-scored time spent interacting with the stranger mouse (tM) divided by the sum of the time with stranger plus time with object (tM + tL) minus 50: SP = 100 × \frac{tM}{tM + tL} - 50. Total times spent interacting with stranger and Lego cup, as quantified by blinded observer, are presented in Figure 1B. Hand-scored and machine-scored results were similar (Figure S3).

Rotarod
Training and testing were performed between the hours of 8 am and 1 pm using an accelerating rotarod protocol (Economex Rotarod, Columbus Instruments fitted with a 4 cm diameter spindle fitted with gray plastic, grooved walking surface) as previously described [37], with the following modifications. Prior to testing on an accelerating rod, mice were first trained at a fixed speed of 4 rpm. Each mouse was given up to 3 consecutive trials to achieve the endpoint of maintaining balance on the rotarod for at least 30 seconds. If a mouse was unsuccessful in the first 3 attempts, it was rested for 30 minutes, and then given another 3 attempts. Using this training protocol, all of the mice successfully maintained balance for 30 seconds within 2 training sessions. The acceleration phase testing was conducted over the subsequent 2 days, with 4 trials per day. Each mouse was individually placed on the rotarod at 4 rpm, which was then accelerated from 4 to 40 rpm over 5 minutes. The inter-trial time between repeat tests was 45 minutes. Latency to fall was recorded in seconds. Rotarod room lighting was 20–22 lux.

Plasma Immunoglobulins, and Corticosterone
Whole blood (100–200 μl) was collected at 15 weeks of age, for immunoglobulin and corticosterone measurements by submandibular venous lancet (Goldenrod 5 mm) into heparinized or EDTA anticoagulated 0.3 ml Microtainer tubes (Becton-Dickinson). Blood draws were performed between the hours of 9 am and 1 pm to avoid known circadian variations in corticosterone and certain cytokines such as IL6. Plasma was separated by centrifugation at 1500 g×5 min and frozen at −80°C until use. Plasma immunoglobulins, albumin, and total protein were performed by the UCSD Animal Care Program Diagnostic Laboratory. Plasma concentrations of corticosterone were measured by [125]I double antibody radioimmunoassay using 10 μl of plasma diluted 1:200 with assay buffer (MP Biomedicals LLC,}

Figure 1. Correction of the Core Behavioral Features of the Maternal Immune Activation (MIA) Mouse Model of Autism Spectrum Disorders (ASD). (A) Social Preference. MIA males had a 54% decrease in social preference compared to controls (PIC-Sal 12.5+/−4.2% vs Sal-Sal 27.6+/−2.6%; one-way ANOVA F(3,42) = 3.74; with Newman-Keuls post-hoc testing; n = 9–15 males per group; age = 10-weeks; p < 0.02). This was corrected by suramin treatment (PIC-Sur 28.1% vs Sal-Sal 27.6%; p = ns). (B) Social Preference as the time spent with stranger mouse vs. inanimate cup from 0–5 minutes. Analyzed by 2-Way ANOVA with Bonferroni pair-wise post testing (*p < 0.05; ***p < 0.001; ****p < 0.0001). Treatment with suramin had little effect on normal behavior (Sal-Sal vs Sal-Sur), but a strong effect in improving social behavior in the MIA group (PIC-Sal vs. PIC-Sur). Zone x treatment interaction F(3,43) = 3.72; p < 0.05; n = 9–15 males per group; age = 10-weeks. (C) Rotarod Training Curves. MIA (PIC-Sal) animals displayed deficits that were corrected by suramin treatment. Analyzed by repeated measures ANOVA with Tukey post testing: Sal-Sal vs. PIC-Sal q = 6.749, p < 0.01; PIC-Sal vs PIC-Sur q = 11.13, p < 0.001; n = 9–16 males per group; age = 11-weeks. (D) Rotarod Sensorimotor Coordination. MIA animals had a 28% decrease in sensorimotor coordination as measured by latency to fall by rotarod testing (PIC-Sal = 17.7+/−1.6 sec vs Sal-Sal = 24.5+/−2.2 sec; one-way ANOVA F(3,46) = 7.08; n = 9–16 males per group; age = 11-weeks; p < 0.001). This was corrected by suramin treatment (PIC-Sur 27.2+/−1.6 sec vs Sal-Sal 24.5+/−2.2 sec; p = ns). Values are expressed as mean +/- SEM.
Orangeburg, NY). The intraassay coefficient of variation (CV) was 4% with an interassay CV of 7%.

Comprehensive Metabolic Evaluations

Comprehensive Lab Animal Monitoring System (CLAMS, Columbus Instruments) cages were used to measure individual consumption rates of oxygen (VO2) and production rates of carbon dioxide (VCO2). The ratio of VCO2/VO2 is the Respiratory Exchange Ratio (RER). The RER was used to estimate the relative proportions of fat and carbohydrate utilized by each mouse provided the same diet of ad libitum Teklad 8604 mouse chow. The RER was then applied to the volume of gases exchanged to calculate energy expenditure in calories. In addition to gas measurements, feeding, drinking and total locomotor activity were also simultaneously measured. All of these measurements were made every 13 minutes for 48 hours starting after a 12-hour acclimatization period. Results were analyzed for each 12-hour interval of active (dark) and inactive/sleep (light) phases. Weights were measured prior to, and on completion of the experiment. Experimental data were exported from Oxymax (Windows) to Microsoft Excel and analyzed in GraphPad Prism.

Synaptosome Isolation

Animals were sacrificed by cervical dislocation to prevent artifactual inhibition of mitochondrial function by all the known inhaled and injectable anesthetic agents. The brain was collected within 1 minute of sacrifice in 5 ml of ice cold BIOPS (K-MES 50 mM pH 7.1, Taurine 20 mM, Imidazole 20 mM, ATP 5.8 mM, MgCl2 6.6 mM, Na2-Phosphocreatine 15 mM, DTT 0.5 mM K2-EGTA 10 mM, CaCO3 2.8 mM; adjusted to pH 7.1). The wet weight was recorded to the nearest 0.1 mg. The right cerebrum from two animals in the same treatment group were typically pooled and processed together. Nine volumes of BBG (0.32 M Sucrose, 1 mM K2-EDTA, 10 mM Tris pH 7.4, 10 mM glucose) were added and the brain was homogenized in a cold Glass-Glass Dounce (Kontes) homogenizer with 7–10 strokes. The homogenate was centrifuged at 3100 g × 3 min at 4°C in a fixed angle SS34 rotor. The supernatant (S1) was collected and the

Figure 2. Relative Hypothermia Was Corrected, and Aerobic Metabolism was Increased by Antipurinergic Therapy. (A) Relative Hypothermia in the MIA Model was Corrected by Antipurinergic Therapy. (Linear mixed effects model analysis; F(1,47) = 25.3; n = 9–16 males per group; ages 8–16 weeks; p < 0.001) (B) Correction of the Relative Hypothermia Was Lost After Discontinuing Antipurinergic Therapy. Weekly injections of suramin were discontinued in females at 18 weeks of age (PIC-SUR group; orange line, inverted triangles). By 22 weeks, hypothermia in the MIA animals returned to the untreated level approximately 0.5° below normal. (F(1,39) = 43.7; n = 9–16 females per group; p < 0.001). (C) Relative Hypothermia is a Long-term Feature of the Poly(IC) MIA Model. Hypothermia persisted for at least 8 months of age (linear mixed effects model analysis F(1,19) = 11.4; n = 9–12 females per group; p < 0.001). (D) Aerobic Metabolism. Oxygen consumption in the MIA animals showed a trend toward being decreased in both sleep (light) and active (dark) cycles. Suramin treatment increased sleep cycle oxygen consumption by 11%; MIA = PIC-Sal VO2 = 3552+/− 47.6 ml/kg/hour; Treated MIA = PIC-Sur = 3938+/− 45.9 (one-way ANOVA F(3,44) = 8.0; n = 6 males per group; age = 14 weeks; p = 0.0002). Antipurinergic therapy had no significant effect on oxygen consumption in the control animals; Saline-treated Controls = Sal-Sal VO2 = 3652+/− 72.8; Treated Controls = Sal-Sur = 3821+/− 71.5 (n = 6 males per group; p = 0.11). Values are expressed as mean +/- SEM.

doi:10.1371/journal.pone.0057380.g002
pellet (P1) was homogenized again in 5 volumes of BB. The homogenate was centrifuged at 1000 × g for 3 min. The supernatant (S2) was pooled with S1 and centrifuged at 16,000 × g for 10 min. The resulting pellet was resuspended in 4 ml of 15% Percoll in BB (0.32 M Sucrose, 1 mM K2-EDTA, 10 mM Tris pH 7.4). This suspension was carefully layered on a step gradient of 25% and 40% Percoll in BB (3.5 ml/each). The step gradient was centrifuged at 31,000 × g for 1 hour. Pellets were fixed in 3% glutaraldehyde with 1% OsO4 in 0.1 M cacodylate buffer, and after a brief wash, post fixed in 1% osmium tetroxide and subsequently dehydrated in graded ethanol series, treated in propylene oxide and embedded in EMBed 012/Araldite (Electron Microscopy Sciences, Hatfield PA). Thick sections (2 μm) were cut, mounted on glass slides and stained in toluidine blue for general assessment in the light microscope. Subsequently, 70 nm thin sections along the centrifugal gradient (from top to bottom of the pellet to assess for sedimentational sorting) were mounted on copper slot grids coated with parlodion and stained with uranyl acetate and lead citrate for examination at 80 kV on a Philips CM100 electron microscope (FEI, Hillsbrough OR). Images in tiff format were documented using a Megaview III CCD camera (Olympus Soft Imaging Solutions, Lakewood CO).

Western Blot Analysis

Ten μg of cerebral synaptosomal, or 2 μg of isolated mitochondrial protein was loaded in SDS-polyacrylamide gels (Bis-Tris Gels) and transferred to PVDF membranes. Blots were probed with primary antibodies overnight in cold room using anti-P2Y2 (#APR-010) and anti-P2X7 (#APR-004) antibodies from Alomone Labs (Jerusalem, Israel), anti-ERK1/2 (#4695), anti-phospho-Erk1/2 (Thr202/Tyr204) (#3778), anti-CAMKII (pan) (#4366), anti-phospho-CalMII-Thr286 (#3361), anti-PSD95 (#3450) and anti-FMRP (#4317) antibodies from Cell Signaling (Danvers, MA, U.S.A.). Mitochondrial total OXPHOS antibody cocktail (#MS604) antibodies were purchased from MitoSciences (Eugene, Oregon, U.S.A.), anti-Citrate Synthetase (CS) (#ab96600) and anti-Nicotinic Acetylcholine Receptor α7 subunit (nAChRα7) (#ab23832) antibodies were purchased from Abcam (Cambridge, MA). After washing, the membranes were blotted with 1:5000 diluted second antibodies in 5% milk/PBST for 1 hour at room temperature (goat anti-rabbit (#31460) and anti-mouse (#31430) second antibodies from Pierce (Rockford, IL USA). The proteins of interest were visualized by ECL reagent (Pierce, Cat#32109) or Pierce SuperSignalTM West Femto Maximum Sensitivity Substrate (Cat #PI-34095) and the immunoblots were exposed to X-Omat Blue films (Kodak) and scanned (Epson Perfection 2450 scanner). Bands were quantified using ImageJ 1.43u software.

Respiratory Chain Enzymology

The enzymatic activity of mitochondrial complex I was measured as NADH:CoQ1 oxidoreductase activity by the method in 0.1M cacodylate buffer, and after a brief wash, post fixed in 1% osmium tetroxide and subsequently dehydrated in graded ethanol series, treated in propylene oxide and embedded in EMBed 012/Araldite (Electron Microscopy Sciences, Hatfield PA). Thick sections (2 μm) were cut, mounted on glass slides and stained in toluidine blue for general assessment in the light microscope. Subsequently, 70 nm thin sections along the centrifugal gradient (from top to bottom of the pellet to assess for sedimentational sorting) were mounted on copper slot grids coated with parlodion and stained with uranyl acetate and lead citrate for examination at 80 kV on a Philips CM100 electron microscope (FEI, Hillsbrough OR). Images in tiff format were documented using a Megaview III CCD camera (Olympus Soft Imaging Solutions, Lakewood CO).
of Hatefi [38]. Complex II was measured as succinate:CoQ oxidoreductase activity by the method of Barrientos [39]. Complex II/III was measured as succinate: cytochrome c reductase activity by the method of Stumpf and Parks [40]. Complex III was measured as decyl-CoQ:cytochrome c reductase activity by the method of Barrientos [39] and expressed as a first order rate constant. Complex IV was measured as cytochrome c oxidase activity by the method of Wharton and Tzagoloff [41] and expressed as an apparent first order rate constant. Citrate synthase activity was used as a marker of mitochondrial mass and was measured by the method of Shepherd and Garland [42]. Rates were expressed as the ratio of respiratory chain enzyme activity to citrate synthase activity.

Figure 4. Cerebral Synaptosomal Ultrastructural Abnormalities Were Corrected by Antipurinergic Therapy.
(A) Control (Sal-Sal) synaptosome illustrating normal post-synaptic density (PSD) morphology (arrow), and normal electron lucency of the matrix (92,000 x magnification; scale bar = 200 μm). (B) Treated controls (Sal-Sur) with an included mitochondrion ("m"); scale bar = 500 μm). (C) Untreated MIA (PIC-Sal) with an included mitochondrion ("m") and malformed, hypomorphic PSD (arrow; scale bar = 500 μm). Note the abnormal accumulation of electron-dense matrix material. (D) Treated MIA (PIC-Sur) with restoration of near-normal PSD morphology (arrow), an included mitochondrion ("m"), and reduction in abnormal accumulations of electron-dense matrix material within the synaptosomes (scale bar = 500 μm). Representative fields from n = 3–4 males per group; age = 16 weeks.

Figure 5. Cerebral Mitochondrial Respiratory Chain Subunit Mass was Unchanged in the MIA Model. Cerebral mitochondria were isolated by Percoll gradient centrifugation and quantified by Western Analysis. Each lane contains the mitochondria from 2–3 males isolated at 16-weeks of age (n = 4–5 per group).

```
Prenatal Exposure
Saline + + + - - - -
Poly(I:C) - - - + + + +
Saline - - - + + + +
Suramin + + + + - - +

Postnatal Treatment

ATP synthase subunit alpha - "CV-alpha" ~ 53kD
Complex III subunit Core 2 - "ClIII-core2" ~ 47kD
Complex IV subunit I - "CIV-I" ~ 39kD
Complex II subunit(SDHb) 30kDa - "Cl-II" ~ 30kD
Complex I subunit NDUF8 - "Cl-I" ~ 20kD
Citrate Synthase
```
Values are expressed as mean ± SEM. Numbers of animals per group are indicated numerically.

Statistical analysis

Animals were randomized into active (suramin) and mock (saline) treatment groups upon weaning. Group means and standard error of the means (SEM) are reported. Data were analyzed using one-way ANOVA with treatment group as a between subject factor. One-way ANOVAs were used to test combined drug treatment and prenatal exposure effects on oxygen consumption and CO2 production (GraphPad Prism 5.0 d). Specific post hoc comparisons between selected groups were done using Newman-Keuls method. Body temperatures were analyzed using a linear mixed effects model with time as a within subject factor. One-way ANOVAs were used to test plasma immunoglobulin concentrations and corticosterone levels. Significant differences were indicated numerically.

Results

Social Behavior

Male offspring exposed to poly(IC) in utero showed 54% reduction in social preference. This was corrected by antipurinergic therapy (Fig. 1A). Social deficits in the MIA females were milder and more variable than males in the two cohorts studied (Figure S4A). We focused on male ASD-like phenotypes in the remainder of this study. There were no effects of poly(IC) or suramin treatment on locomotor activity (data not shown).

Sensorimotor Coordination Deficits

Males also showed a 28% decrease in sensorimotor coordination as measured by latency to fall on rotarod testing. This was corrected by antipurinergic therapy (Fig. 1B). Female offspring born after the 2-dose poly(IC) protocol did not show significant rotarod abnormalities (Figure S4C).

Relative Hypothermia

Both male and female MIA animals showed relative hypothermia of about 0.5°C below the basal body temperature of controls that persisted for the life of the animals (Figs. 2A–C). The magnitude of this effect was similar in both males and females (Fig. 2A, 2B), and both cohorts (Tables S1 and S2). Normal basal body temperature was restored by antipurinergic therapy within as little as two weeks of starting therapy at 6 weeks of age in both males (Fig. 2A) and females (Fig. 2B; Tables S1 and S2). Antipurinergic therapy had no effect on the body temperature of control animals (Sal-Sur). When antipurinergic therapy was stopped at 18 weeks of age, MIA (Pic-Sur) animals reverts to their previous level of relative hypothermia (36.1°C+/−0.1°C) within 1 month, while control animals maintained normothermia (36.6°C+/−0.1°C) (Fig. 2B). Hypothermia resulting from gestational exposure to poly(IC) appears to be permanent unless treated with a purinergic antagonist. It has lasted for at least 8 months—the age of our oldest animals available for study (Fig. 2C).

Aerobic Metabolism

During the 12-hour period of light (7 am to 7 pm), during which the animals sleep, antipurinergic therapy increased the oxygen consumption of the MIA animals by 11% (Fig. 2D; Table S2). Antipurinergic therapy had no significant effect on oxygen consumption in the control animals (Fig. 2D). The CO2 production rates were proportionately increased so that the respiratory exchange ratios were unchanged between groups within sleep and active cycles (Table S2). There were no differences between groups in body mass index (BMI = mass in grams ÷ anal-snout distance in cm²), locomotor activity, weight gain, food, or water consumption during either light or dark phases. These results support the notion that antipurinergic therapy selectively increased aerobic (mitochondrial) metabolism and basal body temperature in MIA animals, and that these effects were greatest during sleep.

Plasma Immunoglobulins and Corticosterone

We measured plasma immunoglobulins because these are reduced in children with autism, and increased levels correlate with decreased symptom severity [6]. Plasma immunoglobulins were not different between control and MIA animals, although our statistical power was limited by having only 3 control (Sal-Sal) animals available for blood chemistries in this experiment. On the other hand, antipurinergic therapy increased plasma immunoglobulins by about 20% (Fig. 3A) and the ratio of globulin to total protein (Figure S1).

We measured plasma corticosterone levels because high-dose suramin (up to 200 mg/kg) used in cancer clinical trials can produce adrenocortical insufficiency [13]. Plasma corticosterone levels were increased in males by about 50% by the weekly, low-dose (10–20 mg/kg ip) suramin treatment used in our study.
Basal plasma corticosterone levels were 2–3 fold higher in females (Figure S2A), but were not changed by suramin treatment (Figure S2B).

Synaptosomal Ultrastructural Abnormalities

Transmission electron microscopy of cerebral synaptosomes revealed significant differences between groups (Fig. 4). Control animals exhibited normally formed post-synaptic densities (PSDs) (arrow; Fig. 4A) and an electron-lucent synaptosomal matrix (Fig. 4A). Control animals receiving antipurinergic therapy were qualitatively similar to saline-treated controls (Fig. 4B). Striking differences were observed in the synaptosomes of the MIA animals. The large majority of synaptosomes contained an unidentified electron-dense matrix material (Fig. 4C) and the post-synaptic densities were fragile (easily disrupted during preparation), malformed, or both (arrow; Fig. 4C). Antipurinergic therapy of the MIA animals decreased the electron dense matrix material and restored more normal PSD architecture (arrow; Fig. 4D).

Cerebral Mitochondrial Respiratory Chain Biochemistry

Respiratory chain complexes I, III, and IV assemble to form a supercomplex in the brain and other tissues [44]. We purified cerebral mitochondria and found no change in the protein mass of the core subunits of complexes I, II, III, IV, and V measured by immunoblot analysis, or of the mass of the mitochondrial matrix marker citrate synthase (Fig. 5). In contrast, we found a 34% increase in the enzymatic activity of respiratory chain Complex I activity (NADH:CoQ1 oxidoreductase) (Fig. 6A) and a 53% increase in Complex IV activity (Cytochrome c Oxidase) (Fig. 6B). These mitochondrial respiratory chain hyperactivity abnormalities were corrected by antipurinergic therapy (Fig. 6A, 6B).

Synaptosomal Purinergic Receptors

Testing the hypothesis that purinergic signaling is chronically increased in the MIA model of ASD cannot be achieved by measuring tissue or plasma concentrations of nucleotides like ATP and ADP. The relevant concentration of nucleotides is confined to a thin shell, or pericellular halo, that defines the unstirred water layer (UWL) around the effector cells where receptors and their

Figure 7. Cerebral Synaptosomal Purinergic Receptors were Downregulated in the MIA Model and Restored to Normal by Antipurinergic Therapy. (A) Western Analysis of Metabotropic P2Y2 and Ionotropic P2X7 receptors. Each lane contains the synaptosomes from 2–3 males isolated at 16-weeks of age (n = 4–5 per group). (B) P2Y2 receptor expression was decreased by over 50% by gestational poly(I:C) exposure and normalized by suramin treatment (Sal-Sal = 100±/−7.3%; Sal-Sur = 62+/−4.6%; PIC-Sal = 48+/−4.7%; PIC-Sur = 84+/−4.7%; one-way ANOVA F(3,12) = 18.1; p<0.0001; n = 4–5 males per group). (C) P2X7 receptor expression was decreased over 50% by gestational poly(I:C) exposure and normalized by suramin treatment (Sal-Sal = 100+/−2.2%; Sal-Sur = 39+/−12%; PIC-Sal = 47+/−0.5%; PIC-Sur = 81+/−1.5%; one-way ANOVA F(3,12) = 23.2; p<0.0001; n = 4–5 males per group). Post-synaptic density 95 (PSD95) protein was used as a loading control. Values are expressed as mean ±/−SEM.

doi:10.1371/journal.pone.0057380.g007
ligands meet. Concentrations of metabolites in the UWL can be 1000-fold higher than in plasma or interstitial fluid [45]. Hence, we selected purinergic receptor downregulation as a surrogate for chronic hyperpurinergia. Immunoblot analysis of cerebral synaptosomes showed 50–60% reduction in the expression of P2Y2, and P2X7 receptors in the MIA animals. These abnormalities were corrected by antipurinergic therapy (Fig. 7A–C).

We also noted downregulation of purinergic receptors in the synaptosomes of non-MIA control animals treated with suramin (SalSur; Fig. 7A–C). However, downregulation by chronic inhibition of purinergic signaling by suramin treatment alone did not produce any behavioral abnormalities in these control animals. The finding that antipurinergic therapy had opposite biochemical effects in healthy and ASD-like animals, and no behavioral effects in healthy animals, emphasizes the importance of more distal steps in the purinergic signaling cascade that are not addressed in this study. P2Y6 and the P1 adenosine receptors (A1, A2A, A2B, and A3) were not expressed at levels detectable by femto-ECL in cerebral synaptosomes (data not shown).

Synaptosomal ERK1/2 and CAMKII Signaling

We next quantified ERK1 and 2 and CAMKII phosphorylation because they are known effectors of P2Y2- and P2X7-mediated purinergic signaling [22,46]. We found a 90% reduction in the phosphorylation of ERK1 (MAPK3) and 2 (MAPK1), and a 50% reduction in the phosphorylation of calcium/calmodulin-dependent protein kinase II (CAMKII) (Fig. 8, 9A, 9B). These abnormalities were corrected by antipurinergic therapy. Treatment of non-MIA control animals with suramin also resulted in hypophosphorylation of ERK1/2 (Fig. 8, 9A, 9B). This effect is opposite of the effect of suramin in MIA (PIC-Sur) animals. No behavioral changes or toxicities were observed in the control animals treated with suramin. This suggests that both the behavioral and biochemical responses to antipurinergic therapy were dependent on the physiologic state of the animal being treated.

Synaptosomal FMRP Deficits

We next tested our hypothesis that chronic innate immune activation by hyperpurinergia would result in the downregulation of the Fragile X Mental Retardation Protein (FMRP) to facilitate inflammatory cytokine expression. This occurs because FMRP inhibits the translation of many inflammatory cytokines through AU-rich elements (AREs) in the 3'-untranslated regions of their respective mRNAs [47], and must be downregulated to permit increased cytokine translation. We found that FMRP expression was decreased by nearly 50% in the MIA males and restored to normal with antipurinergic therapy (Fig. 8, 9C). Treatment of non-MIA control animals also decreased synaptosomal FMRP expression (SalSur; Fig. 8, 9C).

Synaptosomal nAchR α7 Expression

We tested the expression of the nicotinic acetylcholine receptor subunit α7 (nAchRα7) because of its role as an anti-inflammatory regulator of innate immunity [48] and its promise as a therapeutic target in schizophrenia and other disorders [49]. We found that nAchRα7 expression was not changed in untreated MIA animals (PIC-Sal; Fig. 8, 9D). However, suramin treatment of these animals increased the expression of this cholinergic receptor by over 75% (PIC-Sur; Fig. 9D).
Cerebellar Purkinje Cell Dropout

Some of the first structural brain abnormalities to be reported in autism were examples of volume loss in the brainstem and cerebellar vermis that was most significant in lobules VI and VII [12,50]. We wished to quantify cerebellar Purkinje cells in the MIA model because Purkinje cell dropout is a characteristic feature of certain primary mitochondrial disorders such as Alpers syndrome [51] and because Purkinje cell dropout in lobule VII of the cerebellar vermis is also a feature of decreased FMRP expression in Fragile X Syndrome [52] and in the MIA mouse model [53]. We found evidence of patchy Purkinje cell loss (Fig. 10A) that was marked in Lobule VII (Fig. 10B–D).

Quantitative analysis showed a 63% loss of Purkinje cells in the MIA (PIC-Sal) ASD animals by 16-weeks of age (PIC-Sal; Fig. 10D). Antipurinergic therapy, starting at 6-weeks of age, prevented Purkinje cell loss measured at 4 months of age (PIC-Sur; Fig. 10D). This is consistent with the hypothesis that Purkinje cell survival and loss are occurring dynamically throughout the first few months of life in the MIA mouse model and that suramin treatment slows the rate of Purkinje cell loss.

Discussion

The purpose of our study was to test the role of purinergic signaling abnormalities in a mouse model of ASD, and to test a new approach to treatment that targeted these abnormalities. We did not start treatment until 6-weeks of age, near the onset of reproductive maturity in the mouse, because we wished to test the hypothesis that many of the autism-like features of the MIA model were treatable after they appear, and are not fixed. No animal model is a perfect surrogate for human autism. However, the maternal immune activation (MIA) model, using poly(IC) exposure to simulate a viral infection during pregnancy, has been used extensively over the past decade to study the detailed neurodevelopmental abnormalities associated with both ASD [30] and schizophrenia [31]. Maternal fever in humans is a known risk factor for ASD [54]. This mouse model can be adjusted in severity and character according to the dose of poly(IC) used, and the timing of exposure during pregnancy. In this report we used either one or two gestational exposures to poly(IC). The one-exposure paradigm of poly(IC) given on E12.5 produced biochemical and metabolic abnormalities, but weaker behavioral and sensorimotor coordination abnormalities. The two-exposure paradigm on E12.5 and E17.5 magnified these effects and permitted more in-depth...
analysis of the ASD-like features of the MIA model. We found that all the abnormalities that were produced by poly(IC) were corrected by treatment with suramin (Table 1).

Perhaps our most striking observation was the preservation of cerebellar Purkinje cells in lobule VII with antipurinergic therapy (Fig. 10). It has been shown that Purkinje cell loss is a consistent feature of the MIA mouse model of autism [53]. This is especially prominent in lobules VI and VII of the cerebellar vermis [53], and represents a strong point of shared biology between human ASD and the MIA model. One of the first structural brain abnormalities found in children with ASD was hypoplasia of the cerebellar vermis that preferentially affected lobules VI and VII [12]. This has also been documented in adults with Fragile X Syndrome [52]. Cerebellar Purkinje cells are large, fast-spiking (ca. 50 Hz), GABAergic, inhibitory neurons that are particularly sensitive to bioenergetic supply and demand problems, and to toxic exposures [55]. Our finding of preserved cerebellar Purkinje cell numbers at 16 weeks of age in the MIA model with antipurinergic therapy supports the notion that the rate of postnatal Purkinje cell loss is dynamic and can be regulated by environmental factors. In the

Like human autism spectrum disorders, the MIA mouse model of ASD has both core behavioral abnormalities, and multisystem comorbidities that emerge as a consequence of underlying metabolic disturbances. Our results support the paradigm that all of the observed metabolic disturbances in this model are a manifestation of the conserved cell danger response (CDR). The CDR therefore lies at or near the root cause of the neurodevelopmental and biochemical abnormalities that characterize the ASD-like features in this model. Extracellular ATP is a mitokine and well-known danger signal [19] that we hypothesized initiates and sustains the cellular danger response in autism spectrum disorders. In related studies we found that direct systemic injection of nucleotides like ATP and ADP caused rapid hypothermia by decreasing mitochondrial oxygen consumption and tissue oxygen demand (VO2, data not shown). Hypothermia from systemic nucleotide injection has been studied in the fields of torpor and hibernation physiology [56]. We found that a convenient marker of the persistent cellular danger response in the poly(IC) model is relative hypothermia of about 0.5°C. Hypothermia was associated.

Figure 10. Purkinje Cell Dropout Was Prevented by Antipurinergic Therapy. (A) Mosaic reconstruction of a representative parasagittal section of the cerebellar vermis in an untreated MIA animal (PIC-Sal). Sections were stained for calbindin (green) and neuN (red). Purkinje cells are the bright, large neurons located at the margins of the molecular (green) and granular (red) layers of the cerebellum. Lobules III though X are indicated. MIA animals at 16 weeks of age, showed patchy loss of Purkinje cells that was most striking in lobules VI and VII. (B) Higher magnification of lobule VII in a control (Sal-Sal) animal illustrating normal Purkinje cell numbers. (C) Higher magnification of lobule VII in MIA illustrating nearly complete Purkinje cell dropout, with scattered cells at the boundary between lobules VII and VIII in an animal exposed to poly(IC) during gestation. (D) Quantitation of Lobule VII Purkinje Cells. Animals exposed to poly(IC) during gestation had a 63% reduction in Purkinje cell numbers. This was prevented by suramin treatment (10–20 mg/kg ip qWeek) started at 6 weeks of age (Sal-Sal = 16.0+/−1.8 cells/mm; Sal-Sur = 19.6+/−2.5; PIC-Sal = 5.8+/−1.6, PIC-Sur = 20.4+/−5.4; one-way ANOVA F(3, 13) = 5.3; p = 0.013; Newman-Keuls post hoc test; n = 4–5 males per group; age = 16 weeks). Values are expressed as mean ±/− SEM.

doi:10.1371/journal.pone.0057380.g010
with an increase in the maximal enzymatic rates, but not the mass, of brain mitochondrial respiratory chain complexes I and IV. Treatment with suramin decreased brain mitochondrial activity to normal, increased the whole body oxygen consumption (metabolic rate, VO\textsubscript{2}) in the MIA animals, and increased the body temperature to normal (Fig. 2). The combination of higher mitochondrial electron transport activities measured \textit{in vitro} and decreased basal oxygen consumption measured \textit{in vivo} implies a novel increase in mitochondrial coupling efficiency and increased reserve capacity in ASD that is similar to that seen with exercise training [57]. We did not further investigate this phenomenon in this study.

Purinergic P2Y2 receptors and their phosphorylated effectors, ERK1/2 and CAMKKII, are downregulated by chronic nucleotide stimulation in a process that leads to desensitization [58]. Our finding of downregulation of these purinergic receptors and their effectors is strong evidence for chronically elevated purinergic signaling in the poly(IC) model. Together, these findings are consistent with the notion that hyperpurinergia is a causal factor that initiates and maintains the cellular danger response in the MIA model of ASD. Suramin treatment corrected both the hyperpurinergia and the multisystem abnormalities in this model (Table 1).

We quantified the expression of the Fragile X protein (FMRP) in cerebral synaptosomes because deficiency is a cause of autism spectrum disorders, and normal expression inhibits the translation of several cytokines induced by innate immune activation [47]. Since innate immunity is persistently activated in the MIA model, we expected to find FMRP to be downregulated. We found that synaptosomal FMRP was decreased by about 50% in the MIA model and that antipurinergic therapy restored normal levels (Fig. 9C). This supports the notion that FMRP is downregulated as part of the multi-system abnormalities found in the MIA model even though the animals are not genetically deficient in the Fragile X (FMR1) gene. These observations are consistent with the hypothesis that FMRP down-regulation is part of the generalized cellular danger response produced by hyperpurinergia in this model of autism spectrum disorders.

Suramin treatment strongly increased the expression of the nicotinic acetylcholine receptor subunit \(\alpha7\) (nAChR\(\alpha7\)) in cerebral synaptosomes of MIA animals, but had no effect on control animals (PIC-Sur vs Sal-Sur; Figs. 8 and 9D). Since nAChR\(\alpha7\) expression was not diminished in sham-treated MIA animals, we concluded that a structural decrease in is not a core feature of pathogenesis in this model. However, since expression was increased nearly 100% by antipurinergic therapy, it appears that increased cholinergic signaling through the nAChR\(\alpha7\) receptor may be therapeutic in the MIA model of autism spectrum disorders. Cholinergic signaling through these receptors is a well-established antiinflammatory regulator of innate immunity in both the CNS [48] and periphery [59], and is dysregulated in human autism [60]. Antipurinergic therapy appears to provide a novel means for upregulating the expression of this receptor pharmacologically in disorders associated with innate immune dysregulation and inflammation.

Conclusions

Antipurinergic therapy with suramin corrected all of the core behavioral abnormalities and multisystem comorbidities that we observed in the MIA mouse model of autism spectrum disorders. The weight of the evidence from our study supports the notion that the efficacy of suramin springs from its antipurinergic properties, but additional studies will be required to prove this point. This study did not test the generality of purinergic signaling abnormalities in other animal models or in human ASD. Although our results are encouraging, we urge caution before extending our results to humans. Long-term therapy with suramin in children with autism is not an FDA-approved usage, and is not recommended because of potentially toxic side effects that can occur with prolonged treatment [61]. However, antipurinergic therapy in general offers a fresh new direction for research into the pathogenesis, and new drug development for the treatment of human autism and related spectrum disorders.

See Supporting Information for additional Tables and Figures.

Supporting Information

Figure S1 Plasma immunoglobulin to total protein ratios were increased by suramin treatment in males (Sal-Sal = 0.34+/−0.016; Sal-Sur = 0.40+/−0.01; PIC-Sal = 0.31+/−0.008; PIC-Sur = 0.38+/−0.01; one-way ANOVA F(2,16) = 21.9; p<0.001 Newman-Keuls post hoc test; n = 3–10 males per group). Values are expressed as mean +/- SEM. (TIF)

Figure S2 Plasma Corticosterone. (A) Basal plasma corticosterone levels were higher in females than males (Sal-Sal\textsubscript{females} = 73+/−23 ng/ml; Sal-Sal\textsubscript{males} = 245+/−29 ng/ml; two-way ANOVA F(1,1,1,34) = 40.21; n = 7–12 males or females per group; p<0.001). (B) Corticosterone was unchanged in females by either poly(IC) exposure or suramin treatment (two-way ANOVA F(1,37) = 0.11, interaction), 0.16 (suramin treatment), and 0.48 (poly(IC) exposure); p = 0.74; n = 7–11 females per group). Values are expressed as mean +/- SEM. (TIF)

Figure S3 Comparison of Social Preference Methods. (A) Hand-Scored Social Preference was measured by a blinded human observer. Hand-scoring was more specific than machine (Ethovision \(\S\)) scoring because actual social interactions of nose-to-nose and nose-to-tail encounters can be distinguished from non-social, center-of-mass proximity to both stranger mouse and inanimate cup. Results are in time spent with stranger mouse vs. inanimate cup from 0–5 minutes. Analyzed by 2-Way ANOVA with Bonferroni pair-wise post testing (p<0.05; ***p<0.001; ****p<0.0001). Treatment with suramin had little effect on normal behavior (Sal-Sal vs Sal-Sur), but a strong effect in improving social behavior in the MIA group (PIC-Sal vs. PIC-Sur). Zone x treatment interaction F(3,43) = 3.72; p<0.05; n = 9–15 males per group; age = 10-weeks. (B) Ethovision-Scored Zone Time. These results are in general agreement with the hand-scored results. However, the apparent variations are greater, limiting the statistical power of the machine-scored results. Zone x treatment interaction F(3,43) = 1.96; p = 0.13; N = 9–13 males per group; age = 10 weeks. (TIF)

Figure S4 Females in the Poly(IC) MIA Model Showed Fewer and Milder Behavioral Symptoms than Males. (A) Social Preference. Females were less social and more variable in their behavior than age-matched males. The greater behavioral variability decreased statistical power in females, although the trends were similar to males, N = 9–16 males and 9–12 females per group; age = 10 weeks. (B) Rotarod Latency to Fall was decreased in Poly(IC) Males. N = 9–16 males per group; age = 11 weeks. (C) Rotarod Latency to Fall was Unchanged in Poly(IC) Females. N = 9–12 females per group; age = 11 weeks. Analysis was by 1-way ANOVA with Tukey post testing. (TIF)
Table S1 Cohort 1 Basal Body Temperature at 16 weeks was Decreased in the MIA Model and Restored to Normal by Antipurinergic Therapy. (TIF)

Table S2 Cohort 2 Basal Body Temperature from 8 to 16 weeks was Decreased in the MIA Model and Restored to Normal by Antipurinergic Therapy. (TIF)

Table S3 Circadian Analysis of Basal Metabolic Rates, Motor Activity, and Feeding. (TIF)

References

Author Contributions

Conceived and designed the experiments: RKN JCN LLD SBP. Performed the experiments: RKN SBP ZZ LW TN JCN TPL MR QT. Analyzed the data: RKN SBP ZZ LW TN JCN TPL MR QT. Contributed reagents/materials/analysis tools: RKN SBP. Wrote the paper: RKN.
SOM Table 1. Cohort 1 Basal Body Temperature at 16 weeks was Decreased in the MIA Model and Restored to Normal by Antipurinergic Therapy.

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature ± SEM</th>
<th>95% CI</th>
<th>Mean Temperature difference from control (°C)</th>
<th>One-way ANOVA & Neuman-Keuls post-hoc</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALSAL (n=9)</td>
<td>37.3 ± 0.1</td>
<td>37.2 - 37.5</td>
<td>Reference</td>
<td>Overall ANOVA</td>
<td>(p<0.05)</td>
</tr>
<tr>
<td>SALSUR (n=10)</td>
<td>37.2 ± 0.1</td>
<td>36.9 - 37.5</td>
<td>-0.1</td>
<td>SALSAL vs SALSUR</td>
<td>ns</td>
</tr>
<tr>
<td>PICSAL (n=9)</td>
<td>36.9 ± 0.1</td>
<td>36.6 - 37.2</td>
<td>-0.4</td>
<td>SALSAL vs PICSAL</td>
<td>(p<0.05)</td>
</tr>
<tr>
<td>PICSUR (n=8)</td>
<td>37.2 ± 0.1</td>
<td>37.0 - 37.5</td>
<td>-0.1</td>
<td>SALSAL vs. PICSUR</td>
<td>ns</td>
</tr>
</tbody>
</table>

Females					
SALSAL (n=10)	37.8 ± 0.1	37.7 - 38.0	Reference	Overall ANOVA	\(p<0.005\)
SALSUR (n=9)	37.9 ± 0.1	37.8 - 38.1	+0.1	SALSAL vs SALSUR	ns
PICSAL (n=10)	37.4 ± 0.1	37.1 - 37.7	-0.4	SALSAL vs PICSAL	\(p<0.01\)
PICSUR (n=10)	37.7 ± 0.1	37.5 - 37.9	-0.1	SALSAL vs PICSUR	ns
SOM Table 2. Cohort 2 Basal Body Temperature from 8 to 16 weeks was Decreased in the MIA Model and Restored to Normal by Antipurinergic Therapy.

<table>
<thead>
<tr>
<th>Males</th>
<th>Mean Temperature ± SEM</th>
<th>95% CI</th>
<th>Mean Temperature difference from control (°C)</th>
<th>df</th>
<th>Linear Mixed Models, p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALSAL (n=9)</td>
<td>36.3 ± 0.1</td>
<td>36.2 - 36.4</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>SALSUR (n=10)</td>
<td>36.2 ± 0.1</td>
<td>36.2 - 36.4</td>
<td>-0.1</td>
<td>301.6</td>
<td>p=0.71, ns</td>
</tr>
<tr>
<td>PICSAL (n=16)</td>
<td>35.8 ± 0.1</td>
<td>35.8 - 35.9</td>
<td>-0.5</td>
<td>301.6</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>PICSUR (n=15)</td>
<td>36.3 ± 0.1</td>
<td>36.2 - 36.4</td>
<td>0</td>
<td>301.6</td>
<td>p=0.88, ns</td>
</tr>
</tbody>
</table>

Poly IC exposure and Suramin treatment interaction F(1,47)=25.3, p<0.001

<table>
<thead>
<tr>
<th>Females</th>
<th>Mean Temperature ± SEM</th>
<th>95% CI</th>
<th>Mean Temperature difference from control (°C)</th>
<th>df</th>
<th>Linear Mixed Models, p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALSAL (n=12)</td>
<td>36.7 ± 0.1</td>
<td>36.6 - 36.8</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>SALSUR (n=12)</td>
<td>36.6 ± 0.1</td>
<td>36.5 - 36.7</td>
<td>-0.1</td>
<td>348.9</td>
<td>p=0.61, ns</td>
</tr>
<tr>
<td>PICSAL (n=9)</td>
<td>36.1 ± 0.1</td>
<td>36.0 - 36.2</td>
<td>-0.6</td>
<td>348.9</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>PICSUR (n=10)</td>
<td>36.6 ± 0.1</td>
<td>36.5 - 36.7</td>
<td>-0.1</td>
<td>348.9</td>
<td>p=0.56, ns</td>
</tr>
</tbody>
</table>

Poly IC exposure and Suramin treatment interaction F(1,39)=43.7, p<0.001
SOM Table 3. Circadian Analysis of Basal Metabolic Rates, Motor Activity, and Feeding.

<table>
<thead>
<tr>
<th></th>
<th>LIGHT PERIODS (Mean ± SEM)</th>
<th>DARK PERIODS (Mean ± SEM)</th>
<th>One-way ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SALSAL</td>
<td>SALSUR</td>
<td>PICSAL</td>
</tr>
<tr>
<td>BMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO₂ (ml/kg/hour)</td>
<td>3652 ± 72.8</td>
<td>3821 ± 71.5</td>
<td>3552 ± 47.6</td>
</tr>
<tr>
<td>VCO₂ (ml/kg/hour)</td>
<td>3174 ± 62.7</td>
<td>3277 ± 61.4</td>
<td>3104 ± 56.1</td>
</tr>
<tr>
<td>VCO₂/VO₂</td>
<td>0.87 ± 0.007</td>
<td>0.85 ± 0.01</td>
<td>0.87 ± 0.008</td>
</tr>
<tr>
<td>Activity (Counts)</td>
<td>368.9 ± 28.7</td>
<td>438.4 ± 58.8</td>
<td>382.1 ± 58.9</td>
</tr>
<tr>
<td>VO₂/Activity</td>
<td>20.35 ± 1.16</td>
<td>18.91 ± 2.29</td>
<td>20.63 ± 2.70</td>
</tr>
<tr>
<td>Feed (Kcal)</td>
<td>363.4 ± 18.7</td>
<td>357.6 ± 16.9</td>
<td>359.3 ± 18.4</td>
</tr>
<tr>
<td>Feed (calories)/ Activity (counts)</td>
<td>0.46 ± 0.03</td>
<td>0.36 ± 0.06</td>
<td>0.43 ± 0.06</td>
</tr>
</tbody>
</table>
A

p < 0.001

Plasma Corticosterone (ng/ml)

Males

Females

B

ns, p = 0.74

Plasma Corticosterone (ng/ml)

Saline

Poly(IC)

Saline

Suramin
Autism spectrum disorders (ASDs) now affect 1–2% of the children born in the United States. Hundreds of genetic, metabolic and environmental factors are known to increase the risk of ASD. Similar factors are known to influence the risk of schizophrenia and bipolar disorder; however, a unifying mechanistic explanation has remained elusive. Here we used the maternal immune activation (MIA) mouse model of neurodevelopmental and neuropsychiatric disorders to study the effects of a single dose of the antipurinergic drug suramin on the behavior and metabolism of adult animals. We found that disturbances in social behavior, novelty preference and metabolism are not permanent but are treatable with antipurinergic therapy (APT) in this model of ASD and schizophrenia. A single dose of suramin (20 mg kg\(^{-1}\) intraperitoneally (i.p.)) given to 6-month-old adults restored normal social behavior, novelty preference and metabolism. Comprehensive metabolomic analysis identified purine metabolism as the key regulatory pathway. Correction of purine metabolism normalized 17 of 18 metabolic pathways that were disturbed in the MIA model. Two days after treatment, the suramin concentration in the plasma and brainstem was 7.64 \(\mu\)mol \(\mu\)l\(^{-1}\) (±0.50) and 5.15 \(\mu\)mol \(\text{mg}^{-1}\) (±0.49), respectively. These data show good uptake of suramin into the central nervous system at the level of the brainstem. Most of the improvements associated with APT were lost after 5 weeks of drug washout, consistent with the 1-week plasma half-life of suramin in mice. Our results show that purine metabolism is a master regulator of behavior and metabolism in the MIA model, and that single-dose APT with suramin acutely reverses these abnormalities, even in adults.

Translational Psychiatry (2014) 4, eoo; doi:10.1038/tp.2014.33; published online xx xxx 2014

INTRODUCTION

Genetic,\(^{1–3}\) environmental\(^{4,5}\) and metabolic\(^{6}\) factors can contribute to the risk of autism to different extents in each affected child. Despite this etiologic heterogeneity, and the well-known clinical variations that make each child unique, clinical studies suggest that a common denominator may underlie the shared behavioral and cognitive features that define autism spectrum disorders (ASDs) as a group. For example, in a prospective study conducted by the Zimmerman group at the Kennedy Krieger Institute in 2007, 83% of children with autism spectrum disorders were found to improve transiently in association with fever.\(^{7}\) Improvements were lost with the resolution of the fever. This study showed that, despite the many different causes of ASD, the symptoms were not permanent and could be improved in a substantial fraction of children.

Transient improvements with fever have also been found in patients with certain forms of post-infection brain syndromes, movement disorders, dementia and schizophrenia in the early 1900s, although those early studies were made complicated by the use of live malarial parasites to produce the fevers.\(^{8,9}\) In contrast to these beneficial effects, when the exposure to serious infection happens before the onset of disease—during early development, and particularly during pregnancy—the metabolic changes associated with significant fever or infection are known to increase the risk of neurodevelopmental disorders in the offspring. These disorders include schizophrenia,\(^{10}\) ASDs,\(^{11}\) attention deficit/hyperactivity disorder,\(^{12}\) bipolar disorder,\(^{13}\) epilepsy\(^{14}\) and cerebral palsy.\(^{15}\) The nature and developmental timing of the exposure are important. Metabolism and mitochondrial function change adaptively during and after infection, and are well-known regulators of neurotransmission\(^{16}\) and synaptic plasticity.\(^{17}\) Collectively, these studies suggest that, despite many different causes, the symptoms of several neurodevelopmental disorders such as ASD, schizophrenia and bipolar disorder may have a metabolic basis and be acutely responsive to treatment using the right metabolic intervention.

The maternal immune activation (MIA) mouse model of neurodevelopmental disorders produces symptoms that are biologically similar to those of ASD\(^{18}\) and schizophrenia.\(^{19}\) Pregnant females that are exposed to a simulated viral infection by injection of the double-stranded RNA poly(inosine:cytosine) produce offspring with features of ASD\(^{20}\) and schizophrenia.\(^{21}\) Exposure to poly(I:C) activates an evolutionarily conserved metabolic response to a threat called the “cell danger response” (CDR).\(^{22}\) Pathological persistence of the CDR, beyond the physical presence of the threat, has been observed in a variety of chronic disorders including ASDs.\(^{22}\) Purinergic signaling has been hypothesized to be a key regulator of the CDR;\(^{22}\) however, this has not yet been proven. In support of this hypothesis, we recently showed that antipurinergic therapy (APT) in the MIA mouse model corrected all of the behavioral, molecular and neuropathological abnormalities when weekly treatment with the antipurinergic drug suramin was...
begun at 1.5 months of age, near the age of reproductive maturity for mice. Significant reductions in mitochondrial oxygen consumption and body temperature were also found. However, comprehensive metabolomic analysis was not reported in that study.

In the present study, we tested the hypothesis that the behavioral manifestations of the MIA model are a consequence of pathological persistence of the evolutionarily conserved CDR, and that the CDR is maintained by dysregulated purine metabolism and secondary abnormalities in purinergic signaling. We found that a single dose of the antipurinergic drug suramin given to adult animals about 6 months of age (21–27 weeks) produced the concerted correction of over 90% of the metabolic pathway disturbances, and all of the behavioral abnormalities that we tested in the MIA model. Six-month-old mice are the human biological age equivalents of about 30 years (see Materials and methods). After washout of the drug, these improvements were lost and the former abnormalities returned. These data show that purine metabolism and purinergic signaling represent a novel neurochemical switch that regulates both behavior and metabolism in the MIA model of neurodevelopmental disorders such as ASD and schizophrenia.

MATERIALS AND METHODS

Animals and husbandry

All studies were conducted at the University of California, San Diego (UCSD) in facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) under the UCSD Institutional Animal Care and Use Committee-approved animal subjects protocols, and followed the National Institutes of Health Guidelines for the use of animals in research. Six- to eight-week-old C57BL/6J (strain no. 000064) mice were obtained from Jackson Laboratories (Bar Harbor, ME, USA), given food and water *ad libitum*, identified by ear tags, and used to produce the timed matings. Animals were housed in a temperature- and humidity-controlled vivarium with a 12-h light–dark cycle (lights on at 0700 hours). Nulliparous dams were mated at 9–10 weeks of age. The sires were also 9–10 weeks of age. The human biological age equivalent for the C57BL/6J strain of laboratory mouse (*Mus musculus*) can be estimated from the following equation: 12 years for the first month, 6 years for the second month, 3 years for months 3–6 and 2.5 years for each month thereafter. Therefore, a 6-month-old mouse would be the biological equivalent of 30 years old (= 12+6+3 × 4) on a human timeline.

Poly(IC) preparation and gestational exposure

To initiate the MIA model, pregnant dams were given two intraperitoneal injections of Poly(IC) (Potassium salt; Sigma-Aldrich, St. Louis, MO, USA, Cat no. P9582; >99% pure; <1% mononucleotide content). These were quantified by UV spectrophotometry. One unit (U) of poly(IC) was defined as 1 absorbance unit at 260 nm. Typically, 1U = 12 μg of RNA. 0.25 U/g of poly(IC) was given on E12.5 and 0.125 U/g on E17.5 as previously described. Contemporaneous control pregnancies were produced by timed matings and randomized assignment of pregnant dams to saline injection (5 μl intraperitoneally (i.p.)) on E12.5 and E17.5.

Postnatal handling and antipurinergic therapy (APT)

Offspring of timed matings were weaned at 3–4 weeks of age into cages of two to four animals. No mice were housed in isolation. Only males were evaluated in these studies. Littermates were identified by ear tags and distributed into different cages in order to minimize litter and dam effects. To avoid chance differences in groups selected for single-dose treatment, the saline and poly(IC) exposure groups were each balanced according to their social interaction scores before washout of the drug. At 2.25 months. At 5.25 or 6.5 months of age, half the animals received a single injection of either saline (5 μl i.p.) or suramin (hexosamine salt, 20 mg kg−1 i.p.; Tocris Bioscience, Bristol, UK, Cat no. 1472). Beginning 2 days later, behaviors were evaluated as described below. After completing the behavioral measurements, half of the subjects were killed after a 5-week-washout period for measurement of suramin tissue levels. For acute suramin levels, the other half was injected at 7.75 months of age and killed 2 days later for tissue level determinations.

Behavioral testing

Behavioral testing began at 2.25 months (9 weeks) of age. Mice were tested in social approach, rotarod, t-maze test of spontaneous alternation and light–dark box test. If abnormalities were found, treatment with suramin or saline was given at 5.25 months (21 weeks) or 6.5–6.75 months (26–27 weeks) and the testing was repeated. Only male animals were tested.

Social approach. Social behavior was tested as social preference as previously described with minor modifications (see Full Methods in Supplementary Information; N = 19–25, 2.25-month-old males per group before adult treatment with suramin. N = 8–13, 6.5-month-old males per group).

T-Maze. Novelty preference was tested as spontaneous alternation behavior in the T-maze by a modification of the methods of Frye and Wal5 (see Full Methods Supplementary Information; N = 19–25, 2.5-month-old males per group before adult treatment with suramin. N = 8–13, 5.25-month-old males per group).

Rotarod. Sensorimotor coordination was tested as latency to fall on the rotarod as previously described (see Full Methods Supplementary Information; N = 19–25, 2.5-month-old males per group before adult treatment with suramin. N = 8–13, 6.5-month-old males per group).

Light–dark box. Certain anxiety-related and light-avoidance behaviors were tested in the light–dark box paradigm as previously described (see Full Methods Supplementary Information; N = 19–25, 3.5-month-old males per group).

Absence of abnormal behaviors produced by suramin. This was assessed in the non-MIA control animals (indicated as the ‘Saline’ group in the pretreatment figures) that were injected with suramin as adults (indicated as the ‘Sal–Sur’ groups in the single-dose treatment figures) using each of the above behavioral paradigms.

Suramin quantitation

Tissue samples (brainstem, cerebrum and cerebellum) were ground into powder under liquid nitrogen in a pre-cooled mortar. Powdered tissue (15–50 mg) was weighed and mixed with the internal standard trypan blue to a final concentration of 5 μM (mol mg−1) and incubated at room temperature for 10 min to permit metabolite interaction with binding proteins. Nine volumes of methanol:acetonitrile:water (H2O) (43:43:16) pre-chilled to −20 °C was added to produce a final solvent ratio of 40:40:20, and the samples were deproteinated and macromolecules removed by precipitation on crushed ice for 30 min. The mixture was centrifuged at 16 000 g for 10 min at 4 °C and the supernatant was transferred to a new tube and kept at −80 °C for further LC-MS/MS (liquid chromatography-tandem mass spectrometry) analysis. For plasma, 90 μl was used, to which 10 μl of 50 μM stock of trypan blue was added to achieve an internal standard concentration of 5 μg. This was incubated at room temperature for 10 min to permit metabolite interaction with binding proteins, then extracted with 4 volumes (400 μl) of pre-chilled methanol:acetonitrile (50:50) to produce a final concentration of 40:40:20 (methanol:acetonitrile:water 1:1:1) and precipitated on ice for 10 min. Other steps were the same as for solid tissue extraction.

Suramin was analyzed on an AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer equipped with a Turbo V electrospray ionization source, Shimadzu LC-20A UHPLC system, and a PAL CTC autosampler (AB SCIEX, Framingham, MA, USA). Ten microliters of extract were injected onto an AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer equipped with a Turbo V electrospray ionization source, Shimadzu LC-20A UHPLC system, and a PAL CTC autosampler (AB SCIEX, Framingham, MA, USA). Ten microliters of extract were injected onto a Kinetix pentfluorophenyl column (150 × 2.1 mm, 2.6 μm; Phenomenex, Torrence, CA, USA) held at 30 °C for chromatographic separation. The mobile phase A was water with 20 μM ammonium acetate (NH4OAc; pH 7) and mobile phase B was methanol with 20 μM NH4OAc (pH 7). Elution was performed using the following gradient: 0 min—0% B, 15 min—100% B, 18 min—100% B, 18.1 min—0% B, 23 min—end. The flow rate was 300 μl min−1. All the samples were kept at 4 °C during analysis. Suramin and trypan blue were detected using scheduled multiple reaction monitoring (MRM) with a dwell time of 30 ms in negative mode and retention time...
window of 7.5–8.5 min for suramin and 8.4–9.4 min for trypan blue. MRM transitions for the doubly charged form of suramin were 667.0 m/z−(Q1) precursor and 382.0 m/z−(Q3) product. MRM transitions for trypan blue were 435.2 (Q1) and 185.0 (Q3). Absolute concentrations of suramin were determined for each tissue using a tissue-specific standard curve to account for matrix effects, and the peak area ratio of suramin to the internal standard trypan blue. The deuterating potential, collision energy, entrance potential and collision exit potential were −104, −9.5, −32 and −16.9, and −144.58, −7, −57.8 and −20.94 for suramin and trypan blue, respectively. The electrospray ionization source parameters were set as follows: source temperature 500 °C; curtain gas 30; ion source gas 1, 35; ion source gas 2 35; spray voltage −4500 V. Analyst 1.6.1 was used for data acquisition and analysis. N = 4–6 per tissue. Results are reported as means ± s.e.m. in absolute μl (pmol μl−1) concentration for plasma, and pmol mg−1 wet weight for tissues.

Metabolomics

Broad-spectrum analysis of 478 targeted metabolites from 44 biochemical pathways in the plasma was performed by a modification of the methods described by Bajad and Shulaev.27 Only male animals that had been behaviorally evaluated were tested. Samples were analyzed on an AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer equipped with a Turbo V electrospray ionization source, Shimadzu LC-20A HPLC system and a PAL CTC autosampler (AB SCIEX). Whole blood was collected 2 days after the last single dose of suramin (20 mg kg−1 i.p.) or saline (5 μl g−1 i.p.) from animals that were lightly anesthetized with isoflurane (Med-Vet International, Mettawa, IL, USA, Cat no. RXISO-250) in a drop jar into BD Microtainer tubes containing lithium heparin (Becton Dickinson, San Diego, CA USA, Ref no. 365971) by submandibular vein lancet.28 Plasma was separated by centrifugation at 600 × g 5 min at 20 °C within 1 h of collection. Fresh lithium-heparin plasma was transferred to labeled tubes for storage at −80 °C for analysis. Typically, 45 μl of plasma was thawed on ice and transferred to a 1.7-ml Eppendorf tube. Two and one-half (2.5) microliters of a cocktail containing 35 commercial stable isotope internal standards (Supplementary Table S3) and 2.5 μl of 310 stable isotope internal standards that were custom-synthesized in Escherichia coli and Saccharomyces cerevisiae by metabolic labeling with 13C-glucose and 13C-bicarbonate were added, mixed and incubated for 10 min at 20 °C to permit small molecules and vitamins in the internal standards to associate with plasma-binding proteins. Macromolecules (protein, DNA, RNA and so on) were precipitated by extraction with 4 volumes (200 μl) of cold (−20 °C), acetonitrile:methanol:0.5% (v/v) formic acid (LC/MS grade, Cat no. LC015-2.5 and LC230-4, Burdick & Jackson, Honeywell, Muskegon, MI, USA), vortexed vigorously and incubated on crushed ice for 10 min, and then removed with centrifugation at 16 000 × g 10 min at 4 °C. The supernatants containing intact extracted metabolites and internal standards in the resulting 40:40:20 solvent mix of acetonitrile:methanol:water were transferred to labeled cryotubes and stored at −80 °C for LC-MS/MS (liquid chromatography-tandem mass spectrometry) analysis. LC-MS/MS analysis was performed by MRM under the Analyst v1.6.1 software control in both negative and positive modes with rapid polarity switching (50 ms). Nitrogen was used for curtain gas (set to 30), collision gas (set to high) and ion source gases 1 and 2 (set to 35). The source temperature was 500 °C. Spray voltage was set to −4500 V in negative mode and to 5500 V in positive mode. The values for Q1 and Q3 mass-to-charge ratios (m/z−) of suramin, deuterating potential, entrance potential, collision energy and collision exit potential were determined and optimized for each MRM for each metabolite. Ten microliters of extract were injected with PAL CTC autosampler into a 230 mm×2.1 mm, 5-μm Luna NH2 (Phenomenex) held at 25 °C for chromatographic separation. The mobile phase was solvent A: 95% water with 23.18 mM NH4OH (Sigma, Fluka Cat no. 17837-100ML), 20 μl formic acid (Sigma, Fluka Cat no. 09676-100ML) and 5% acetonitrile (ph 9.44); solvent B: 100% acetonitrile. Separation was achieved using the following gradient: 0 min—95% B, 4 min—B, 19 min—2% B, 22 min—2% B, 23 min—95% B, 28 min—endo. The flow rate was 300 μl min−1. All the samples were kept at 4 °C before analysis. The chromatographic profiles were identical, peak areas were integrated, and the median of the peak area of stable isotope internal standards was calculated and used for the normalization of metabolite concentration across the samples and batches. N = 6, 6.5-month-old males per group. Metabolite data were log-transformed before multivariate and univariate analyses.

Data analysis

Animals were randomized into active (suramin) and mock (saline) treatment groups at ~6 months of age. Group means and s.e.m. are reported. Behavioral data involving more than two groups were analyzed by two-way analysis of variance (ANOVA) and one-way ANOVAs (GraphPad Prism 5.0d, GraphPad Software Inc., La Jolla, CA USA). Pair-wise post hoc testing was performed by the method of Tukey. Repeated measures ANOVA with Bonferroni post hoc correction was used to control for multiple hypothesis testing when t-tests were used to test social preference in two or more experimental groups. Metabolomic data were analyzed using multivariate and univariate methods.

RESULTS

Restoration of normal social behavior

Social behavior in mice can be quantified as the time spent interacting with a novel (‘stranger’) mouse compared with the total time spent interacting with either a mouse or a novel inanimate object.29 MIA animals showed social deficits from an early age (Figure 1a, Supplementary Figure S1a). Single-dose APT with suramin completely reversed these social abnormalities in 6.5-month-old adults (Figure 1b, Supplementary Figure S1b). Five weeks (5 half-lives) after suramin washout, a small residual benefit to social behavior was still detectable (Figure 1c, Supplementary Figure S1c). The residual social benefit of APT even after 5 weeks following suramin was correlated with retained metabolic benefits (see below). This phenomenon was not investigated further but may be related to the development of metabolic memory and/or somatic epigenetic DNA changes that lasted longer than the physical presence of the drug.30

Restoration of spontaneous alternation in the T-maze

Novelty preference is an innate feature of normal rodent31 and human32 behavior and a predictor of socialization and communication growth in children with ASD.34 The loss or suppression of novelty preference in children with ASD is associated with the phenomenon known as insistence on sameness.35 We estimated preference for novelty as spontaneous alternation behavior in the T-maze.36 The T-maze can also be used to estimate spatial working memory, especially when food-motivated.36 We did not use the food-motivated variation in our study. We found that MIA animals showed a deficient novelty preference as revealed by chance (near 50%) spontaneous alternation behavior (Figure 1d). These deficits were normalized after a single dose of suramin (Figure 1f), five weeks after suramin washout, no residual benefit remained (Figure 1f).

Failure to restore rotarod performance in adult animals

Previous studies have shown age-dependent, postnatal loss of cerebellar Purkinje cells in the MIA model. This can reach up to 60% of Purkinje cells lost by 4 months (16 weeks) of age.23,37 Motor coordination measured by rotarod performance is deficient in the MIA model23 (and Figure 1g) and is critically dependent on the integrity of Purkinje cell circuits in the cerebellum.29 We hypothesized that since Purkinje cells are known to be lost in MIA animals by 4 months (16 weeks) of age, that APT given later in life would have no effect. Our results confirmed this. We found that a single injection of suramin given to 6-month-old adults failed to restore normal motor coordination (Figures 1g and h). Although cerebellar Purkinje cell density was not quantified in this study, our results are consistent with the notion that once Purkinje cells are lost, their function cannot be restored by APT in adult animals.
Single-dose correction of behavioral abnormalities. (a) Social abnormalities in male MIA animals were found at the earliest ages of testing at 2.25 months of age. (Student’s t-test ****P < 0.0002; N = 19 Saline and 25 Poly(IC)). (b) A single dose of suramin given to adult MIA mice restored normal social behavior (PIC-Sur). Two-way ANOVA was first used to test for the presence of interaction between drug treatment and experimental groups. This revealed an interaction consistent with the observation that suramin benefited social behavior in the MIA animals but had no effect on normal controls (F(1,39) = 13.48; P < 0.0001; Tukey post hoc PIC-Sal versus PIC-Sur ****P < 0.0001; N = 8–13 per group). (c) After 5 weeks of suramin washout, the social behavior remained improved compared with saline-treated animals but was decreased from the first week after treatment. (F(3,40) = 10.5; Tukey post hoc PIC-Sal versus PIC-Sur *P < 0.05; N = 8–13 per group). Values are expressed as means ± s.e.m. (d) We estimated the strength of novelty preference32 as spontaneous alternation in the T-maze. MIA mice showed deficits in spontaneous alternation from the age of earliest testing at 4 months of age (Student’s t-test; ****P < 0.0001; N = 19 Saline and 25 PIC). (e) Two-way ANOVA was first used to test for the presence of interaction between drug treatment and experimental groups. This revealed an interaction consistent with the observation that suramin restored spontaneous alternation in the MIA animals but had no effect on normal controls (F(1,40) = 7.609; P = 0.0087). We then performed one-way ANOVA to test for suramin effects. A single dose of suramin (20 mg kg⁻¹ i.p.) injected 2–4 days before testing corrected the deficits in young adult animals that were 5.25 months of age. (F(3,40) = 9.46; Tukey post hoc Sal-Sal versus PIC-Sal ***P < 0.01; PIC-Sal versus PIC-Sur ***P < 0.001; N = 8–13 per group). (f) This benefit was lost after a drug washout period of 5 weeks, leaving a significant difference between control (Sal) and MIA (PIC) groups (F(3,39) = 18.05; P < 0.0001), but no remaining effect of suramin by post hoc testing. (Tukey post hoc PIC-Sal versus PIC-Sur *P < 0.05; N = 8–13 per group). Values are expressed as means ± s.e.m. (g) Motor coordination abnormalities were quantified on the rotarod as latency to fall. Performance was abnormal from the earliest age of testing at 2.5 months of age (Student’s t-test ****P < 0.0001; N = 19 Saline and 25 Poly(IC)). (h) Suramin did not improve performance after two doses (20 mg kg⁻¹ i.p.) given at 6.5 and 6.75 months of age and tested 2–4 days after the second dose. (two-way ANOVA interaction F(1,39) = 0.1227; P = 0.728 (ns); Poly(IC) effect F(1,39) = 25.06; ****P < 0.0001; treatment effect F(1,39) = 0.01; P = 0.908 (ns)). Values are expressed as means ± s.e.m.
Other behaviors

Certain features of ASD and schizophrenia were not captured by our studies of the MIA model and therefore could not be interrogated for pharmacologic response to APT. For example, we did not find any abnormalities in the MIA mouse model using our protocol when we looked for certain types of anxiety-related behavior in the light–dark box paradigm (Supplementary Figure S2). Likewise, our earlier studies showed no stereotypic repetitive movements in the C57BL/6J mouse strain either by clinical observation or by testing in the hole board exploration beam break mouse behavioral pattern monitor.23 Finally, no abnormal behaviors were produced by suramin treatment itself. This was shown by the absence of behavioral differences between control mice treated with saline (‘Sal-Sal’) and those treated with suramin (‘Sal-Sur’) in Figures 1b, e and h.

Brainstem uptake of suramin

Suramin is known not to pass the blood–brain barrier;29 however, no studies have looked at suramin concentrations in areas of the brain similar to the area postrema in the brainstem that lack a blood–brain barrier.40 After completing the behavioral studies described above, we used mass spectrometry to measure drug levels in plasma, cerebrum, cerebellum and brainstem following a 5-week period of drug washout. The plasma half-life of suramin after a single dose in mice is 1 week.41 No suramin was detected in any tissue after 5 weeks of drug washout (data not shown). We next gave an acute injection of suramin (20 mg kg\(^{-1}\) i.p.) to the remaining subjects. After 2 days, plasma suramin was 7.64 μM ± 0.50, and brainstem suramin was 5.15 pmol mg\(^{-1}\) ± 0.49 (Figure 2). No drug was detectable in the cerebrum or cerebellum (< 0.10 pmol mg\(^{-1}\) wet weight) in either control (Sal-Sur) or MIA (PIC-Sur) animals, consistent with an intact blood–brain barrier that excluded suramin from these tissues. In contrast to the cerebrum and cerebellum, the brainstem showed significant suramin uptake (Figure 2). These results are consistent with the notion that nuclei in brainstem, or their projection targets in distant sites of the brain, may mediate the dramatic behavioral effects of acute and chronic APT in this model.23

Restoration of normal purine metabolism rescues other metabolic disturbances

We analyzed the acute metabolomic effects in plasma 2 days after single-dose treatment with suramin or saline in the same animals studied behaviorally. We measured 478 metabolites from 44 pathways using mass spectrometry, analyzed the data by partial least squares discriminant analysis and visualized the results by projection in two dimensions (Figures 3a and b). This revealed sharp differences between control and MIA animals that were substantially normalized by a single treatment with suramin (Figure 3a). Figure 3b shows a similar analysis that illustrates the gradual return to disease-associated metabolism after 5 weeks of drug washout. Using hierarchical cluster analysis we found that the metabolic profiles of controls (Sal-Sal; light blue) and MIA animals that were treated with one dose of suramin (PIC-Sur; green) were more similar (major branch on the left of Figure 3c) than the metabolic profiles of saline-treated MIA animals (PIC-Sal; red) and the MIA animals tested 5 weeks after suramin washout (PIC-Sur W/O; dark blue; major branch on the right of Figure 3c). The reason that the metabolic profile had not returned completely to pretreatment conditions (to the position of the red triangles in Figure 3b) even after 5 weeks following a dose of suramin was not investigated but could be due to the development of metabolic memory and/or somatic epigenetic DNA changes that lasted longer than the physical presence of the drug.31

Figure 3d shows the top 48 significant metabolites found in the untreated MIA animals, ranked according to their impact by variable importance in projection (VIP) score. The color-coded columns on the right of the figure indicate the direction of the change. In 43 of the 48 (90%) discriminating metabolites, suramin treatment (PIC-Sur) resulted in a metabolic shift in concentration that was either intermediate (coded yellow or light green) or in the direction of and beyond that found in control animals (Sal-Sal). The biochemical pathways represented by each metabolite are indicated on the left of Figure 3d.

Metabolic pathway analysis

The most influenced biochemical pathway in the MIA mouse was purine metabolism (Table 1). Eleven (23%) of the 48 discriminant metabolites were purines. Nine (82%) of the 11 purine metabolites were increased in the untreated MIA mice, consistent with hyperpurinergia. Only ATP and allantoin, the end product of purine metabolism in mice, were decreased in the plasma. A limitation of plasma metabolomics is that it cannot measure the effective concentration of nucleotides in the pericellular halo that defines the unstirred water layer near the cell surface where receptors and ligands meet.23 The concentration of ATP in the unstirred water layer is regulated according to conditions of cell health and danger22 in the range of 1–10 μM, which is near the ECS0 of most purinergic receptors.42 This is up to 1000-fold more concentrated than the 10–20 μM levels of ATP in compartments removed from the cell surface such as the plasma.43 In the plasma we found that suramin restored 9 (82%) of the 11 purine metabolites to more normal levels, including ATP and allantoin.
Antipurinergic therapy of ASD
JC Naviaux et al

Figure 3. Metabolomic analysis. (a) APT rescues widespread metabolic abnormalities. Plasma samples were collected 2 days after a single dose of suramin (20 mg kg\(^{-1}\) i.p.) or saline (5 μl g\(^{-1}\) i.p.). This analysis shows that a single dose of suramin (PIC-Sur; green) drives the metabolism of MIA animals (PIC-Sal; red) strongly in the direction of controls (Sal-Sal; blue). Metabolomic profiles consisted of 478 metabolites from 44 biochemical pathways measured with LC-MS/MS. N = 6, 6.5-month-old males per group. (b) Metabolic memory preserves metabolic rescue by APT. This analysis shows that 5 weeks after a single dose of suramin (PIC-Sur W/O; green) the metabolism of treated animals has drifted back toward that of untreated, MIA animals (PIC-Sal; red; N = 6 males per group). (c) Hierarchical clustering of suramin-treated and suramin-washout metabotypes. This analysis illustrates the metabolic similarity of control (Sal-Sal; light blue) and MIA animals treated with one dose of suramin (PIC-Sur; green) compared with saline-treated MIA animals (PIC-Sal; red) and ASD-like animals tested 5 weeks after suramin washout (PIC-Sur W/O; dark blue). The numbers listed along the x axis are animal ID numbers. (d) Rank Order of metabolites disturbed in the MIA model. Multivariate analysis across the four treatment groups (PIC-Sal = MIA; PIC-Sur = acute suramin treatment; PIC-Sur w/o = 5 weeks post-suramin washout; Sal-Sal = Controls). Biochemical pathway assignments are listed on the left. Relative magnitudes of each metabolite disturbance are listed on the right as high (red), intermediate (yellow or light green) and low (dark green). Variable importance in projection (VIP) scores are a multivariate statistic that reflects the impact of each metabolite on the partial least squares discriminant analysis model. VIP scores above 1.5 are significant.

(Figure 3d, right PIC-Sur column, coded yellow or light green) and increased inosine and deoxyinosine to above normal.

Additional pathway analysis revealed a pattern of disturbances that was remarkably similar to metabolic disturbances that have been found in children with ASDs (Table 1). Eighteen of the 44 pathways were disturbed in the MIA model. The 44 pathways interrogated by this analysis are reported in Supplementary Table S1. After purge metabolism, the next most influenced pathway

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purine metabolism</td>
<td>48</td>
<td>0.1004</td>
<td>4.8201</td>
<td>11</td>
<td>2.3</td>
<td>28.19</td>
<td>24.3%</td>
<td>Yes (9/11)</td>
</tr>
<tr>
<td>2</td>
<td>Microbiome metabolism</td>
<td>32</td>
<td>0.0669</td>
<td>3.2134</td>
<td>6</td>
<td>1.9</td>
<td>17.53</td>
<td>15.1%</td>
<td>Yes (6/6)</td>
</tr>
<tr>
<td>3</td>
<td>Phospholipid metabolism</td>
<td>88</td>
<td>0.1841</td>
<td>8.8368</td>
<td>4</td>
<td>0.5</td>
<td>9.76</td>
<td>8.4%</td>
<td>Yes (4/4)</td>
</tr>
<tr>
<td>4</td>
<td>Bile salt metabolism</td>
<td>4</td>
<td>0.0084</td>
<td>0.4017</td>
<td>3</td>
<td>7.5</td>
<td>9.23</td>
<td>7.9%</td>
<td>No (0/3)</td>
</tr>
<tr>
<td>5</td>
<td>Sphingolipid metabolism</td>
<td>72</td>
<td>0.1506</td>
<td>7.2301</td>
<td>4</td>
<td>0.6</td>
<td>8.28</td>
<td>7.1%</td>
<td>Yes (4/4)</td>
</tr>
<tr>
<td>6</td>
<td>Cholesterol, cortisol, steroid metabolism</td>
<td>19</td>
<td>0.0397</td>
<td>1.9079</td>
<td>4</td>
<td>2.1</td>
<td>8.08</td>
<td>7.0%</td>
<td>Yes (4/4)</td>
</tr>
<tr>
<td>7</td>
<td>Glycolysis and gluconeogenesis</td>
<td>17</td>
<td>0.0356</td>
<td>1.7071</td>
<td>3</td>
<td>1.8</td>
<td>6.25</td>
<td>5.4%</td>
<td>Yes (3/3)</td>
</tr>
<tr>
<td>8</td>
<td>Oxalate, glyoxylate metabolism</td>
<td>3</td>
<td>0.0063</td>
<td>0.3013</td>
<td>2</td>
<td>6.6</td>
<td>5.02</td>
<td>4.3%</td>
<td>Yes (2/2)</td>
</tr>
<tr>
<td>9</td>
<td>Tryptophan metabolism</td>
<td>11</td>
<td>0.0230</td>
<td>1.1046</td>
<td>1</td>
<td>0.9</td>
<td>4.11</td>
<td>3.5%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>10</td>
<td>Krebs cycle</td>
<td>18</td>
<td>0.0377</td>
<td>1.8075</td>
<td>2</td>
<td>1.1</td>
<td>3.58</td>
<td>3.1%</td>
<td>Yes (2/2)</td>
</tr>
<tr>
<td>11</td>
<td>Vitamin B3 (niacin/NAD) metabolism</td>
<td>7</td>
<td>0.0146</td>
<td>0.7029</td>
<td>1</td>
<td>1.4</td>
<td>3.19</td>
<td>2.7%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>12</td>
<td>GABA, glutamate, arginine, ornithine, proline metabolism</td>
<td>6</td>
<td>0.0126</td>
<td>0.6025</td>
<td>1</td>
<td>1.7</td>
<td>2.33</td>
<td>2.0%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>13</td>
<td>Pyrimidine metabolism</td>
<td>35</td>
<td>0.0732</td>
<td>3.5146</td>
<td>1</td>
<td>0.3</td>
<td>2.24</td>
<td>1.9%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>14</td>
<td>Vitamin B2 (riboflavin) metabolism</td>
<td>4</td>
<td>0.0084</td>
<td>0.4017</td>
<td>1</td>
<td>2.5</td>
<td>1.97</td>
<td>1.7%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>15</td>
<td>Thyroxine metabolism</td>
<td>1</td>
<td>0.0021</td>
<td>0.1004</td>
<td>1</td>
<td>10.0</td>
<td>1.66</td>
<td>1.4%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>16</td>
<td>Amino-sugar and galactose metabolism</td>
<td>10</td>
<td>0.0209</td>
<td>1.0042</td>
<td>1</td>
<td>1.0</td>
<td>1.61</td>
<td>1.4%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>17</td>
<td>SAM, SAH, methionine, cysteine, glutathione metabolism</td>
<td>22</td>
<td>0.0460</td>
<td>2.2092</td>
<td>1</td>
<td>0.5</td>
<td>1.57</td>
<td>1.3%</td>
<td>Yes (1/1)</td>
</tr>
<tr>
<td>18</td>
<td>Biopterin, neopterin, molybdopterin metabolism</td>
<td>1</td>
<td>0.0021</td>
<td>0.1004</td>
<td>1</td>
<td>10.0</td>
<td>1.56</td>
<td>1.3%</td>
<td>Yes (1/1)</td>
</tr>
</tbody>
</table>

398 (0.8326 × 478) 0.8326 40 (0.8326 × 48) 48 116.16 100% 94% (17/18)

Abbreviation: VIP, variable importance in projection. Pathways were ranked by their impact measured by summed VIP (ΣVIP) scores. A total of 48 metabolites were found to discriminate treatment, control, washout and MIA groups by multivariate partial least squares discriminant analysis (PLSDA). Significant metabolites had VIP scores of ≥ 1.5. Eighteen (41%) of the 44 pathways interrogated had at least one metabolite with VIP scores ≥ 1.5. The total impact of these 48 metabolites corresponded to a summed VIP score of 116.16. The fractional impact of each pathway is quantified as the percent of the summed VIP score and displayed in the final column on the right in the table. Single dose APT with suramin not only corrected purine metabolism but also normalized 17 (94%) of 18 metabolic pathway abnormalities that defined the MIA model of neurodevelopmental disorders.
was the microbiome. Microbiome metabolites are molecules that are produced by biochemical pathways that are absent in mammalian cells but are present in bacteria that reside in the gut microbiome. Together, purine and microbiome metabolism accounted for nearly 40% (ΣVIP = 39.4%) of the impact measured by VIP scores. The two top discriminant metabolites were products of the microbiome (Figure 3d). A total of seven pathways each contributed 5% or more to the VIP pathway impact scores (Table 1). These top seven pathways were purines, microbiome metabolism, phospholipids, bile salt metabolism, sphingolipids, cholesterol, cortisol, and steroid metabolism and glycolysis. Seventy-five percent (75%) of the metabolite VIP score impact was accounted for by metabolites in these seven pathways (Table 1). Univariate statistical analysis was conducted by one-way ANOVA and pairwise group comparisons with post hoc correction (Supplementary Table S2). Forty-six (46) metabolites satisfied a false discovery rate threshold of less than 10% in this analysis. These were rank ordered by P-values. This univariate analysis identified 16 (35% of 46) metabolites (shaded yellow, Supplementary Table S3) that were also found by multivariate analysis across the four groups, and 30 (65%) additional metabolites (unshaded in Supplementary Table S2) that were discriminating only in pairwise group comparisons.

Restoration of normal purine metabolism by APT led to the concerted normalization of 17 (94%) of the 18 biochemical pathway disturbances that characterized the MIA model (Table 1; far right column). Only the bile salt pathway was not restored by suramin (Table 1, Figure 3d). The three bile salt metabolites were highest in the plasma of control animals (Figure 3d; Sal-Sal coded red in the columns on the right), lower in MIA animals (Figure 3d; PIC-Sal coded yellow) and made even lower by suramin (Figure 3d; PIC-Sur, coded dark green). Overall, we found that restoration of normal purine metabolism with APT led to the concerted improvement in both the behavioral and metabolic abnormalities in this model.

DISCUSSION

Children with inborn errors in purine and pyrimidine metabolism have long been known to have neurodevelopmental and behavioral abnormalities. However, the biochemical basis for the brain and behavioral manifestations of these classic disorders such as Lesch-Nyhan syndrome and adenosine deaminase deficiency is not yet understood. Genetic disorders of purine metabolism were some of the first single-gene disorders found to be associated with ASD behaviors. In 1969, William Nyhan described a 3-year-old boy with autistic behavior and found to be associated with ASD behaviors. In 1969, William Nyhan described a 3-year-old boy with autistic behavior and found to be associated with ASD behaviors.

Our results show that purine metabolism is a master regulatory pathway in the MIA model (Table 1, Figure 3d, Supplementary Table S1). Correction of purine metabolism with APT restored normal social behavior (Figure 1b) and novelty preference (Figure 1e). Comprehensive metabolic analysis revealed disturbances in several other metabolic pathways relevant to children with ASDs. These included disturbances in microbiome, phospholipid, cholesterol/sterol, sphingolipid, glycolytic and bile salt metabolism (Table 1). The top, non-microbiome-associated metabolite was quinolinic acid (Figure 3d), which was decreased in the MIA model. Quinolinic acid is a product of the indoleamine 2,3-dioxygenase pathway of tryptophan metabolism. Interestingly, abnormalities in purine, microbiome, phospholipid, cholesterol/sterol, sphingolipid, glycolytic and bile salt metabolism have each been reported in children with ASDs. Abnormalities in purine metabolism, phospholipid, cholesterol/sterol, sphingolipid and phospholipid metabolism have also been reported in schizophrenia. Although the detailed metabolic features of ASD and schizophrenia are different, these disorders share biochemical pathway disturbances that reveal the persistent activation of the evolutionarily conserved CDR in both ASD and schizophrenia. These data show that the metabolic disturbances in the MIA model and human ASD and schizophrenia are similar and provide strong support for the biochemical validity of this animal model.
Purinergic neurons in the area postrema are known to integrate blood-borne signals that activate the hypothalamic–pituitary–adrenal axis during stress, coordinate parasympathetic and sympathetic autonomic balance and regulate whole-body metabolism and sickness behavior during inflammation in response to the evolutionarily conserved CDR associated with ASDs and other disorders. These data provide a plausible new mechanism that could apply to many drugs that have central nervous system effects but are known not to pass the blood–brain barrier.

Although our results of single-dose correction of abnormal behaviors in an animal model of autism and schizophrenia are encouraging, there are several caveats that must be considered before extending the results to humans. First, while the MIA mouse model captures several features of ASD and schizophrenia, no animal model can fully capture the complexities of human behavior. Second, suramin is a poor drug choice for chronic use because of potentially toxic side effects that can occur with prolonged treatment. Third, human forms of ASD and schizophrenia may occur by mechanisms not captured by the MIA model. Mechanisms that do not involve the CDR may not be amenable to APT. Human clinical trials will be necessary to answer these questions.

In summary, this study identifies purinergic signaling as a novel neurochemical switch that regulates both behavior and metabolism in the MIA mouse model. Our results provide new tools for refining current concepts of pathogenesis in autism, schizophrenia and several other neurodevelopmental disorders, and create a fresh path forward for the development of newer and safer drugs. The data provide preclinical support for the hypothesis that some ASD and schizophrenia behaviors in an animal model of autism and schizophrenia are nervous system effects but are known not to pass the blood–brain barrier. 90 and regulate whole-body metabolism and sickness behavior during inflammation in response to the evolutionarily conserved CDR associated with ASDs and other disorders. These data provide a plausible new mechanism that could apply to many drugs that have central nervous system effects but are known not to pass the blood–brain barrier.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
We thank Dewleen Baker, Sophia Colamarino, Richard Haas, William Nyhan, Maya Shetreat-Klein, Jeanne Chukoskie, Jeanne Townsend, Will Alaynick, Andrea Chiba, Ben Murrell, Jim Adams and Steve Edelson for helpful discussions and comments on the manuscript. We thank Laura Dugan for providing the rotarod and comments on the manuscript. We thank two anonymous reviewers for helpful comments. This research was supported by grants from the Jane Botsford Johnson Foundation (RKN) and National Institute of Health grant MH091407 (SBP), with additional support from the UCSD Christini Foundation, the Wright Family Foundation and the It Takes Guts to Care for Autism. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

AUTHOR CONTRIBUTIONS
JCN coordinated the study, conducted the experiments, analyzed the data and wrote parts of the manuscript. MAS conducted some of the mouse behavioral studies and helped with coordination and injections. KL conducted the tissue suramin quantitations and metabolomics. LW helped with brain dissections. VBR established the T-maze task. SBP directed the behavioral studies and their analysis and contributed funding. RKN assembled the team, funded and directed the project, analyzed the data and wrote the manuscript.

REFERENCES
21 Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. *Neuropsychopharmacology 2010; 35: 2462–2478.*

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)
SUPPLEMENTARY ONLINE MATERIAL

FULL METHODS ONLINE

Social Preference

Social preference was tested using a three-chambered box similar to what has been previously described\(^1\). Briefly, a Plexiglas box (60cm L x 60cm W x 30cm H) was divided into 3 equal compartments by Plexiglas partitions containing an opening through which the mice could freely enter the 3 chambers. All testing was performed between the hours of 8 am and 1 pm. The test was conducted in two 10-minute phases. In phase I, the test mouse was allowed to explore the chambers for 10 minutes. Pilot experiments showed that mice did most of their chamber exploration and zone interaction in the first half of each block. Therefore, we report social preference as the time spent interacting socially (sniffing) in first 5 minutes of each phase. Each of the two outer chambers contained an empty, inverted stainless steel wire cup (Galaxy Cup, Spectrum Diversified Designs, Inc., Streetsboro, OH). Stranger mice were habituated to a wire cup for at least 30 minutes before use. In phase II, the test mouse was briefly removed, an unfamiliar mouse, age and sex matched, was placed under one of the wire cups and Lego blocks were placed under the other wire cup. The test mouse was then gently placed back in the arena and given an additional 10 minutes to explore. Room lighting for social behavior studies was 1-2 lux, measured using a Minolta IV F light meter. An overhead camera (Sony CCD Digital Ultra Pro Series, able to detect images down to 0.05 lux). and Ethovision v3 video tracking software (Noldus, Leesburg VA) were used to record the amount of time spent in each chamber and the number of entries into each chamber. In addition, a human observer, blinded to the treatment groups, scored time spent sniffing each wire cage, using Ethovision Observer software. Only male mice were tested. Stranger mice were used up to 4 times before new strangers were cycled in. The location (left or right) of the novel object and novel mouse alternated across subjects. To avoid chance differences in groups selected for single-dose treatment, the saline and poly(IC) exposure groups were each balanced according to their social
approach scores at 2.25 months of age prior to single-dose treatment with saline or suramin at 6.5 months. Results of social behavior testing are reported as the percent of time spent interacting with a stranger mouse (vs Lego blocks) in the first five minutes (mean +/- SEM). Social behaviors were evaluated at 2-4 days, and 5 weeks after suramin injection.

T-Maze

The T-maze apparatus is constructed of black plexiglass. The protocol is adapted from Frye and Walt. The main stem is 45 cm long, 10 cm wide, and 24 cm high. Each side arm is 35 cm long, 10 cm wide, and 24 cm high. The side arms are separated from the stem by horizontal sliding doors. A start box, 8 cm in length, is also separated by a horizontal sliding door. Testing was conducted by an examiner that was blinded to the experimental groups, under low illumination, between 8 am and 1 pm. Only male animals were tested. Each mouse was tested in a session of 11 successive trials. The mice were not habituated to the maze. For the first trial only, one goal arm was closed off, forcing the mouse to choose the only open arm. Subsequent trials were by free choice. The chosen arm, and the time it takes for the mouse to choose (latency) were recorded. There was no confinement time in the chosen arm or in the start box. We confirmed that the saline and poly(IC) exposure groups had equivalent pre-treatment T-maze scores prior to single-dose treatment with saline or suramin. The percentage of alternated choices (mean +/- SEM) is reported. Spontaneous alternation was evaluated at 2-4 days, and 5 weeks after suramin injection.

Rotarod

Training and testing were performed between the hours of 8 am and 1 pm using an accelerating rotarod protocol (Economex Rotarod, Columbus Instruments fitted with a 4 cm diameter grooved plastic (not steel) spindle) as previously described. The plastic spindle is more slippery than grooved steel and results in shorter, but highly reproducible latencies. Only
male animals were tested. Prior to testing on an accelerating rod, mice were first trained at a fixed speed of 4 rpm. Each mouse was given up to 3 consecutive trials to achieve the endpoint of maintaining balance on the rotarod for at least 30 seconds. If a mouse was unsuccessful in the first 3 attempts, it was rested for 30 minutes, and then given another 3 attempts. Using this training protocol, all of the mice successfully maintained balance for 30 seconds within 2 training sessions. The acceleration phase testing was conducted over the subsequent 2 days, with 4 trials per day. Each mouse was individually placed on the rotarod at 4 rpm, which was then accelerated from 4 to 40 rpm over 5 minutes. The inter-trial time between repeat tests was 45 minutes. Latency to fall was recorded in seconds. Observers were blinded to treatment groups. Rotarod room lighting was 20-22 lux.

Light-Dark Box
Anxiety-related and light-avoidance behaviors were tested in the light-dark box paradigm as previously described\(^5\). Briefly, the light-dark box consisted of two 18 × 20 × 18 cm chambers joined by a 6 × 6 cm door, with one side well-lit (850 lux) and the other side enclosed and darkened (≤ 5 lux). At the start of the test, mice were placed in the light compartment and activity was recorded for 10 min. Percent time in the light chamber was analyzed by Ethovision Tracking Software (Noldus, Leesburg, VA, USA).
SOM TABLES AND LEGENDS

SOM Table S1. Biochemical Pathways Interrogated by Metabolomic Analysis.

SOM Table S2. Rank Ordered Metabolites by Univariate Analysis.

SOM Table S2 Legend. Univariate analysis by 1-way ANOVA and a false discovery rate (FDR) threshold of 10% were used with pair-wise comparison and post hoc testing by Fisher’s least significant difference method to identify metabolites that could discriminate between pairs of experimental groups. Metabolites shaded yellow were also identified by multivariate analysis (Figure 3d).

SOM Table S3. Stable Isotope Internal Standards for LC-MS/MS.
SOM Figure S1. Single-Dose Correction of Behavioral Abnormalities. (a) Social abnormalities in male MIA animals were found at the earliest ages of testing at 2.25 months of age. The four groups were balanced before treatment with saline or suramin. 2-way ANOVA followed by student’s t-test with Bonferroni post-hoc correction was used to compare the time spent with mouse and cup in each experimental group. There was an interaction between prenatal exposure (Saline/Poly(IC)) and stimulus (mouse/cup); \(F(3,39) = 9.28; p < 0.0001; N = 9-13\) per group). Student’s t-test showed a social preference (mouse > cup) for the control (Saline) animals \(p < 0.0001 = ****\) and no significant preference for the MIA (Poly(IC)) animals \(p = ns\). (b) Single dose treatment of 6.5-month old MIA mice with suramin (PIC-Sur) restored normal social behavior \(p < 0.0001 = ****\). Repeated measures ANOVA was used to test for the presence of interaction between prenatal exposure, drug treatment, and stimulus (mouse/cup). There was a prenatal exposure x drug treatment x stimulus interaction \(F(1,39) = 9.34; p < 0.01\) consistent with the observation that suramin benefited social behavior in the MIA animals, but had no effect on normal controls. Student’s t-test with Bonferroni post-hoc correction was used to compare the time spent with mouse and cup in each experimental group. Saline treatment of MIA mice (PIC-Sal) had no effect; the time with mouse and cup were not significantly different \(p = ns\). \(N = 8-13\) per group. (c) After 5 weeks of suramin washout, the social behavior remained improved compared to saline-treated animals, but was decreased from the first week after treatment. Repeated measures ANOVA revealed an interaction between prenatal exposure and stimulus \(F(1,39) = 6.35; p < 0.05\) but no 3-way interaction between prenatal exposure, drug treatment, and zone. Student’s t-test with Bonferroni post-hoc correction was used to compare the time spent with mouse and cup in each experimental group. This showed persistent absence of social preference in the saline-treated MIA animals (PIC-Sal; \(p = ns\), but still some residual social benefit of suramin 5-weeks after drug washout (PIC-Sur.
mouse vs cup time; p < 0.01 = **). (N = 8-13 per group). Values are expressed as means +/- SEM.

SOM Figure S2. Light-Dark Box Behavior. MIA and control animals were given a choice between spending time in the dark or exploring in the light. The percent time spent in the dark, measured over 10 minutes, was used as an index of avoidance or anxiety. No differences were found in the MIA model using our protocol (p = 0.96 (ns); Student’s t-test; Saline = 59.2 +/- 3.8%; Poly(IC) = 58.9 +/- 3.8%). Animals were 3.5-month old C57BL/6J MIA (poly(IC)-exposed) or control (saline-exposed) males. N = 19 Saline exposed and 25 Poly(IC).

Online Supplementary References

SOM Table S1. Biochemical Pathways Interrogated by Metabolomic Analysis.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Metabolites</th>
<th>Pathway</th>
<th>Metabolites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Carbon, Folate, Formate, Glycine</td>
<td>6</td>
<td>Oxalate, Glyxoylate Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>Amino acid metabolism not otherwise covered</td>
<td>6</td>
<td>Pentose Phosphate, Gluconate Metabolism</td>
<td>11</td>
</tr>
<tr>
<td>Amino-Sugar and Galactose Metabolism</td>
<td>10</td>
<td>Phosphate and Pyrophosphate Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>Bile Salt Metabolism</td>
<td>4</td>
<td>Phospholipid Metabolism</td>
<td>88</td>
</tr>
<tr>
<td>Bioamines and Neurotransmitter Metabolism</td>
<td>3</td>
<td>Phytanic, Branch, Odd Chain Fatty Acids</td>
<td>1</td>
</tr>
<tr>
<td>Biopterin, Neopterin, Molybdopterin Metabolism</td>
<td>1</td>
<td>Polyamine Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>Biotin (Vitamin B7) Metabolism</td>
<td>1</td>
<td>Purine Metabolism</td>
<td>48</td>
</tr>
<tr>
<td>Branch Chain Amino Acid Metabolism</td>
<td>7</td>
<td>Pyrimidine Metabolism</td>
<td>35</td>
</tr>
<tr>
<td>Cholesterol, Cortisol, Steroid Metabolism</td>
<td>19</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>22</td>
</tr>
<tr>
<td>Endocannabinoid Metabolism</td>
<td>1</td>
<td>Sphingolipid Metabolism</td>
<td>72</td>
</tr>
<tr>
<td>Fatty Acid Oxidation and Synthesis</td>
<td>7</td>
<td>Taurine, Hypotaurine Metabolism</td>
<td>2</td>
</tr>
<tr>
<td>Food Sources, Additives, Preservatives, Colorings, and Dyes</td>
<td>2</td>
<td>Thyroxine Metabolism</td>
<td>2</td>
</tr>
<tr>
<td>GABA, Glutamate, Arginine, Ornithine, Proline Metabolism</td>
<td>6</td>
<td>Tryptophan, Kynurenine, Serotonin, Melatonin Metabolism</td>
<td>6</td>
</tr>
<tr>
<td>Glycolysis and Gluconeogenesis</td>
<td>17</td>
<td>Tyrosine and Phenylalanine Metabolism</td>
<td>2</td>
</tr>
<tr>
<td>Histidine, Histamine Metabolism</td>
<td>2</td>
<td>Urea Cycle</td>
<td>5</td>
</tr>
<tr>
<td>Isoleucine, Valine, Threonine, or Methionine Metabolism</td>
<td>3</td>
<td>Vitamin B1 (Thiamine) Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>Ketone Body Metabolism</td>
<td>2</td>
<td>Vitamin B12 (Cobalamin) Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>Krebs Cycle</td>
<td>18</td>
<td>Vitamin B2 (Riboflavin) Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>Lysine Metabolism</td>
<td>2</td>
<td>Vitamin B3 (Niacin/NAD) Metabolism</td>
<td>7</td>
</tr>
<tr>
<td>Microbiome Metabolism</td>
<td>32</td>
<td>Vitamin B5 (Pantothenate) Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>Nitric Oxide, Superoxide, Peroxide Metabolism</td>
<td>1</td>
<td>Vitamin B6 (Pyridoxine) Metabolism</td>
<td>6</td>
</tr>
<tr>
<td>OTC and Prescription Pharmaceutical Metabolism</td>
<td>2</td>
<td>Vitamin C (Ascorbate) Metabolism</td>
<td>2</td>
</tr>
</tbody>
</table>

Subtotal 152
TOTAL Pathways and Chemical Sources 44

Subtotal 326
TOTAL Metabolites 478
SOM Table S2. Rank Ordered Metabolites by Univariate Analysis.

<table>
<thead>
<tr>
<th>No.</th>
<th>Pathway</th>
<th>Metabolite</th>
<th>p-value</th>
<th>-Log10(p)</th>
<th>FDR</th>
<th>Fisher’s LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phospholipid Metabolism</td>
<td>Glycerophosphocholine</td>
<td>2.47E-07</td>
<td>6.6078</td>
<td>7.70E-05</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>2</td>
<td>Cholesterol, Cortisol, Steroid Metabolism</td>
<td>24,25-Epoxysterol</td>
<td>3.22E-07</td>
<td>6.4917</td>
<td>7.70E-05</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>3</td>
<td>Purine Metabolism</td>
<td>dAMP</td>
<td>5.11E-07</td>
<td>6.9218</td>
<td>7.86E-05</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>4</td>
<td>Microbiome Metabolism</td>
<td>Hydroxypyruvate</td>
<td>6.59E-07</td>
<td>6.1808</td>
<td>7.86E-05</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>5</td>
<td>Krebs Cycle</td>
<td>Oxaloacetic acid</td>
<td>0.0016284</td>
<td>3.7384</td>
<td>0.01746</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>6</td>
<td>Phospholipid Metabolism</td>
<td>Palmitoylethanolamide</td>
<td>0.00024171</td>
<td>3.6176</td>
<td>0.018301</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>7</td>
<td>Pyrimidine Metabolism</td>
<td>Decarboxylic acid</td>
<td>0.00029313</td>
<td>3.5329</td>
<td>0.018301</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>8</td>
<td>Tryptophan Metabolism</td>
<td>Kynurenic acid</td>
<td>0.00032056</td>
<td>3.4941</td>
<td>0.018301</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>9</td>
<td>Pyrimidine Metabolism</td>
<td>Uridine</td>
<td>0.00034459</td>
<td>3.4127</td>
<td>0.018301</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>10</td>
<td>Purine Metabolism</td>
<td>Adenine</td>
<td>0.00060284</td>
<td>3.2198</td>
<td>0.025208</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>11</td>
<td>Microbiome Metabolism</td>
<td>2,3-Dihydroxybenzoate</td>
<td>0.00063285</td>
<td>3.1987</td>
<td>0.025208</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>12</td>
<td>Microbiome Metabolism</td>
<td>2-oxo-4-methylthiobutanoate</td>
<td>0.00071951</td>
<td>3.143</td>
<td>0.025357</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>13</td>
<td>Microbiome Metabolism</td>
<td>2-oxo-4-methylthiobutanoate</td>
<td>0.00071951</td>
<td>3.143</td>
<td>0.025357</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>14</td>
<td>Pyrimidine Metabolism</td>
<td>Thymine</td>
<td>0.00074269</td>
<td>3.1292</td>
<td>0.025357</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>15</td>
<td>Vitamin B6 (Pyridoxine) Metabolism</td>
<td>Nicotinate</td>
<td>0.0010241</td>
<td>2.8987</td>
<td>0.02629</td>
<td>Sal Sal</td>
</tr>
<tr>
<td>16</td>
<td>Sphingolipid Metabolism</td>
<td>Ceramide 22:0</td>
<td>0.0010922</td>
<td>2.9617</td>
<td>0.02629</td>
<td>Sal Sal</td>
</tr>
<tr>
<td>17</td>
<td>Phospholipid Metabolism</td>
<td>PC(18:0/20:3)</td>
<td>0.0014321</td>
<td>2.844</td>
<td>0.02629</td>
<td>Sal Sal</td>
</tr>
<tr>
<td>18</td>
<td>Sphingolipid Metabolism</td>
<td>4-Phosphatidylethanolamine</td>
<td>0.0014598</td>
<td>2.8357</td>
<td>0.02629</td>
<td>Sal Sal</td>
</tr>
<tr>
<td>19</td>
<td>Microbiome Metabolism</td>
<td>2-Hydroxyglutarate</td>
<td>0.0017065</td>
<td>2.7679</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>20</td>
<td>Microbiome Metabolism</td>
<td>D-Fructose 6-phosphate</td>
<td>0.0017065</td>
<td>2.7674</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>21</td>
<td>Vitamin B6 (Pyridoxine) Metabolism</td>
<td>Oleic acid</td>
<td>0.0017085</td>
<td>2.7674</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>22</td>
<td>Pyrimidine Metabolism</td>
<td>Benzoic acid</td>
<td>0.0017142</td>
<td>2.7659</td>
<td>0.02629</td>
<td>Sal Sal</td>
</tr>
<tr>
<td>23</td>
<td>Pyrimidine Metabolism</td>
<td>Carbamoyl-phosphate</td>
<td>0.0018628</td>
<td>2.7299</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>24</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>Dimethylglycine</td>
<td>0.0018953</td>
<td>2.7251</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>25</td>
<td>Phospholipid Metabolism</td>
<td>N-leucylleucanillamine</td>
<td>0.0023963</td>
<td>2.5322</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>26</td>
<td>Microbiome Metabolism</td>
<td>Xanthosine</td>
<td>0.0029631</td>
<td>2.5283</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>27</td>
<td>Phospholipid Metabolism</td>
<td>Ethanolamine</td>
<td>0.003045</td>
<td>2.5164</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>28</td>
<td>Cholesterol, Cortisol, Steroid Metabolism</td>
<td>24-Dihydroxycholesterol</td>
<td>0.0030716</td>
<td>2.5126</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>29</td>
<td>Vitamin B6 (Pyridoxine) Metabolism</td>
<td>4-Pyridoxic acid</td>
<td>0.0032594</td>
<td>2.4868</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>30</td>
<td>Purine Metabolism</td>
<td>7-methylguanine</td>
<td>0.0033532</td>
<td>2.4528</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>31</td>
<td>Microbiome Metabolism</td>
<td>3-methylphenylacetic acid</td>
<td>0.0039805</td>
<td>2.4001</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>32</td>
<td>Microbiome Metabolism</td>
<td>Tyrosine</td>
<td>0.0043104</td>
<td>2.3655</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>33</td>
<td>Tyrosine and Phenylalanine Metabolism</td>
<td>Dopamine</td>
<td>0.0044273</td>
<td>2.3539</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>34</td>
<td>Pentose Phosphate, Gluconate Metabolism</td>
<td>D-Ribose-5-phosphate</td>
<td>0.0045436</td>
<td>2.3426</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>35</td>
<td>Krebs Cycle</td>
<td>2-Hydroxybutyrate</td>
<td>0.0045436</td>
<td>2.3426</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>36</td>
<td>Microbiome Metabolism</td>
<td>3-Hydroxyanthranillic acid</td>
<td>0.0047184</td>
<td>2.3241</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>37</td>
<td>Branch Chain Amino Acid Metabolism</td>
<td>4-methyl-2-oxoëxontanic acid</td>
<td>0.0050399</td>
<td>2.2976</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>38</td>
<td>Bile Salt Metabolism</td>
<td>Desoxycholic acid</td>
<td>0.0053945</td>
<td>2.2886</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>39</td>
<td>Thyroxine Metabolism</td>
<td>Dihydroxyurate</td>
<td>0.0050602</td>
<td>2.2287</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>40</td>
<td>Purine Metabolism</td>
<td>Allantoin</td>
<td>0.0065793</td>
<td>2.1818</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>41</td>
<td>Bile Salt Metabolism</td>
<td>Taurocholic acid</td>
<td>0.00709</td>
<td>2.1494</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>42</td>
<td>Microbiome Metabolism</td>
<td>p-Hydroxybenzoate</td>
<td>0.0081414</td>
<td>2.0893</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>43</td>
<td>Microbiome Metabolism</td>
<td>Reduced glutathione</td>
<td>0.0085951</td>
<td>2.0658</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
<tr>
<td>44</td>
<td>Microbiome Metabolism</td>
<td>Asparagine</td>
<td>0.0086864</td>
<td>2.0523</td>
<td>0.02629</td>
<td>PIC Sur</td>
</tr>
</tbody>
</table>
SOM Table S3. Stable Isotope-Labeled Internal Standards for LC-MS/MS.

<table>
<thead>
<tr>
<th>Polarity</th>
<th>Isotope Standards</th>
<th>Stock Concentration (µM)</th>
<th>Q1</th>
<th>Q3</th>
<th>DP</th>
<th>EP</th>
<th>CE</th>
<th>CXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>L-Alanine (2,3,3-D4)</td>
<td>10.102</td>
<td>94.05</td>
<td>48.1</td>
<td>54.45</td>
<td>10</td>
<td>11.08</td>
<td>11.16</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Phenylalanine (ring-13C6)</td>
<td>10.000</td>
<td>172.08</td>
<td>126</td>
<td>78.1</td>
<td>10</td>
<td>21</td>
<td>26.93</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Leucine (5,5,5-D3)</td>
<td>10.450</td>
<td>135.1</td>
<td>89.2</td>
<td>70.93</td>
<td>10</td>
<td>10.87</td>
<td>20.1</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Valine (D8)</td>
<td>10.184</td>
<td>128.05</td>
<td>77.2</td>
<td>70.93</td>
<td>10</td>
<td>18.64</td>
<td>20.1</td>
</tr>
<tr>
<td>Negative</td>
<td>L-Citrulline (5,5-D2)</td>
<td>10.164</td>
<td>176.1</td>
<td>133.1</td>
<td>88.095</td>
<td>-9.95</td>
<td>-21.1</td>
<td>-21.95</td>
</tr>
<tr>
<td>Positive</td>
<td>DL-Glutamic acid (2,4,4-D3)</td>
<td>10.409</td>
<td>151.06</td>
<td>115</td>
<td>115.4</td>
<td>10.8</td>
<td>16.06</td>
<td>18.2</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Tyrosine (ring-13C6)</td>
<td>10.204</td>
<td>188.08</td>
<td>142</td>
<td>43.25</td>
<td>10.68</td>
<td>10.66</td>
<td>18.2</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Ornithine:HCl (5,5-D2)</td>
<td>9.980</td>
<td>135.09</td>
<td>72</td>
<td>43.82</td>
<td>10.8</td>
<td>33.58</td>
<td>17.29</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Methionine (methyl-D3)</td>
<td>10.409</td>
<td>153.05</td>
<td>63.9</td>
<td>59.88</td>
<td>10</td>
<td>29.18</td>
<td>26.11</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Aspartic Acid (2,3,3-D3)</td>
<td>10.061</td>
<td>135.04</td>
<td>91.1</td>
<td>-50.16</td>
<td>-8.32</td>
<td>-21.11</td>
<td>-38.99</td>
</tr>
<tr>
<td>Positive</td>
<td>Glycine (2-13C, 15N)</td>
<td>51.125</td>
<td>79.03</td>
<td>61.6</td>
<td>78</td>
<td>12</td>
<td>5</td>
<td>11.4</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Glutamine-amide-15N</td>
<td>10.000</td>
<td>148.07</td>
<td>84.1</td>
<td>35.59</td>
<td>7.29</td>
<td>26.53</td>
<td>15.19</td>
</tr>
<tr>
<td>Negative</td>
<td>D-Glucose-13C6</td>
<td>10.000</td>
<td>185.07</td>
<td>61</td>
<td>-36.2</td>
<td>-10</td>
<td>-23.1</td>
<td>-5.8</td>
</tr>
<tr>
<td>Negative</td>
<td>D-Fructose-13C6</td>
<td>10.000</td>
<td>185.07</td>
<td>61.01</td>
<td>-36.2</td>
<td>-10</td>
<td>-23.1</td>
<td>-5.8</td>
</tr>
<tr>
<td>Negative</td>
<td>Alpha-Ketoisocapric acid (1-13C, 99%)</td>
<td>10.000</td>
<td>130.06</td>
<td>85</td>
<td>-47.37</td>
<td>-10.18</td>
<td>-10.21</td>
<td>-19.32</td>
</tr>
<tr>
<td>Negative</td>
<td>Uric acid-1,3-15N2</td>
<td>10.000</td>
<td>169.03</td>
<td>125</td>
<td>-95</td>
<td>-10</td>
<td>-20</td>
<td>4</td>
</tr>
<tr>
<td>Positive</td>
<td>Creatinine-(methyl-13C)</td>
<td>10.000</td>
<td>115.06</td>
<td>87.1</td>
<td>31</td>
<td>10</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Negative</td>
<td>Sucrose-13C12</td>
<td>10.000</td>
<td>353.12</td>
<td>92.02</td>
<td>-127.19</td>
<td>-12.3</td>
<td>-29.8</td>
<td>-15.05</td>
</tr>
<tr>
<td>Positive</td>
<td>Glycerol-13C3</td>
<td>10.000</td>
<td>96.05</td>
<td>59.2</td>
<td>99.65</td>
<td>10.93</td>
<td>20.86</td>
<td>11.89</td>
</tr>
<tr>
<td>Positive</td>
<td>L-carnitine (N-trimethyl-D9)</td>
<td>20.905</td>
<td>171.11</td>
<td>103.03</td>
<td>72.37</td>
<td>10</td>
<td>27.29</td>
<td>15</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Acetyl carnitine (N-methyl-D3)</td>
<td>5.216</td>
<td>207.12</td>
<td>85.02</td>
<td>61.16</td>
<td>8.33</td>
<td>42.38</td>
<td>12.56</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Propionyl carnitine (N-methyl-D3)</td>
<td>1.041</td>
<td>221.13</td>
<td>159</td>
<td>65.61</td>
<td>13.02</td>
<td>18.6</td>
<td>29.67</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Butyrylcarnitine (N-methyl-D3)</td>
<td>1.041</td>
<td>235.15</td>
<td>173.1</td>
<td>51.3</td>
<td>9.69</td>
<td>17.1</td>
<td>8.8</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Isovalerylcarnitine (N-trimethyl-D9)</td>
<td>1.081</td>
<td>255.17</td>
<td>187.1</td>
<td>81.73</td>
<td>10.65</td>
<td>20.49</td>
<td>24.89</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Octanoylcarnitine (N-methyl-D3)</td>
<td>1.000</td>
<td>291.22</td>
<td>85.1</td>
<td>85.23</td>
<td>10.1</td>
<td>29.52</td>
<td>15.12</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Myristoylcarnitine (N-trimethyl-D9)</td>
<td>1.027</td>
<td>381.31</td>
<td>84.9</td>
<td>87.75</td>
<td>10.08</td>
<td>29.38</td>
<td>14.5</td>
</tr>
<tr>
<td>Positive</td>
<td>L-Palmitoylcarnitine (N-methyl-D3)</td>
<td>2.054</td>
<td>403.34</td>
<td>85</td>
<td>49.64</td>
<td>10.22</td>
<td>35.83</td>
<td>16.99</td>
</tr>
<tr>
<td>Positive</td>
<td>L-carnitine (mono):ClO4, O-Glutaryl (N-methyl-D3)</td>
<td>1.889</td>
<td>279.14</td>
<td>85.1</td>
<td>55.82</td>
<td>11.71</td>
<td>29.35</td>
<td>14.83</td>
</tr>
<tr>
<td>Positive</td>
<td>L-carnitine:ClO4, 3-Hydroxyisovaleryl (N-methyl-D3)</td>
<td>1.028</td>
<td>265.16</td>
<td>85.2</td>
<td>76.11</td>
<td>10.98</td>
<td>34.09</td>
<td>20</td>
</tr>
<tr>
<td>Positive</td>
<td>L-carnitine:HCl, O-Dodecanoyl(N,N,N-Trimethyl-D9)</td>
<td>1.000</td>
<td>353.28</td>
<td>84.8</td>
<td>92.11</td>
<td>9.53</td>
<td>56.38</td>
<td>17.6</td>
</tr>
<tr>
<td>Positive</td>
<td>L-carnitine:HCl, O-Octadecanoyl(N-methyl-D3)</td>
<td>2.042</td>
<td>431.37</td>
<td>369.4</td>
<td>69.18</td>
<td>10.36</td>
<td>29.04</td>
<td>17.27</td>
</tr>
<tr>
<td>Positive</td>
<td>Cholesterol-d7</td>
<td>50.000</td>
<td>376.36</td>
<td>161.1</td>
<td>110</td>
<td>10</td>
<td>30.7</td>
<td>14</td>
</tr>
<tr>
<td>Positive</td>
<td>PC (16:0/16:0)-d62</td>
<td>20.000</td>
<td>796.58</td>
<td>184</td>
<td>32.85</td>
<td>10.11</td>
<td>43.27</td>
<td>27.02</td>
</tr>
<tr>
<td>Negative</td>
<td>Trypan blue</td>
<td>20.000</td>
<td>435.03</td>
<td>185</td>
<td>-144.58</td>
<td>-8.67</td>
<td>-57.8</td>
<td>-20.94</td>
</tr>
</tbody>
</table>
SOM Figure S1. Single-Dose Correction of Behavioral Abnormalities.
SOM Figure S2

Untreated—3.5 months old

Percent Time in the Dark

Saline

Poly(IC)

Prenatal Exposure
Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout) mouse model

Naviaux et al.

Naviaux et al. Molecular Autism 2015, 6:1
http://www.molecularautism.com/content/6/1/1
Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout) mouse model

Jane C Naviaux5, Lin Wang1,2, Kefeng Li1,2, A Taylor Bright1,2, William A Alaynick1,2, Kenneth R Williams1,2,8, Susan B Powell5,6 and Robert K Naviaux1,2,3,4,7*

Abstract

Background: This study was designed to test a new approach to drug treatment of autism spectrum disorders (ASDs) in the Fragile X (Fmr1) knockout mouse model.

Methods: We used behavioral analysis, mass spectrometry, metabolomics, electron microscopy, and western analysis to test the hypothesis that the disturbances in social behavior, novelty preference, metabolism, and synapse structure are treatable with antipurinergic therapy (APT).

Results: Weekly treatment with the purinergic antagonist suramin (20 mg/kg intraperitoneally), started at 9 weeks of age, restored normal social behavior, and improved metabolism, and brain synaptosomal structure. Abnormalities in synaptosomal glutamate, endocannabinoid, purinergic, and IP3 receptor expression, complement C1q, TDP43, and amyloid β precursor protein (APP) were corrected. Comprehensive metabolomic analysis identified 20 biochemical pathways associated with symptom improvements. Seventeen pathways were shared with human ASD, and 11 were shared with the maternal immune activation (MIA) model of ASD. These metabolic pathways were previously identified as functionally related mediators of the evolutionarily conserved cell danger response (CDR).

Conclusions: The data show that antipurinergic therapy improves the multisystem, ASD-like features of both the environmental MIA, and the genetic Fragile X models. These abnormalities appeared to be traceable to mitochondria and regulated by purinergic signaling.

Keywords: Autism spectrum disorders, Purinergic signaling, Antipurinergic therapy (APT), Mitochondria, Metabolism, Metabolomics, Fragile X syndrome, Genetics, Environment, Maternal immune activation (MIA), Cell danger response (CDR)

Background

Autism spectrum disorders (ASDs) now affect 1% to 2% of children in the United States [1]. Genetic [2-4], environmental [5,6], and metabolic [7] factors can contribute to the risk of ASD to different extents in each affected child. We have previously shown that antipurinergic therapy reverses the behavioral and metabolic abnormalities in the maternal immune activation (MIA) mouse model of ASD in juveniles [8] and adults [9]. The MIA and Fragile X models have been considered to be mechanistically distinct examples of environmental and genetic causes of ASD, respectively. However, in our MIA study we found the first of several emerging connections. The Fmr1 protein (FMRP) was downregulated by 50%, and antipurinergic therapy with suramin restored normal FMRP and normal behaviors in the MIA model [8]. FMRP is an mRNA and ribosome [10] binding protein that inhibits the expression of several key inflammatory proteins and cytokines, and binds to several DNA repair proteins involved in cell stress and defense [11]. Genetic loss of FMRP expression leads to Fragile X Syndrome, the most common
single-gene cause of intellectual disability [12]. The Fmr1 knockout is the oldest, and one of the most studied genetic mouse models used in autism research [13]. In our previous work we found that disturbances in purine metabolism and purinergic signaling were robust features and effective targets we found that disturbances in purine metabolism and mouse models used in autism research [13]. In our previous knockout is the oldest, and one of the most studied genetic models of autism [8,9]. Interestingly, the first genetic causes of autism identified were traced to abnormalities in purine and pyrimidine metabolism [14,15]. These observations led us to test the role of purinergic signaling in a genetic mouse model of ASD. We selected the Fragile X model to test the hypothesis that abnormalities in purinergic signaling might underlie both the environmental MIA and genetic Fragile X models.

Suramin is a well-known and well-studied competitive inhibitor of purinergic signaling [16]. It has been used medically for the treatment of African sleeping sickness (trypanosomiasis) since shortly after it was first synthesized in 1916. Its antipurinergic actions were discovered in 1988, after a search for inhibitors of ATP-mediated P2X and P2Y signaling [17]. Suramin has many other actions [18], however, metabolomic studies have shown that the expression of purinergic receptors is altered [8], and purine metabolism is the top ranked biochemical pathway that is changed by treatment in the MIA model of ASD [9]. We refer to the use of suramin and related purinergic antagonists as antipurinergic therapy (APT). In the present work, we tested the hypothesis that APT will improve behavior, metabolism, and synaptic abnormalities in the Fragile X mouse model, even in the face of a permanent, gene-coded absence of the Fragile X protein.

Methods

Mouse strains

We evaluated the Fragile X (Fmr1) knockout on the FVB strain background. It has the genotype: FVB.129P2-Pde6b⁺ Tyr^{c-ch} Fmr1^{tm1Cgr}/J (Jackson Stock # 004624). The Fmr1^{tm1Cgr} allele contains a neomycin resistance cassette replacing exon 5 that results in a null allele that makes no FMR mRNA or protein. The control strain used has the genotype: FVB.129P2-Pde6b⁺ Tyr^{c-ch}/AntJ (Jackson Stock # 004828). In contrast to the white coat color of wild-type FVB mice, these animals had a chinchilla (Tyr^{c-ch}) gray coat color. The wild-type Pde6b locus from the 129P2 ES cells corrects the retinal degeneration phenotype that produces blindness by 5 weeks of age in typical FVB mice. The Fmr1 locus is X-linked, so males are hemizygous and females are homozygous for the knockout. We also performed metabolomic analysis on Fmr1 knockout mice on the C57BL/6J (B6) background to refine our understanding of which metabolic disturbances were directly related to the Fmr1 knockout, and which were the result of changes in genetic background. For these studies we studied the same Fmr1^{tm1Cgr} knockout allele bred on the C57BL/6J background. These animals had the genotype: B6.129P2-Fmr1^{tm1Cgr}/J (Jackson Stock# 003025). The standard C57BL/6J strain (Jackson Stock# 000664) was used as a control for the B6 metabolic studies.

Animals, husbandry, and drug treatment

All studies were conducted at the University of California, San Diego (UCSD) in facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) under UCSD Institutional Animal Care and Use Committee (IACUC)-approved animal subjects protocols, and followed the National Institutes of Health (NIH) Guidelines for the use of animals in research. Five-week-old male mice were obtained from Jackson Laboratories (Bar Harbor, ME), identified by ear tags, placed in cages of two to four animals, and maintained on ad libitum Harlan Teklad 8604 mouse chow (14% fat, 54% carbohydrate, 32% protein) and water. Animals were housed in a temperature (22°C to 24°C) and humidity (40% to 55%) controlled vivarium with a 12-h light-dark cycle (lights on at 07:00). No mice were housed in isolation. Beginning at 9 weeks of age, animals received weekly injections of either saline (5 μL/g ip) or suramin (hexasodium salt, 20 mg/kg ip; Tocris Cat #1472).

Behavioral analysis

Behavioral testing began at 13 weeks of age, after 1 month of weekly antipurinergic therapy with suramin. Mice were tested in social approach, T-maze, locomotor activity, marble burying, acoustic startle, and prepulse inhibition paradigms as follows. The ages at the time of testing are noted in the figure legends. For a complete description of the behavioral paradigms see Full Methods Online. Social Preference and Social Novelty. Social behavior was tested as social preference as previously described [9], with the addition of a third phase with a second novel mouse to interrogate social novelty [19]. T-Maze. Novelty preference was tested as spontaneous alternation behavior in the T-maze as previously described [9]. Marble Burying. Marble burying behavior was measured over 30 min by a modification of methods used by Thomas et al. [20]. Locomotor Activity. Locomotor activity, hyperactivity (total distance traveled), center entries, holepoke exploration, and vertical investigation (rearing) behaviors were quantified by automated beam break analysis in the mouse behavioral pattern monitor (mBPM) as previously described [21]. Acoustic Startle and Prepulse Inhibition. Sensitivity to acoustic startle and prepulse inhibition of the startle reflex were measured by automated testing in commercial startle chambers as previously described [22].
Body temperature measurements
A BAT-12 Microprobe digital thermometer and RET-3 mouse rectal probe (Physitemp Instruments, Clifton, NJ, USA) were used to obtain rectal core temperatures to a precision of +/-0.1°C, as previously described [8]. Care was taken to measure temperatures ≥2 days after cage bedding changes, and to avoid animal transport stress immediately prior to measurement in order to avoid stress-induced hyperthermia [23]. Temperatures were measured between 09:00 and 12:00 each day.

Synaptosome isolation and ultrastructure
Animals were sacrificed at 25 weeks of age, after receiving 16 weeks of treatment with suramin or saline. Cerebral samples were collected, homogenized, and synaptosomes isolated by discontinuous Percoll gradient centrifugation, drop dialyzed, glutaraldehyde fixed, post-fixed in osmium tetroxide, embedded, sectioned, and stained with uranyl acetate for transmission electron microscopy (TEM) as previously described [8]. Samples from the FVB control animals (+/- suramin) were not available for study by either electron microscopy or western analysis. Therefore, we report only the effects of suramin on the two groups of Fmr1 knockout animals (KO-saline and KO-suramin). N = 3 animals/group. Four to six TEM images were collected from each sample. One 5,800× survey image, and three to five images of informative fields at 34,000× to 64,000× were collected with internal scale bars for dimensional control. Qualitatively representative images were reported.

Western blot analysis
Twenty micrograms of cerebral synaptosomal protein was loaded in SDS-polyacrylamide gels (NuPage 4-12% gradient, Bis-Tris Gels) and transferred to PVDF membranes as previously described [8]. The blots were first stained with 0.1% Ponceau S in 5% acetic acid for 10 min, washed, scanned, and the transfer efficiency was quantified by densitometry. Blots were then blocked with 5% skim milk in tris-buffered saline with 0.1% Tween 20 (TBST) for 1 h at room temperature to permit small molecules and internal standards, and 2.5 μL of 310 stable isotope internal standards that were custom-synthesized in E. coli and S. cerevisiae by metabolic labeling with 13C-glucose and 13C-bicarbonate, were added, mixed, and incubated for 10 min at room temperature to permit small molecules and vitamins in the internal standards to associate with plasma binding proteins. Macromolecules (protein, DNA, RNA, and so on) were precipitated by extraction with 4 volumes (200 μL) of cold (-20°C), acetonitrile:methanol (50:50) (LCMS grade, Cat# LC015-2.5 and GC230-4, Burdick & Jackson, Honeywell), vortexed vigorously, and incubated on crushed ice for 10 min, then removed by centrifugation at 16,000 g × 10 min at 4°C. The supernatants containing the extracted metabolites and internal standards in the resulting 40:40:20 solvent mix of acetonitrile:methanol:
water were transferred to labeled cryotubes and stored at -80°C for LC-MS/MS (liquid chromatography-tandem mass spectrometry) analysis.

LC-MS/MS analysis was performed by multiple reaction monitoring (MRM) under Analyst v1.6.1 (AB SCIEX, Framingham, MA, USA) software control in both negative and positive mode with rapid polarity switching (50 ms). Of the 673 metabolites targeted, 477 metabolites were measured by scheduled MRM in the first injection, and 196 metabolites were measured by scanning MRM in a second injection. Nitrogen was used for curtain gas (set to 30), collision gas (set to high), ion source gas 1 and 2 (set to 35). The source temperature was 500°C. Spray voltage was set to -4,500 V in negative mode and 5,500 V in positive mode. The values for Q1 and Q3 mass-to-charge ratios (m/z), declustering potential (DP), entrance potential (EP), collision energy (CE), and collision cell exit potential (CXP) were determined and optimized for each MRM for each metabolite. Ten microliters of extract were injected by PAL CTC autosampler into a 250 × 2 mm, 5 μm Luna NH2 aminopropyl HPLC column (Phenomenex, Torrance, CA, USA) held at 25°C for chromatographic separation. The mobile phase was solvent A: 95% water with 23.18 mM NH4OH (Sigma-Aldrich, St. Louis, MO, USA, Fluka Cat# 17837-100ML), 20 mM formic acid (Sigma, Fluka Cat#09676-100ML), and 5% acetonitrile (pH 9.44); solvent B: 100% acetonitrile. Separation was achieved using the following gradient: 0 min 95% B, 3 min 95% B, 3.1 min 80% B, 6 min 80% B, 6.1 min 70% B, 10 min 70% B, 18 min 2% B, 27 min 0% B, 32 min 0% B, 33 min 100% B, 36.1 95% B, 40 min 95% B. The flow rate was 300 μL/min. All the samples were kept at 4°C during analysis. The chromatographic peaks were identified using MultiQuant (v3.0, AB SCIEX), confirmed by manual inspection, and the peak areas integrated. The median of the peak area of stable isotope internal standards was calculated and used for the normalization of metabolites concentration across the samples and batches. Prior to multivariate and univariate analysis, the data were log-transformed.

Metabolic pathway visualization in cytoscape
We constructed a rendering of mammalian intermediary metabolism in Cytoscape v 3.1.1 (http://www.cytoscape.org/). Pathways represented in the network for Fragile X syndrome included the 20 metabolic pathways and the 58 metabolites that were altered by antipurinergic therapy with suramin (VIP scores > 1.5). Nodes in the Cytoscape network represent metabolites within the pathways and have been colored according to the z-score. The z-score was computed as the arithmetic difference between the mean concentration of each metabolite in the KO-Sur treatment group and the KO-Sal control group, divided by the standard deviation in the controls. Node colors were arranged on a red-green color scale with green representing ≤-2.00 z-score, red representing ≥+2.00 z-score, and with a zero (0) z-score represented as white. The sum of the VIP scores of those metabolites with VIP scores >1.5 for each metabolic pathway is displayed next to the pathway name.

Data analysis
Group means and standard error of the means (SEM) are reported. Behavioral data were analyzed by two-way ANOVA and one-way ANOVAs (GraphPad Prism 5.0d, GraphPad Software Inc., La Jolla, CA, USA, or Stata/SE v12.1, StataCorp, College Station, TX, USA). Pair-wise post hoc testing was performed by the method of Tukey or Newman-Keuls. Significance was set at P <0.05. Metabolomic data were log-transformed and analyzed by multivariate partial least squares discriminant analysis (PLSDA) in MetaboAnalyst [25]. Metabolites with variable importance in projection (VIP) scores greater than 1.5 were considered significant.

Results
Confirmation of Fragile X protein knockout
We confirmed the absence of Fragile X protein (FMRP) expression in Fmr1 knockout mice, and its presence in FVB and C57BL/6J controls by western blot analysis before phenotyping the Fmr1 knockout animals used in this study (Additional file 1: Figure S1).

Restoration of normal social behavior
Altered social behavior is a key measure of autism-like features in mouse models of autism. In the Fragile X knockout genetic model of autism, it has also proven to be one of the most reproducible paradigms across different studies reported in the literature [26]. We found that Fmr1 null males showed a 26% reduction in social preference, as measured by the time spent interacting with a stranger mouse compared to an inanimate object. There was also a 35% reduction in social novelty, as measured by the time spent interacting with a novel mouse compared to a familiar mouse. This altered social behavior was corrected by antipurinergic therapy with suramin (Figure 1A-D).

Restoration of spontaneous alternation in the T-maze
Novelty preference is an innate feature of normal rodent [27] and human [28] behavior, and a predictor of socialization and communication growth in children with ASD [29]. The loss or suppression of novelty preference in children with ASD is associated with the phenomenon known as insistence on sameness [30]. We estimated preference for novelty as spontaneous alternation behavior in the T-maze [9]. The T-maze can also be used to estimate spatial
working memory, especially when food motivated [31].

We did not use the food-motivated variation in our study. We found that the Fmr1 null mice showed defective novelty preference as reflected by chance (near 50%) spontaneous alternation behavior. These deficits were normalized by suramin treatment (Figure 1E). Fragile X knockout mice were no different from controls in latency to choice (data not shown).

Figure 1 ASD-like symptoms were improved by antipurinergic therapy. (A) Social preference measured as percent time. Fmr1 knockouts treated with saline showed significant deficits in social preference compared to wild-type controls (F(3,38) = 5.94, P = 0.002) and suramin corrected this (P <0.05). (B) Social novelty measured as percent time. Fmr1 knockouts treated with saline also showed significant deficits in social novelty. (F(3,38) = 3.49, P = 0.025) and suramin restored this (P <0.05). (C) Social preference as absolute time spent interacting socially. Fmr1 knockouts were less social than wild-type controls and suramin treatment corrected this (cup F(1,76) = 56.5, P = 0.0001; cup x group F(3,76) = 3.55, P = 0.018). (D) Social novelty as absolute time interacting with a novel mouse. Fmr1 knockouts showed decreased novelty preference and suramin improved this (social stimulus main effect F(1,76) = 8.6; P = 0.004; social stimulus x group F(3,76) = 3.1, P = 0.032. Age 17 weeks; N = 9-12 per group for Social Preference/Social Novelty test. (E) Restoration of spontaneous alternation in the T-maze. Suramin improved spontaneous alternation in the Fmr1 knockouts, but had no effect on FVB controls (F(3,41) = 16.6; P <0.0001). Age 13 weeks; N = 11-12 per group. (F) Restoration of normal marble burying. Fmr1 knockouts treated with saline buried fewer marbles compared to controls (F(3,37) = 3.15; P = 0.037) and suramin corrected this (P <0.05). Age 16 weeks; N = 9-12 per group. (G) Relative hypothermia in the Fragile X model and correction with suramin. Fmr1 knockout animals treated with saline had core temperatures that were 0.5-0.7°C lower than wild-type FVB controls (F(3,41) = 10.45, P <0.0001). Suramin restored normal body temperature in Fmr1 knockouts (P = 0.001). Age 15 weeks, N = 11-12 per group. Values are expressed as means +/- SEM.
Restoration of marble burying behavior
We measured marble burying as a measure of normal rodent digging behavior. Marble burying has sometimes been considered a measure of anxiety, however, comprehensive genetic and behavioral studies have shown that marble burying is a normal mouse behavior that is genetically determined [20]. We found that marble burying was diminished 38% in Fragile X knockout mice. Suramin improved this (KO-Sal v KO-Sur; Figure 1F).

Cerebral synaptosomal protein analysis
We found that 17 of 54 proteins we interrogated in cerebral synaptosomes (see Additional file 1: Table S1) were changed by antipurinergic therapy with suramin in the Fragile X model (Figures 3 and 4; KO-Sur vs. KO-Sal). As a treatment study, we focused on the effect of suramin in the Fmr1 knockout mice only. The current study did not compare knockout brain protein levels to littermate controls (see Methods).

Synaptosomal P3K/AKT/GSK3β pathway
The P3/AKT/GSK3β pathway is pathologically elevated in the Fragile X model [32]. Suramin inhibited this pathway at several points. Suramin decreased the expression of P3 Kinase and AKT, and increased the inhibitory phosphorylation of the P3/AKT pathway protein glyco- gen synthase kinase 3β (pGSK3βSer9) by 47%. Suramin increased the phosphorylation of p70 S6 kinase (pS6KThr429/Thr439) by 46% (Figures 3 and 4A-F). Phosphorylated p70 S6KThr429/Thr439 is a negative regulator of insulin receptor substrate 1 (IRS1), and serves to oppose insulin stimulated cell growth, P13K, and mTORC1 signaling [33]. We did not find a corresponding change in mTOR expression or phosphorylation in cerebral synaptosomes of the Fragile X model (Additional file 1: Table S1).

Synaptosomal adenomatous polyposis coli (APC) expression
APC is a tumor suppressor protein that is increased in the Fragile X knockout model [34]. APC forms a complex with, and is phosphorylated by, active GSK3β to inhibit microtubule assembly during undifferentiated cell growth of neuronal progenitors [35]. Suramin treatment returned total APC protein to control levels by decreasing expression by 29% (Figure 4G).

Synaptosomal purinergic receptors and the IP3R1 calcium channel
In earlier studies we showed the chronic hyperpurinergia associated with the MIA mouse model resulted in down-regulated expression of the P2Y2 receptor. Suramin treatment in the MIA model increased P2Y2 expression to normal levels [8]. In the Fragile X mouse model, suramin treatment increased the expression of the P2Y1 receptor 32%, and decreased P2X3 receptor expression 18% knockout animals, reflecting the well-known heterogeneity in synaptic maturation and morphology in this model. Suramin-treated mice had more cerebral synaptosomes that were near-normal in appearance, with an electron lucent matrix (Figure 2B, marked with an asterisk), and normal appearing post-synaptic densities (Figure 2B, marked with an arrow). We did not investigate dendritic spine densities in this study.

Restoration of normal body temperature
Fmr1 knockout mice displayed relative hypothermia of approximately 0.5°C to 0.7°C below the basal body temperature of the FVB controls (Figure 1G). This relative hypothermia was lost in stressed animals (data not shown). The maternal immune activation (MIA) mouse model showed a similar mild reduction in body temperature [8]. Normal basal body temperature was restored by antipurinergic therapy with suramin. Suramin had no effect on the body temperature of control animals (WT-Sal vs WT-Sur, Figure 1G).

Synaptosomal ultrastructure and protein expression
Our previous studies showed synaptic ultrastructural abnormalities in the MIA mouse model that were corrected by antipurinergic therapy [8]. In that study, the animals with ASD-like behaviors were found to have abnormal synaptosomes containing an electron dense matrix and brittle or fragile and hypomorphic post-synaptic densities. In the present study of the Fragile X model, saline-treated Fmr1 knockout mice had cerebral synaptosomes that also contained an electron dense matrix (Figure 2A, marked with an asterisk), and fragile, hypomorphic post-synaptic densities (Figure 2A, marked with an arrow). Normal appearing synaptosomes were also found in the Fmr1 knockout animals, reflecting the well-known heterogeneity in synaptic maturation and morphology in this model. Suramin-treated mice had more cerebral synaptosomes that were near-normal in appearance, with an electron lucent matrix (Figure 2B, marked with an asterisk), and normal appearing post-synaptic densities (Figure 2B, marked with an arrow). We did not investigate dendritic spine densities in this study.

Restoration of marble burying behavior
We measured marble burying as a measure of normal rodent digging behavior. Marble burying has sometimes been considered a measure of anxiety, however, comprehensive genetic and behavioral studies have shown that marble burying is a normal mouse behavior that is genetically determined [20]. We found that marble burying was diminished 38% in Fragile X knockout mice. Suramin improved this (KO-Sal v KO-Sur; Figure 1F).

Cerebral synaptosomal protein analysis
We found that 17 of 54 proteins we interrogated in cerebral synaptosomes (see Additional file 1: Table S1) were changed by antipurinergic therapy with suramin in the Fragile X model (Figures 3 and 4; KO-Sur vs. KO-Sal). As a treatment study, we focused on the effect of suramin in the Fmr1 knockout mice only. The current study did not compare knockout brain protein levels to littermate controls (see Methods).

Synaptosomal P3K/AKT/GSK3β pathway
The P3/AKT/GSK3β pathway is pathologically elevated in the Fragile X model [32]. Suramin inhibited this pathway at several points. Suramin decreased the expression of P3 Kinase and AKT, and increased the inhibitory phosphorylation of the P3/AKT pathway protein glyco- gen synthase kinase 3β (pGSK3βSer9) by 47%. Suramin increased the phosphorylation of p70 S6 kinase (pS6KThr429/Thr439) by 46% (Figures 3 and 4A-F). Phosphorylated p70 S6KThr429/Thr439 is a negative regulator of insulin receptor substrate 1 (IRS1), and serves to oppose insulin stimulated cell growth, P13K, and mTORC1 signaling [33]. We did not find a corresponding change in mTOR expression or phosphorylation in cerebral synaptosomes of the Fragile X model (Additional file 1: Table S1).

Synaptosomal adenomatous polyposis coli (APC) expression
APC is a tumor suppressor protein that is increased in the Fragile X knockout model [34]. APC forms a complex with, and is phosphorylated by, active GSK3β to inhibit microtubule assembly during undifferentiated cell growth of neuronal progenitors [35]. Suramin treatment returned total APC protein to control levels by decreasing expression by 29% (Figure 4G).

Synaptosomal purinergic receptors and the IP3R1 calcium channel
In earlier studies we showed the chronic hyperpurinergia associated with the MIA mouse model resulted in down-regulated expression of the P2Y2 receptor. Suramin treatment in the MIA model increased P2Y2 expression to normal levels [8]. In the Fragile X mouse model, suramin treatment increased the expression of the P2Y1 receptor 32%, and decreased P2X3 receptor expression 18% knockout animals, reflecting the well-known heterogeneity in synaptic maturation and morphology in this model. Suramin-treated mice had more cerebral synaptosomes that were near-normal in appearance, with an electron lucent matrix (Figure 2B, marked with an asterisk), and normal appearing post-synaptic densities (Figure 2B, marked with an arrow). We did not investigate dendritic spine densities in this study.
There was no effect on P2Y2 expression (Additional file 1: Table S1). P2Y1 signaling is known to inhibit IP3 gated calcium release from the endoplasmic reticulum [36]. We found that suramin treatment was associated with a 101% increase in IP3R1 expression (Figure 4J).

Synaptosomal AMPA receptor (GluR1) expression

AMPA receptor (GluR1) mRNA transcription, translation, and receptor recycling are known to be pathologically dysregulated in the Fragile X model [37]. In the lateral amygdala, the Fragile X knockout results in enhanced internalization and increased internalized receptor pools, with decreased surface expression, such that the total mass of the AMPA receptor is unchanged from controls [38]. Suramin treatment decreased the overall expression of the ionotropic GluR1 in cerebral synaptosomes by 15% (Figure 4K). However, these methods were unable to distinguish between surface and internalized pools of AMPA receptors. Suramin had no effect on metabotropic glutamate receptor mGluR5 expression in this model (Additional file 1: Table S1).

Synaptosomal cannabinoid receptor expression

Cannabinoid signaling is pathologically increased in the Fmr1 knockout model [39]. Suramin treatment decreased brain CB1 receptor expression 16% (Figure 4L). This is consistent with recent data that have shown signaling to be sharply increased in response to brain injury [40]. Pharmacologic blockade with the CB1R antagonist rimonabant has been shown to improve several symptoms in the Fragile X model [41]. CB2 expression is unchanged (Additional file 1: Table S1).

Synaptosomal PPARβ/δ expression

PPARβ (also known as PPARδ) is a widely expressed transcriptional co-activator that is correlated with the aerobic and bioenergetic capacity in a variety of tissue types [43]. Suramin treatment increased the expression of PPARβ/δ in purified brain synaptosomes by 34% (Figure 4M). Suramin treatment had no effect on synaptosomal PPARα (Additional file 1: Table S1).

Synaptosomal cholesterol and bile acid regulatory proteins

Antipurinergic therapy with suramin increased three key proteins involved in sterol and bile acid synthesis. 7-dehydrocholesterol reductase (7DHCR) was increased by 24%, cholesterol 7α-hydroxylase (CYP7A1) by 37%, and the steroidogenic acute regulatory (StAR) protein by 150% (Figure 4N-P) above saline treated control levels. The function of bile salts in the brain is unknown, although their neuroprotective effects have been shown in several models [44,45].

Synaptosomal complement C1q and TDP43

Recent studies have revealed an important role for complement proteins in tagging synapses during inflammation and remodeling [46]. Activated complement proteins have also been found in the brains of children with autism [47].
We found that suramin decreased synaptosomal C1qA by 24% (Figure 4Q).

Tar-DNA binding protein 43 (TDP43) is a single-strand DNA and RNA binding protein that disturbs mitochondrial transport and function under conditions of cell stress [48]. Mutations in TDP43 are associated with genetic forms of amyotrophic lateral sclerosis (ALS) [49]. Wild-type TDP43 protein is a component of the tau and α-synuclein inclusion bodies found in Alzheimer’s and Parkinson’s disease and plays a role in RNA homeostasis.
and protein translation [50]. The similarities of these functions to the role of the Fmr1 gene in RNA homeostasis prompted us to investigate TDP43 in the Fragile X model. We found that suramin treatment decreased synaptosomal TDP43 by 27% (Figure 4R).

Synaptosomal amyloid-β precursor protein expression
Amyloid-β precursor protein (APP) expression is upregulated in the brain of subjects with ASD [51]. A number of recent papers have identified the upregulation of gene networks in ASD [51] and inborn errors of purine metabolism [52] that were formerly thought to be specific for Alzheimer’s and other neurodegenerative disorders. We found that antipurinergic therapy with suramin decreased synaptosomal APP levels by 23% in the Fragile X model (Figure 4S).

Synaptosomal protein pertinent negatives
We interrogated the effect of suramin on several additional proteins that were found to be dysregulated in the MIA mouse model [8]. We found no effect of suramin in the Fragile X model on ERK 1 and 2, or its phosphorylation, CAMKII or its phosphorylation, nicotinic acetylcholine receptor alpha 7 subunit (nAchRα7) expression, or the expression of the purinergic receptors P2Y2 and P2X7 (Additional file 1: Table S1). These data show that the detailed molecular effects of antipurinergic therapy with suramin are different in different genetic backgrounds and different mechanistic models of autism spectrum disorders. However, the efficacy in restoring normal behavior and brain synaptic morphology cuts across models. These data support the novel conclusion that antipurinergic therapy is operating by a metabolic mechanism that is common to, and underlies, both the environmental MIA, and the genetic Fragile X models of ASD.

Metabolomic response to suramin treatment
We analyzed the metabolomic effects in plasma of Fragile X mice after weekly treatment with suramin or saline. We measured 673 metabolites from 60 pathways by mass spectrometry (Additional file 1: Table S2), analyzed the data by partial least squares discriminant analysis (PLSDA), and visualized the results by projection in three dimensions (Figure 5), and ranked by the metabolic changes by variable importance in projection (VIP) scores (Figure 6). This analysis focused on the rank order of importance. Larger sample sizes, usually ≥15 animals per group, are required for more comprehensive metabolomic statistical analysis [53]. We found that suramin produced pharmacometabolomic changes in one-third of the biochemical pathways interrogated (20 of 60 pathways). These are summarized below.

Figure 5 Antipurinergic therapy improved the widespread metabolomic abnormalities in the Fragile X mouse model. A total of 673 plasma metabolites from 60 biochemical pathways were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) and analyzed by partial least squares discriminant analysis (PLSDA). The three top multivariate components were then plotted on x, y, and z-axes, respectively. Suramin treatment shifted metabolism in the direction of wild-type controls. Age 25 weeks, N = 9-11 per group.
Metabolic pathway analysis

The top 11 of 20 discriminating metabolic pathways were represented by two or more metabolites and contributed 89% of the most discriminating metabolites in the Fragile X mouse model treated with suramin (Table 1). These pathways were: purines (20%), fatty acid oxidation (12%), eicosanoids (11%), gangliosides (10%), phospholipids (9%), sphingolipids (8%), microbiome (5%), SAM/SAH glutathione (5%), NAD+ metabolism (4%), glycolysis (3%), and cholesterol metabolism (2%) (Table 1).

A simplified map of metabolism is illustrated in the form of 26 major biochemical pathways in Figure 7. This figure shows the effect of suramin treatment on each metabolite as measured in the plasma. The magnitude of the pharmacometabolomic effect is quantified as the z-score for nearly 500 metabolites. Inspection of this figure leads to several conclusions. First, 1-carbon folate and Krebs cycle metabolism are dominated by red shading, indicating a general increase in methylation pathways, and mitochondrial oxidative phosphorylation. Next, there was a generalized increase in intermediates of the SAM/SAH and glutathione metabolism. Purine metabolism showed a mixture of upregulated precursors of adenine nucleotides and downregulated inosine and guanosine precursors. There was a generalized increase in gangliosides, phospholipids, and cholesterol metabolites needed for myelin and cell membrane synthesis. Finally, there was a generalized decrease in nine of nine acylcarnitine species. Acyl-carnitines accumulate when fatty acid oxidation is impaired, and decline when normal mitochondrial fatty acid oxidation is restored. Each of these pathways is a known feature of the cell danger response (CDR) [54].

Lipid metabolism

Disturbances in lipid metabolism were a prominent feature of the Fragile X mouse model (Additional file 1: Figures S3A-D), and its response to treatment (Table 1, Figure 7). Treatment with suramin produced concerted effects in eight different classes of lipids that collectively explained 54% of the top ranked metabolites identified by multivariate analysis. In rank order of importance these were: fatty acid metabolism (12%), eicosanoid metabolism (11%), ganglioside metabolism (10%), phospholipid metabolism (9%), sphingolipids (8%), cholesterol/sterols (2%), cardiolipin (1%), and bile acids (1%) (Table 1). Suramin also had a significant impact on lipid metabolism in the MIA model. Four of the top six metabolic pathways were lipids, explaining 30% of the top ranked VIP scores. In rank order of importance the lipid pathways in the MIA model were: phospholipids (8%), bile acids (8%), sphingolipids (7%), and cholesterol/sterols (7%) [9].

Figure 6 Metabolites and pathways associated with suramin treatment in the Fragile X model. The top 30 most discriminating metabolites and their biochemical pathways ranked by variable importance in projection (VIP) scores. See Additional file 1: Table S3 for a complete list of the top 58 discriminating metabolites. VIP scores ≥1.5 were considered statistically significant. Age 25 weeks, N = 9-11 per group.
Table 1 Biochemical pathways with metabolites changed by antipurinergic therapy in the Fragile X mouse model

<table>
<thead>
<tr>
<th>No.</th>
<th>Pathway name</th>
<th>Measured metabolites in the pathway (N)</th>
<th>Expected pathway proportion (P = N/673)</th>
<th>Expected hits in sample of 58 (P * 58)</th>
<th>Observed hits in the top 58 metabolites</th>
<th>Fold enrichment (Obs/Exp)</th>
<th>Impact (Sum VIP score)</th>
<th>Fraction of impact (VIP) explained (% of 136.0)</th>
<th>Suramin treatment effect (KO-Sur/KO-Sal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purine metabolism</td>
<td>41</td>
<td>0.061</td>
<td>3.54</td>
<td>5</td>
<td>1.41</td>
<td>27.2</td>
<td>20.0%</td>
<td>4/5 Decreased</td>
</tr>
<tr>
<td>2</td>
<td>Fatty acid oxidation and synthesis</td>
<td>39</td>
<td>0.057</td>
<td>3.37</td>
<td>9</td>
<td>2.67</td>
<td>16.8</td>
<td>12.4%</td>
<td>9/9 Decreased</td>
</tr>
<tr>
<td>3</td>
<td>Eicosanoid and resolvin metabolism</td>
<td>36</td>
<td>0.053</td>
<td>3.11</td>
<td>6</td>
<td>1.93</td>
<td>14.7</td>
<td>10.8%</td>
<td>4/6 Increased</td>
</tr>
<tr>
<td>4</td>
<td>Ganglioside metabolism</td>
<td>12</td>
<td>0.018</td>
<td>1.04</td>
<td>6</td>
<td>5.79</td>
<td>13.4</td>
<td>9.8%</td>
<td>6/6 Increased</td>
</tr>
<tr>
<td>5</td>
<td>Phospholipid metabolism</td>
<td>115</td>
<td>0.18</td>
<td>9.93</td>
<td>6</td>
<td>0.60</td>
<td>11.5</td>
<td>8.5%</td>
<td>6/6 Increased</td>
</tr>
<tr>
<td>6</td>
<td>Sphingolipid metabolism</td>
<td>72</td>
<td>0.105</td>
<td>6.21</td>
<td>5</td>
<td>0.80</td>
<td>11.1</td>
<td>8.2%</td>
<td>3/5 Decreased</td>
</tr>
<tr>
<td>7</td>
<td>Microbiome metabolism</td>
<td>33</td>
<td>0.047</td>
<td>2.85</td>
<td>3</td>
<td>1.05</td>
<td>6.7</td>
<td>4.9%</td>
<td>2/3 Decreased</td>
</tr>
<tr>
<td>8</td>
<td>SAM, SAH, methionine, cysteine, glutathione metabolism</td>
<td>22</td>
<td>0.032</td>
<td>1.90</td>
<td>3</td>
<td>1.58</td>
<td>6.7</td>
<td>4.9%</td>
<td>3/3 Increased</td>
</tr>
<tr>
<td>9</td>
<td>Vitamin B3 (Niacin, NAD+) metabolism</td>
<td>8</td>
<td>0.012</td>
<td>0.69</td>
<td>2</td>
<td>2.90</td>
<td>5.2</td>
<td>3.8%</td>
<td>1/2 Increased</td>
</tr>
<tr>
<td>10</td>
<td>Glycolysis and gluconeogenesis</td>
<td>18</td>
<td>0.026</td>
<td>1.55</td>
<td>2</td>
<td>1.29</td>
<td>4.2</td>
<td>3.1%</td>
<td>2/2 Decreased</td>
</tr>
<tr>
<td>11</td>
<td>Cholesterol, cortisol, non-gonadal steroid metabolism</td>
<td>29</td>
<td>0.042</td>
<td>2.50</td>
<td>2</td>
<td>0.80</td>
<td>3.2</td>
<td>2.4%</td>
<td>2/2 Increased</td>
</tr>
<tr>
<td>12</td>
<td>Nitric oxide, superoxide, peroxide metabolism</td>
<td>6</td>
<td>0.009</td>
<td>0.52</td>
<td>1</td>
<td>1.93</td>
<td>2.1</td>
<td>1.5%</td>
<td>Increased</td>
</tr>
<tr>
<td>13</td>
<td>Cardiolipin metabolism</td>
<td>12</td>
<td>0.018</td>
<td>1.04</td>
<td>1</td>
<td>0.97</td>
<td>2.0</td>
<td>1.4%</td>
<td>Decreased</td>
</tr>
<tr>
<td>14</td>
<td>Bile salt metabolism</td>
<td>8</td>
<td>0.012</td>
<td>0.69</td>
<td>1</td>
<td>1.45</td>
<td>1.8</td>
<td>1.3%</td>
<td>Increased</td>
</tr>
<tr>
<td>15</td>
<td>Branch chain amino acid metabolism</td>
<td>13</td>
<td>0.019</td>
<td>1.12</td>
<td>1</td>
<td>0.89</td>
<td>1.7</td>
<td>1.2%</td>
<td>Increased</td>
</tr>
<tr>
<td>16</td>
<td>Isoleucine, valine, threonine, or methionine metabolism</td>
<td>4</td>
<td>0.006</td>
<td>0.35</td>
<td>1</td>
<td>2.90</td>
<td>1.7</td>
<td>1.2%</td>
<td>Increased</td>
</tr>
<tr>
<td>17</td>
<td>Pyrimidine metabolism</td>
<td>31</td>
<td>0.051</td>
<td>2.68</td>
<td>1</td>
<td>0.37</td>
<td>1.6</td>
<td>1.1%</td>
<td>Decreased</td>
</tr>
<tr>
<td>18</td>
<td>Krebs cycle</td>
<td>17</td>
<td>0.025</td>
<td>1.47</td>
<td>1</td>
<td>0.68</td>
<td>1.6</td>
<td>1.1%</td>
<td>Increased</td>
</tr>
<tr>
<td>19</td>
<td>Vitamin B6 (pyridoxine) metabolism</td>
<td>5</td>
<td>0.007</td>
<td>0.43</td>
<td>1</td>
<td>2.32</td>
<td>1.5</td>
<td>1.1%</td>
<td>Increased</td>
</tr>
<tr>
<td>20</td>
<td>Pentose phosphate, glucuronate metabolism</td>
<td>11</td>
<td>0.016</td>
<td>0.95</td>
<td>1</td>
<td>1.05</td>
<td>1.5</td>
<td>1.1%</td>
<td>Increased</td>
</tr>
<tr>
<td></td>
<td>20 of 60 pathways dysregulated</td>
<td>532 (0.79 x 673)</td>
<td>79% (532/673)</td>
<td>46 (0.79 x 58)</td>
<td>58</td>
<td>136.0</td>
<td>100%</td>
<td>33/58 Increased</td>
<td></td>
</tr>
</tbody>
</table>

Pathways were ranked by their impact measured by summed VIP ΣVIP; variable importance in projection) scores. A total of 58 metabolites were found to discriminate suramin-treated and saline-treated Fragile X knockout groups by multivariate partial least squares discriminant analysis (PLS-DA). Significant metabolites had VIP scores ≥ 1.5. Twenty (33%) of the 60 pathways interrogated had at least one metabolite with VIP scores ≥ 1.5. The total impact of these 58 metabolites corresponded to a summed VIP score of 136. The fractional impact of each pathway is quantified as the percent of the summed VIP score and displayed in the final column on the right in the table. Antipurinergic therapy with suramin not only corrected purine metabolism, but also produced changes in 19 other pathways associated with multi-system improvements in ASD-like symptoms.
Shared metabolic pathways in the MIA and Fragile X models

We compared the 20 pathways found to be altered in the Fragile X model (Table 1) to the 18 metabolic pathways that were altered in the maternal immune activation (MIA) model [8]. A Venn diagram of this comparison revealed 11 pathways that were shared between these two models (Figure 8). These were purines, the microbiome, phospholipid, sphingolipid, cholesterol, bile acids, glycolysis, the Krebs cycle, NAD⁺, pyrimidines, and S-adenosylmethionine (SAM), S-adenosyl-homocysteine (SAH), and glutathione (GSH) metabolism.

Discussion

The Fragile X mouse model is one of the most commonly studied genetic mouse models of ASDs. Using this genetic model, we found that antipurinergic therapy (APT) with suramin improved the behavioral, metabolic, and the synaptic structural abnormalities. We previously showed that the ASD-like symptoms of the maternal immune activation (MIA) mouse model were also improved by antipurinergic therapy [8]. Regardless of the model - whether ‘environmental’ like the MIA model, or ‘genetic’ like the Fragile X knockout model - antipurinergic therapy with suramin corrected the abnormalities that characterized each model. Our results support the novel conclusion that antipurinergic therapy is operating by a mechanism that lies close to the root cause of the core behaviors and development in both the environmental MIA, and the genetic Fragile X models of ASD. This mechanism appears to be traceable to mitochondria and regulated by purinergic signaling.
We considered several caveats before drawing these conclusions. The Fragile X knockout mouse model is an imperfect model of human Fragile X syndrome. Human Fragile X syndrome is not the result of knockout of the gene, but rather an expansion of a CGG triplet repeat in the 5’ untranslated region of the gene, and variable phenotypes have been reported in the mouse model [26]. As with many syndromic, single gene disorders, human Fragile X syndrome itself is an imperfect model of non-syndromic ASDs. At least 40% of the boys [55], and over 90% of the girls [56] with Fragile X syndrome do not meet the diagnostic criteria for ASD. We studied the most commonly reported genotype of the Fmr1 knockout mouse model, which was backcrossed for 11 generations on the genetic background of the FVB strain of laboratory mouse. We compared the behavioral features of this Fmr1 knockout to the FVB control strain. A potential weakness of our study is that Fmr1 knockout and FVB control strains are not littermate controls raised by the same mothers. Some behavioral differences might be the result of differences in maternal genotype and rearing. However, the point of our study was not to reconfirm the known behavioral and molecular features of Fragile X model, but rather to ask the question, ‘Are the abnormalities treatable with antipurinergic therapy (APT)?’

Our data suggest that they were.

Other treatments have also been successful in mitigating the symptoms of the Fragile X mouse by addressing specific neurotransmitter or synaptic defects. These have included drug inhibition of glutamatergic signaling with mGluR5 inhibitors [57], inhibition of endocannabinoid signaling [41], and genetic inhibition of amyloid β precursor protein (APP) [58]. A number of metabolic therapies have also been successful. These have included acetyl-L-carnitine [59], omega 3 fatty acid therapy [60], and inhibition of the metabolic control enzyme glycogen synthase kinase 3β (GSK3β) [32]. Remarkably, we found that antipurinergic therapy addressed each of these abnormalities with a single intervention. Minocycline has also shown benefit in both human Fragile X syndrome [61] and mouse models [62]. Interestingly, many of the neuroprotective and anti-inflammatory effects of minocycline have been traced to its actions on mitochondrial function [63,64], and may also act to decrease hyperpurinergia bymoderating mitochondrial ATP synthesis.

Purine metabolism was the most discriminating single metabolic pathway in the Fragile X mouse model treated with suramin, contributing 20% of the top ranked metabolites identified by multivariate analysis (Table 1, Figure 7). An important pharmacologic mechanism of action of suramin is as a competitive antagonist of extracellular ATP and other nucleotides, acting at purinergic receptors [9,65]. Suramin also has nearly 30 other actions [18]. Our metabolomic data show that the major functional impact of suramin in the Fragile X mouse model was on purine metabolism (Table 1). Purinergic signaling abnormalities linked to autism-like behaviors are not restricted to animal models. Several inborn errors in purine [15] and pyrimidine metabolism [14] are well known to be associated with autism-like behaviors [9]. In addition, abnormalities in purine metabolism leading to hyperuricosuria in 20% of children with non-syndromic autism have been described [66]. The specific link between purine metabolism in ASD and purinergic signaling was first made in 2012 [67], and tested in the MIA mouse model in 2013 [8]. Interestingly, brain purinergic signaling was recently identified as one of the top gene expression pathways correlated with abnormal behaviors in children with ASD [68].

We next compared the metabolomic results for both the maternal immune activation (MIA) [9] and Fragile X mouse models of ASD (Figure 8). We found 11 metabolic pathways that were common to both models. These were purines, microbiome, phospholipids, sphingolipids/gangliosides, cholesterol/sterol, bile acids, glycolysis, mitochondrial Krebs cycle, NAD+/H+, pyrimidines, and S-adenosylmethionine/homocysteine/glutathione (SAM/SAH/GSH) metabolism. Seventeen of the 20 metabolic pathway disturbances found in the Fragile X mouse model have been described in human ASD. These include purine metabolism [15,66], fatty acid oxidation [69], microbiome [70,71], phospholipid [72], eicosanoid [73-75], cholesterol/sterol [76], sphingolipids and gangliosides [77,78], glycolysis, Krebs cycle and mitochondrial metabolism [79-81], nitric oxide and reactive oxygen metabolism [82], branched chain amino acids [83], propionate and propiogenic amino acid metabolism (IVTM; Ile, Val, Thr, Met) [84], pyrimidines [14], SAM/SAH/glutathione [85], vitamin B3-NAD+ metabolism [86], and vitamin B6-pyridoxine metabolism [87]. We found plasma cardiolipin was therapeutically downregulated by suramin. Although elevations in plasma cardiolipin species have not yet been reported in children with autism, anti-cardiolipin antibodies have [88].

The upregulation of glycolysis and downregulation of mitochondrial Krebs cycle seen in the Fragile X mouse model of ASD are a direct consequence of the regulated decrease in mitochondrial oxidative phosphorylation (oxphos). This was corrected by suramin (Figure 7). The conditions of increased substrate supply and decreased utilization, create a poised state of mitochondrial underfunction associated with increased reserve capacity. When basal mitochondrial oxygen consumption is decreased, cellular heat production from mitochondria is reduced. This can lead to a decrease in basal body temperature. We observed a 0.7°C decrease in basal body temperature in the Fragile X mice (Figure 1G). A similar decrease was seen in the MIA mouse model [8]. A poised increase in mitochondrial reserve capacity can also produce primed mitochondria with
the capacity to respond explosively to stress. In some cases, this is manifest as a large increase in mitochondrial reactive oxygen species (ROS) production. Interestingly, an increase in mitochondrial reserve capacity and increased ROS production under stress has been documented in 32% of lymphocytoblastoid cell lines (8/25 = 32%; 95% CI 15-54%) derived from children with ASD [79]. When an explosive discharge of mitochondrial ROS occurs transiently, uncoupling can result, leading to a large increase in mitochondrial heat production and high fevers. Superfevers of 104.5° to 105.5°F have been described in occasional patients with Fragile X during infectious illness (personal communication, Randi J. Hagerman).

When cellular resources are redirected away from work, changes in activity-dependent gene expression result in a reduction in unused proteins [89]. With time these under-utilized cells lose the capacity for specific kinds of work and can enter a physiologically-induced hypometabolic state that protects the cell from harsh extracellular conditions and promotes cellular persistence. This state shares metabolic similarities to the dauer state in C. elegans [90], embryonic diapause in mammals [91], plant seed development [92], and stem cells that can be recruited back into cycle after stasis or injury [93]. This latter point suggests that tissues and organs can exist as shifting mosaics of fully active cells, and hypometabolic cells that can be called into action, depending on environmental conditions. In each case, mitochondrial fatty acid oxidation is decreased to facilitate intracellular lipid accumulation needed for persistence metabolism. Fatty acid oxidation was the second most discriminating pathway in the Fragile X mouse model treated with suramin, contributing 12% of the top ranked metabolites identified by multivariate analysis (Table 1, Figure 7). Several acyl-carnitine species were elevated (Table 1, Figure 6). This is a hallmark of diminished mitochondrial fatty acid oxidation [94].

Similar elevations of acyl-carnitines have been reported in 17% of human ASD [69]. Suramin treatment decreased plasma acyl-carnitine levels in the Fragile X model (Figures 6 and 7).

Eicosanoid metabolism was the third most discriminating metabolic pathway in the Fragile X mouse model treated with suramin, contributing 11% of the top ranked metabolites identified by multivariate analysis (Table 1, Figure 7). Eicosanoid metabolism plays a crucial role in regulating the balance of inflammation and anti-inflammation after acute injury, during chronic disease [95,96], and in the antiviral and antibacterial innate immune response [97]. Upregulated lipoxygenase activity in the Fragile X mouse model was recently predicted on the basis of FMRP binding to lipoxygenase mRNA, and disinhibition in the knockout, in a medical hypothesis paper by Beaulieu [75]. The predicted increase in hydroxyeicosatetraenoic acid (HETE) species would support mGluR5-mediated long-term depression (LTD) [98], which is a well-known problem in Fragile X syndrome [99]. We found that suramin treatment increased two epi(e)oxyeicosatrienoic acids (EETs), and decreased a stable metabolite of platelet thromboxane A2 (TXA2), 11-dehydro-thromboxane B2 (Figures 6 and 7). The increase in EETs has several physiologic benefits. These include a decrease in ER stress [100], an increase in AMPK activation, and an increase in autophagy [101]. The increase in EETs and decrease in TXA2 were consistent with the anti-inflammatory action of antipurinergic therapy with suramin.

Considered as a coordinated system, these data show that the metabolic disturbances in the mouse models of ASD are similar to those found in human ASD (Figure 8). The data provide strong support for the biochemical validity of both the MIA and Fragile X mouse models. In addition, the metabolomics data revealed for the first time the surprising observation that the environmental MIA and the genetic Fragile X mouse models, and human ASD, all shared disturbances in biochemical pathways previously identified as features of the evolutionarily conserved cell danger response (CDR) (Figure 8) [54]. We found that in the mouse models, both the ASD-like symptoms and the biochemical features of the CDR were corrected by antipurinergic therapy with suramin.

Purinergic signaling begins with the regulated release of purine nucleotides like ATP, or pyrimidines like UTP, through channels in the cell membrane for autocrine and paracrine signaling, and by vesicular fusion during neurotransmission [102,103]. Purinergic (P2X and P2Y) receptors bind to extracellular ATP and other nucleotides as a means of sensing cellular health and danger [54,104]. In this usage, the word ‘danger’ is not an anthropomorphic construct. Danger has a chemical meaning in cells that equates to metabolic mismatches between substrate/product ratios and the gene-coded and allosterically regulated equilibrium constant (K_{eq}) of each relevant enzyme located in mitochondria, and the conductances of transporters in and out of the organelles [105]. These mismatches are coupled to mitochondrial oxygen consumption, electron flow, redox, and oxidative phosphorylation, and produce a sequence of graded metabolic responses that alter DNA methylation [106], histone modifications [107], and lead to new cellular states of gene expression and function [108]. In most differentiated cells, mitochondria make 90% of the ATP, and process 90% of the carbon skeletons and activated sulfur intermediates used to create the building blocks for cell growth, function, detoxification, and repair. Mitochondria serve as the cellular translators of real-time metabolic information, integrating it with the genetics of the cell, and providing feedback in the form of retrograde signals to the nucleus [109] used to change gene expression.
When extracellular ATP binds to purinergic receptors on the cell surface it is participating in what we call a ‘long-path’ retrograde signaling circuit from mitochondria to the unstirred water layer on the cell surface, to neighboring cells, or back through autologous cell membrane G-protein coupled receptors and ion channels, to calcium signaling, back to mitochondria and other cellular compartments, and ultimately to the nucleus, changing gene expression. This extracellular purinergic signaling circuit is well known to regulate innate immunity, oxidative stress and shielding [110], inflammation, and cytokine production [104], sensory perception [111], in addition to sleep, cognition [112], and the autonomic nervous system [113]. Intracellular adenine nucleotides like NAD+/H, NADP+/H, cyclic-ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP) are also traceable to mitochondria, are interconverted by the enzyme CD38 [114], and play important roles in a ‘short-path’ retrograde signaling circuit that regulates redox, calcium release, sodium and potassium channels [115], synaptic long-term depression [116], autophagy [117], defense against intracellular pathogens [118], and social behavior by modulating oxytocin secretion [119]. These studies underscore the surprising role of extracellular and intracellular purines in regulating a diverse array of biological phenomena, ranging from innate immunity and cellular defense, to sleep, cognition, behavior, perception, affect, memory, and learning.

Although our results showing the correction of ASD-like behaviors, and improvements in metabolism and brain synaptic abnormalities in the Fragile X mouse model are encouraging, there are several caveats that must be considered before extending the results to humans. First, while the Fragile X mouse model captures several features of ASD, no animal model can fully capture the complexities of human behavior. Second, suramin is a poor drug choice for chronic use because of potentially toxic side effects that can occur with prolonged treatment [120]. Third, human forms of ASD may occur by mechanisms not captured by the Fragile X model. Mechanisms that do not involve the pathological persistence of the cell danger response (CDR) [54] may not be amenable to antipurinergic therapy. Newer, safer, more selective antipurinergic drugs, and human clinical trials will be necessary to answer these questions.

Conclusions
The data reported in this study show that the efficacy of antipurinergic therapy cuts across disease models of ASD. Both the environmental MIA [8,9] and the genetic Fragile X mouse models (Figures 1, 2, 3, 4, 5, 6, 7, 8, Tables 1 and 2) responded with complete, or near-complete, resolution of symptoms, even when treatment was not begun until adolescence, or adulthood. The data support the hypothesis that disturbances in purinergic signaling may be a common denominator and effective therapeutic target in both the environmental MIA and genetic Fragile X mouse models of autism spectrum disorders.

Additional file

Additional file 1: This supplement includes a single PDF file with: supplementary Results, Methods, References, three tables, and four figures. Figure S1. Confirmation of Fragile X protein expression knockout in the Fmr1/FVB Mouse Model. Figure S2. Acoustic startle and prepulse inhibition. Figure S3. Acyl-carnitine studies in Fmr1 knockout mouse models. Figure S4. Western blot assay linearity and precision analysis. Table S1. Synaptic proteins interrogated and antibodies used. Table S2. Biochemical pathways and metabolites interrogated. Table S3. Metabolites changed by antipurinergic therapy in the Fragile X model.
Abbreviations
APP: Amyloid β precursor protein; APT: Antipurinergic therapy; ASD: Autism spectrum disorders; CTq: Complement factor 1 subunit q; CDR: Cell danger response; fmr1: Fragile X mental retardation gene locus 1; IP3: Inositol triphosphate; MIA: Maternal immune activation; P2X: Ionotopic purinergic receptors; P2Y: G-protein coupled purinergic receptors; TDP43: TAR DNA binding protein 43.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JCN coordinated the study, conducted the experiments, analyzed the data, and wrote parts of the manuscript. KL and JCN did the metabolomics. LW helped prepare the synaptosomes, processed them for electron microscopy, and did the western studies. ATB developed the bioinformatic tools for the metabolic pathway renderings in Cytoscape. SBP directed the behavioral studies and their analysis. RKN assembled the team, designed, funded and directed the project, analyzed the data, and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This research was supported by grants from the Jane Botsford Johnson Foundation (RKN), with additional support from the UCSD Children’s Health Healthcare System, La Jolla, CA, USA. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Leanne Chukoskie, Jeanne Townsend, Sophia Colamarino, Richard Frye, John Rodakis, Ellen Heber-Katz, and Oswald Quehenberger for helpful discussions and comments. We thank Laura Dugan for providing the rotarod. We thank Dr. Malcolm Wood and the Core Microscopy Facility at The Scripps Research Institute, La Jolla, CA, for performing the electron microscopy.

Author details
1 The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St, Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA. 2 Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA. 3 Department of Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA. 4 Department of Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA. 5 Department of Psychiatry, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA. 6 Research Service, VA San Diego Healthcare System, La Jolla, CA, USA. 7 Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA. 8 Current Address of KRW: General Atomics, Inc, San Diego, CA, USA.

Received: 8 September 2014 Accepted: 16 December 2014
Published: 13 January 2015

References

Additional File 1

Additional File 1. This supplement includes a single PDF file with: supplementary Results, Methods, References, three tables, and four figures.

Supplementary Results

Incidental Note of Decreased Acyl-Carnitines in FVB Wild-type Controls

In the course of our studies comparing the Fragile X knockout animals to wild-type FVB controls, we found an apparent fatty acid oxidation defect that was characterized by a 2-7 fold increase in acyl-carnitine esters in the plasma (Additional File 1: Figure S3A-D). However, when we evaluated the same Fmr1 knockout allele on a C57BL6/J (B6) background, we discovered that the actual difference was not due to the knockout per se. Instead, we found an unusually low level of acyl-carnitines in the FVB controls compared to B6 wild-type controls (Additional File 1: Figure S3B). This created the appearance of elevated carnitines in the Fmr1 knockout on the FVB background, even though the quantitative levels were nearly identical in all animals with Fragile X, regardless of the genetic background (Additional File 1: Figure S3A-D).

Decreased Acyl-Carnitine Levels in the FVB Wild-type Controls

Metabolomic analysis revealed a 2-7-fold increase in plasma acyl-carnitine esters in the FMR knockout when compared to the FVB background controls (Additional File 1: Figure S3A). This pattern appeared at first to be a forme fruste of Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), also known as glutaric aciduria type II (GAI11). MADD is an inborn error of fatty acid oxidation. It results from mutations in the proteins that transfer electrons from mitochondrial fatty acid, branched chain amino acids, and lysine and tryptophan oxidation to the mitochondrial electron transport chain (ETFQO), or from mutations in a carrier protein for the cofactor riboflavin [1]. Severe forms of MADD produce a characteristic 5-500-fold increase in plasma
acyl-carnitine esters spanning four to 20 carbons (C4-C20) in length, resulting in many acyl-carnitine concentrations greater than 100 µM. The clinical features of MADD are variable, ranging from overwhelming acidosis and death in the first few days of life [2], to riboflavin-responsive muscle weakness presenting after 25 years of age [3]. Non-monogenic, seasonal and dietary forms of MADD are known in horses [4], and can be caused by riboflavin deficiency in rodents [5]. The biochemical phenotype in the FVB/Fmr1 knockout mice was an imperfect match to MADD, not only because it was quantitatively milder, but also because it was qualitatively different. For example, glutarylcarnitine is not elevated in the Fmr1 knockout (Additional File 1: Figure S2a), but is elevated in authentic Glutaric Aciduria Type II (GAII; MADD). In addition, unesterified carnitine (C0), acetyl (C2), and propionyl (C3) carnitines were elevated in the FMR knockout mouse (Table 2), but are more typically decreased or normal in authentic MADD [6].

To investigate the MADD-like phenotype, we first looked for evidence of a defect in riboflavin metabolism as reflected by differences in riboflavin, FMN and FAD in the plasma. Riboflavin and FMN were normal in the Fmr1-KO/FVB mice (data not shown). FAD was elevated by 53% in the Fmr1-KO/FVB animals compared to FVB controls, and was further increased by suramin treatment. These data suggested that the increase in plasma FAD was a beneficial response to a relative deficiency in mitochondrial fatty acid oxidation caused by the Fmr1 knockout on the FVB background, and not the cause of the MADD-like acyl-carnitine profile. We next confirmed that the Fmr1 knockout did not produce a secondary defect in ETFQO expression by western analysis (data not shown). We next purchased Fmr1 knockout animals bred onto the C57BL/6J background and repeated the metabolomic studies on the Fmr1-KO/B6 animals compared to B6 controls. The results were surprising. We found that FVB wild-type control animals have acyl-carnitine levels that are 2-60 fold lower than C57BL/6J wild-type control animals (Figure S3B). The absolute concentrations of the plasma acyl-carnitines in both Fmr1 knockouts (FMR/FVB
and FMR/B6) were virtually indistinguishable (Figure S3C). However, because the FVB control strain has acyl-carnitine concentrations that are 2-60 fold lower than B6 controls, the Fmr1 knockout produced an apparent forme fruste of the MADD phenotype when compared to the FVB control strain. When the Fmr1 knockout was examined on the C57BL/6J background, there was no MADD-like phenotype (Additional File 1: Figure S3D). These data show that the same mutation (Fmr1 knockout) produces a different metabolic phenotype on different genetic backgrounds.

Acoustic Startle Was Decreased in Knockout and Unchanged by Suramin

Fragile X mice fail to show the normal developmental increase in acoustic startle with age. When measured after 3 months of age, they are less sensitive to acoustic startle than controls despite normal hearing [7]. We found that the Fragile X mice had startle magnitudes at pulse intensities of about 100-110db that were 44% lower than wild-type. Suramin did not change the startle magnitude in Fmr1 knockout or FVB control mice (Additional File 1: Figure S2A).

We also measured prepulse inhibition of startle (PPI) in the startle session. PPI exploits the observation that a soft sound (prepulse) delivered 50 msec or more before a loud sound will reduce the startle magnitude measured as jump force compared to the loud sound given alone. This is widely studied as a measure of sensorimotor gating, but literature reports of PPI abnormalities in the Fragile X mouse model have been mixed and age-dependent [7-10]. No consistent PPI differences were observed between Fmr1 knockouts and controls. Suramin had no effect on PPI (Additional File 1: Figure S2B).

Locomotor Activity

Locomotor activity, hyperactivity measured as total distance traveled, hole poke exploration, and vertical investigative behavior (rearing) were quantified by automated beam break analysis in
the mouse behavioral pattern monitor (mBPM) [11]. No significant differences were found between the Fragile X knockout model and controls, or between saline treatment and suramin (data not shown).

Supplementary Methods

Social Preference and Novelty

Social preference and novelty were tested using a three-chambered box as previously described [12], with modifications designed to examine novel stranger interactions. Briefly, a Plexiglas box (60cm L x 60cm W x 30cm H) was divided into 3 equal compartments by Plexiglas partitions containing an opening through which the mice could freely enter the 3 chambers. All testing was performed between the hours of 8 am and 1 pm. The test was conducted in three 5-minute phases. In the habituation phase (phase I), the test mouse was allowed to explore the empty chambers for 5 minutes. In the social preference phase (phase II), a stainless steel wire cup (Galaxy Cup, Spectrum Diversified Designs, Inc., Streetsboro, OH) was placed into each of the two outer chambers. The test mouse was briefly removed and an unfamiliar mouse, age and sex matched, was placed under one of the wire cups. The test mouse was then gently placed back in the arena and given an additional 5 minutes to explore. In the social novelty phase (phase III), each mouse was further tested in a third 5-minute session to quantitate preference to spend time with a new stranger. The test mouse was briefly removed, and a new unfamiliar mouse was placed under the wire cage that had been previously empty. The test mouse thus chooses between the first already-investigated and now familiar mouse, and the novel unfamiliar mouse (stranger 2). Room lighting for social behavior studies was 1-2 lux, measured using a Minolta IV F light meter. An overhead camera (Sony CCD Digital Ultra Pro Series, able to detect images down to 0.05 lux) and Ethovision v3 video tracking software (Noldus, Leesburg VA) were used to record the amount of time spent in each chamber and the number of entries.
into each chamber. In addition, a human observer, blinded to the treatment groups, scored time spent sniffing each wire cage, using Ethovision Observer software. Only male mice were tested. Stranger mice were habituated to a wire cup for at least 30 minutes before use. Stranger mice were used up to 4 times before new strangers were cycled into the experiment. The location (left or right) of the stranger 1 and stranger 2 mouse alternated across subjects. Results of social behavior testing are reported as the percent of time spent interacting with a stranger mouse vs empty cup in phase II (social preference), and as the percent of time spent interacting with the familiar mouse (stranger 1) vs the unfamiliar mouse (stranger 2) during phase III (social novelty).

T-Maze
The T-maze apparatus is constructed of black plexiglass. The protocol is adapted from Frye and Walf [13]. The main stem is 45 cm long, 10 cm wide, and 24 cm high. Each side arm is 35 cm long, 10 cm wide, and 24 cm high. The side arms are separated from the stem by horizontal sliding doors. A start box, 8 cm in length, is also separated by a horizontal sliding door. Testing was conducted by an examiner that was blinded to the experimental groups, under low illumination, between 8 am and 1 pm. Only male animals were tested. Each mouse was tested in a session of 11 successive trials. The mice were not habituated to the maze. For the first trial only, one goal arm was closed off, forcing the mouse to choose the only open arm. Subsequent trials were by free choice. The chosen arm, and the time it takes for the mouse to choose (latency) were recorded. There was no confinement time in the chosen arm or in the start box. The percentage of alternated choices (mean +/- SEM) is reported.

Acoustic Startle and Prepulse Inhibition
Startle and PPI testing were performed in commercial startle chambers (SRLABsystem, San Diego Instruments, San Diego, CA). Within each chamber there was a Plexiglas cylinder (3.7cm
in diameter) into which the animal was placed. Sudden movements by the mouse were
detected by a piezoelectric accelerometer attached below the cylinder. A loudspeaker provided
the broadband background noise and acoustic stimuli, and the whole apparatus was housed
within the ventilated, sound-attenuating chamber (39cm x 38cm x 58cm). A standard computer
controlled stimulus presentations and response measures. The experimental session consisted
of a 5 min acclimatization period to a 65 dB background noise (continuous throughout the
session). During the session, 17 trial types were presented: six 40ms startle pulses (80, 90, 100,
110, or 120db; pulse alone); a no stimulus trial (nostim); five 20ms prepulse + pulse
combinations [67,69, 73, or 81 dB prepulses followed 100ms later by a P120 stimulus, or 73 dB
prepulse followed 100 ms later by a P105 stimulus; prepulses + pulse]; five 20ms prepulse +
pulse combinations with varying inter-stimulus intervals [73 dB prepulse followed 20, 70, 120,
360, or 1080ms later by a P120 stimulus; prepulses (vISI) + pulse]. Trial types were presented
in a varied order (5 presentations of each pulse alone trial, 5 presentations of each prepulses +
pulse combination, 5 presentations of each prepulses (vISI) + pulse combination, and nostim
trials occurring between each trial) with an average inter-trial interval (ITI) of 15 s. In addition, 5
of the pulse alone trials, which were not included in the calculation of PPI values, were
presented at the beginning of the test session to achieve a relatively stable level of startle
reactivity for the reminder of the session (based on the observation that the most rapid
habituation of the startle reflex occurs within the first few presentations of the startling stimulus
[66]. Another 4 of the pulse alone trials, which were also not included in the calculation of PPI
values, were presented at the end of the test session to assess startle habituation.

Marble Burying
Marble burying was used to quantify spontaneous digging as a measure of a normal, genetically
determined trait in rodents that has been shown to be uncorrelated with classical measures of
anxiety [14]. Standard polycarbonate mouse cages (7.5” x 11.5” x 5”) were used without metal
fittings. Each cage was filled with 1/8-inch sieve corncob bedding to a depth of 2.5 inches. Twenty glass marbles (1 cm diameter) were placed in 4 evenly spaced rows of 5 on top of the bedding. The mice were habituated to the testing room for 30 minutes, and then each mouse was placed individually into a marble-containing cage. Testing was conducted in a semi-dark room. After 30 minutes, the number of buried and unburied marbles was counted. Marbles that were at least 2/3 covered with bedding were counted as buried.

Mouse Behavioral Pattern Monitoring

Ten mouse BPM chambers were used to assess spontaneous exploratory behavior as described previously [15]. Each chamber was illuminated from a single source of red light above the arena. The arena had dimensions of 30.5cm×61cm×38cm and was equipped with a Plexiglas holeboard floor with 3 floor holes and 8 wall holes. Holepoking behavior was detected using an infrared photobeam. The location of the mouse was recorded every 0.1 s using a grid of 12×24 infrared photobeams that were located 1 cm above the floor. The position of the mouse was assigned to 9 unequal regions described by a tic-tac-toe pattern. Rearing behavior was recorded using an array of 16 infrared photobeams 2.5cm above the floor aligned with the long axis of the chamber. At the start of each test session, mice were placed in the bottom left hand corner of the chamber, facing the corner and the test session started immediately. Four main factors were investigated: locomotor activity as measured by transitions (calculated as a movements between the 9 regions); surface investigatory behavior as measured by holepoking; vertical investigatory activity was measured as total rearing; and center entries were quantified.

Western Blot Assay Validation

We confirmed the linearity and quantitative precision of the Western blot assays as follows. First, we selected the most abundantly expressed protein that had the highest signal intensity by Western ECL analysis, and the least abundant protein that was altered by suramin treatment.
These proteins were pGSK3β(Ser9) (Figure 3) and StAR (Figures 3, 4P), respectively. We next confirmed that these proteins were being measured within the linear dynamic range of the assay by performing serial dilutions of synaptosomes loaded in each lane from 5 µg/lane to 20 µg/lane, comparing the ECL signal intensity curves. Least squares regression analysis showed that the assays were within the linear range for both proteins (Additional File 1: Figure S4AB). We also confirmed the linear dose response of P2Y1 and P2X3, two other proteins with signal intensities that were intermediate between GSK3β and StAR (Additional File 1: Figure S4CD). Second, we repeated the assays for these proteins on 3 separate days, using independently loaded SDS-PAGE gels and blots. The ratiometric precision (coefficient of variation = SD/mean) of the observed KO-suramin/KO-saline results was +/-15% (Additional File 1: Figure S4E). Two-way analysis of variance confirmed that between-day variation contributed only 0.3-1% of the total assay variance (Additional File 1: Figure S4F).

Notes on Non-Littermate Controls

Although genetically appropriate and widely used in treatment studies [16], the use of non-littermate, wild-type background mouse strains as controls for knockout animals has significant limitations for metabolomic and behavioral studies. The commercially available FVB control strain for the Fragile X mice has been bred separately for over 8 years since the original 11 backcrosses used to transfer the Fmr1 knockout to the FVB strain background in 2006. In addition to genetic drift, the maternal metabolic environment is different in homozygous wild-type (X⁺/X⁺) dams compared to homozygous Fmr1 knockouts (X⁰/X⁰). The different gestational metabolic environments can have both epigenetic and metabolic effects on the offspring that can interact with the direct effects of the knockout. The use of littermate controls produced by mating heterozygous (X⁺/X⁰) dams with wild-type (X⁺/Y) sires overcomes this problem, but adds significantly to the duration and cost of the experiments, and does not answer questions
directed at the knockout response to treatment. We report the efficacy of suramin treatment to improve social behavior, metabolism, and synapse structure in the context of the Fragile X model. Future studies will be needed to directly compare suramin effects in wild-type littermate controls.

Supplementary References

Additional File 1: Figure Legends

Additional File 1: Figure S1. Confirmation of Fragile X Protein Expression Knockout in the Fmr1/FVB Mouse Model.
The results of Western immunoblot analysis are illustrated for cerebral extracts from two knockout samples (FMR/FVB KO#1 and #2), two control samples (FVB WT#1 and #2), and one C57BL/6J sample.

Additional File 1: Figure S2. Acoustic Startle and Prepulse Inhibition.
(A) Fragile X knockout had decreased acoustic startle compared to FVB controls. Pulse intensities of 120dB produced a startle magnitude of 625 +/-65 in WT-Sal, and 657 +/-70 in WT-Sur animals, and 425 +/-58 in the KO-Sal, and 431 +/-59 in the KO-Sur animals. A pulse intensity of 105 dB in FVB controls produced a startle magnitude equivalent to 120 dB in the Fmr1 knockout animals. (B) Prepulse Inhibition Showed No Consistent Differences Between Fragile X Knockouts and Controls. Significant differences in PPI were observed at different pulse intensities of 120 vs 105 dB. However, there was no difference between wild-type and KO genotypes at the same pulse intensities, and suramin did not alter this. 2-way ANOVA Prepulse intensity main effect F(1,82) = 28.46, p < 0.0001. Treatment Group F(3,82) = 0.353, p = ns. Suramin treatment did not change PPI. N = 10-12 per group, 16-week old males.

Additional File 1: Figure S3. Acyl-Carnitine Studies in Fmr1 Knockout Mouse Models.
(A) Acyl-Carnitine Profile in the Fragile X Model on an FVB Background. (B) Plasma Acyl-Carnitines in the FVB Background are Lower than in C57BL/6J. (C) The Biochemical of Effect Fmr1 Knockout on Absolute Acyl-Carnitine Concentrations is Similar in Both
FVB and C57BL6/J Genetic Backgrounds. (D) *Fmr1* Knockout on the C57BL/6 Background Does Not Produce Elevated Acyl-Carnitines.

Additional File 1: Figure S4. Western Blot Assay Linearity and Precision Analysis.

Linear regression analysis showed the assays to be linear with a mean correlation coefficient of $r^2 = 0.984$. (A) pGSK3β. (B) StAR. (C) P2Y1. (D) P2X3. (E) Assay Precision. SDS-PAGE and Western blots were prepared independently on 3 separate days using brain synaptosome samples from 5 animals from each of the two treatment groups (KO-Saline, KO-Suramin). Analysis of replicate results (N = 15 KO-Sal, 15 KO-Sur) revealed a mean assay precision of +/- 15%. (F) 2-Way ANOVA Table of Western Blot Assays. Analysis of variance revealed that the between-day assay variation contributed 0.3-1% of the variance. Suramin treatment explained 24-78% of the variance.
Additional File 1: Tables

Additional File 1: Table S1. Synaptic Proteins Interrogated and Antibodies Used.

Additional File 1: Table S2. Biochemical Pathways and Metabolites Interrogated.

Additional File 1: Table S3. Metabolites Changed by Antipurinergic Therapy in the Fragile X Model.
Additional File 1: Table S1. Synaptic Proteins Interrogated and Antibodies Used.

<table>
<thead>
<tr>
<th>No.</th>
<th>Protein/Antibody Target</th>
<th>MW (KDa)</th>
<th>Response to Suramin</th>
<th>Vendor</th>
<th>Primary Ab Dilution</th>
<th>Cat#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PI3K</td>
<td>100</td>
<td>Down</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#3811</td>
</tr>
<tr>
<td>2</td>
<td>Akt</td>
<td>60</td>
<td>Down</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#9272</td>
</tr>
<tr>
<td>3</td>
<td>pGSK3β (Ser9)</td>
<td>50</td>
<td>Up</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#9323</td>
</tr>
<tr>
<td>4</td>
<td>pS6K(Thr389)</td>
<td>70</td>
<td>Up</td>
<td>Cell signaling</td>
<td>3,000</td>
<td>#9205</td>
</tr>
<tr>
<td>5</td>
<td>APC</td>
<td>310</td>
<td>Down</td>
<td>Celsignaling</td>
<td>1,000</td>
<td>#2504</td>
</tr>
<tr>
<td>6</td>
<td>P2Y1R</td>
<td>48</td>
<td>Up</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-009</td>
</tr>
<tr>
<td>7</td>
<td>P2X3R</td>
<td>44</td>
<td>Down</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-026</td>
</tr>
<tr>
<td>8</td>
<td>IP3R I</td>
<td>320</td>
<td>Up</td>
<td>Celsignaling</td>
<td>1,000</td>
<td>#3763</td>
</tr>
<tr>
<td>9</td>
<td>GluR1</td>
<td>106</td>
<td>Down</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab172971</td>
</tr>
<tr>
<td>10</td>
<td>CB1</td>
<td>53</td>
<td>Down</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab172970</td>
</tr>
<tr>
<td>11</td>
<td>PPAR beta/delta</td>
<td>50</td>
<td>Up</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab23673</td>
</tr>
<tr>
<td>12</td>
<td>7-dehydrocholesterol reductase/7DHCR</td>
<td>54</td>
<td>Up</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab103296</td>
</tr>
<tr>
<td>13</td>
<td>Cholesterol 7 alpha-hydroxylase/CYP7A1</td>
<td>55</td>
<td>Up</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab65596</td>
</tr>
<tr>
<td>14</td>
<td>Steroidogenic acute regulatory protein/STAR</td>
<td>37</td>
<td>Up</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#8449</td>
</tr>
<tr>
<td>15</td>
<td>C1qA</td>
<td>25</td>
<td>Down</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab150052</td>
</tr>
<tr>
<td>16</td>
<td>TAR DNA-binding protein 43/TDP43</td>
<td>45</td>
<td>Down</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#3449</td>
</tr>
<tr>
<td>17</td>
<td>Amyloid β (Aβ) precursor protein/APP</td>
<td>100-140</td>
<td>Down</td>
<td>Celsignaling</td>
<td>1,000</td>
<td>#2452</td>
</tr>
<tr>
<td>18</td>
<td>pCAMKII(Thr286)</td>
<td>50, 60</td>
<td>None</td>
<td>Celsignaling</td>
<td>1,000</td>
<td>#3361</td>
</tr>
<tr>
<td>19</td>
<td>pERK1/2(Thr202/Tyr204)</td>
<td>42, 44</td>
<td>None</td>
<td>Cell Signaling</td>
<td>10,000</td>
<td>#4370</td>
</tr>
<tr>
<td>20</td>
<td>pSTAT3(ser727)</td>
<td>86</td>
<td>None</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#9134</td>
</tr>
<tr>
<td>21</td>
<td>P2Y2R</td>
<td>42</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-010</td>
</tr>
<tr>
<td>22</td>
<td>P2Y4R</td>
<td>41</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-006</td>
</tr>
<tr>
<td>23</td>
<td>P2X1R</td>
<td>45</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-022</td>
</tr>
<tr>
<td>24</td>
<td>P2X2R</td>
<td>44</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-025</td>
</tr>
<tr>
<td>25</td>
<td>P2X4R</td>
<td>43</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-024</td>
</tr>
<tr>
<td>26</td>
<td>P2X5R</td>
<td>47</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-005</td>
</tr>
<tr>
<td>27</td>
<td>P2X6R</td>
<td>50</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-013</td>
</tr>
<tr>
<td>28</td>
<td>P2X7R</td>
<td>68</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#APR-004</td>
</tr>
<tr>
<td>29</td>
<td>Metabotropic glutamate receptor 5/mGluR5</td>
<td>132</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab76316</td>
</tr>
<tr>
<td>30</td>
<td>Nicotinic Acetylcholine Receptor alpha 7 /nAchR7a</td>
<td>50</td>
<td>None</td>
<td>Abcam</td>
<td>5,000</td>
<td>#ab23832</td>
</tr>
<tr>
<td>31</td>
<td>GABA A Receptor beta 3 /GABA-A/b3</td>
<td>54</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab4046</td>
</tr>
<tr>
<td>32</td>
<td>Dopamine Receptor D4/D4R</td>
<td>42</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#ADR-004</td>
</tr>
<tr>
<td>33</td>
<td>ETFQO/ETFDH</td>
<td>65</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#eb576576</td>
</tr>
<tr>
<td>34</td>
<td>Methionine Sulfoxide Reductase A /MSRA</td>
<td>30</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab16803</td>
</tr>
<tr>
<td>35</td>
<td>Acetyl-CoA acetyltransferase 2/ACAT2</td>
<td>41</td>
<td>None</td>
<td>Celsignal</td>
<td>1,000</td>
<td>#11814</td>
</tr>
<tr>
<td>36</td>
<td>HMGCoa Reductase/HMOCoAR</td>
<td>97</td>
<td>None</td>
<td>BioVision</td>
<td>500</td>
<td>#3952-100</td>
</tr>
<tr>
<td>37</td>
<td>Indoleamine 2,3-dioxygenase 1/IDO-1</td>
<td>45</td>
<td>None</td>
<td>Millipore</td>
<td>1,000</td>
<td>#MA85412</td>
</tr>
<tr>
<td>38</td>
<td>p-mTOR(ser2448)</td>
<td>289</td>
<td>None</td>
<td>Cell Signaling</td>
<td>2,000</td>
<td>#2971</td>
</tr>
<tr>
<td>39</td>
<td>mTOR</td>
<td>289</td>
<td>None</td>
<td>Cell Signaling</td>
<td>2,000</td>
<td>#2972</td>
</tr>
<tr>
<td>40</td>
<td>pERK(Thr980)</td>
<td>170</td>
<td>None</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#3179</td>
</tr>
<tr>
<td>41</td>
<td>p-eIF2a(ser51)</td>
<td>38</td>
<td>None</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#9721</td>
</tr>
<tr>
<td>42</td>
<td>Nitro Tyrosine</td>
<td>10-200</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab7048</td>
</tr>
<tr>
<td>43</td>
<td>TGFβ Receptor I</td>
<td>50</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab31013</td>
</tr>
<tr>
<td>44</td>
<td>CB2</td>
<td>45</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab54972</td>
</tr>
<tr>
<td>45</td>
<td>PGC1α</td>
<td>115</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab54481</td>
</tr>
<tr>
<td>46</td>
<td>PPARα</td>
<td>53</td>
<td>None</td>
<td>Santa Cruz</td>
<td>1,000</td>
<td>#sc-9000</td>
</tr>
<tr>
<td>47</td>
<td>CYP27A1</td>
<td>60</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab151387</td>
</tr>
<tr>
<td>48</td>
<td>pAkt(Thr308)</td>
<td>60</td>
<td>None</td>
<td>Cell Signaling</td>
<td>2,000</td>
<td>#4056</td>
</tr>
<tr>
<td>49</td>
<td>pAkt(Ser473)</td>
<td>60</td>
<td>None</td>
<td>Cell Signaling</td>
<td>2,000</td>
<td>#9018</td>
</tr>
<tr>
<td>50</td>
<td>PKC</td>
<td>82</td>
<td>None</td>
<td>Abcam</td>
<td>1,000</td>
<td>#ab19031</td>
</tr>
<tr>
<td>51</td>
<td>pPKC(Ser660)</td>
<td>80</td>
<td>None</td>
<td>Cell Signaling</td>
<td>1,000</td>
<td>#9371</td>
</tr>
<tr>
<td>52</td>
<td>nAChR beta2</td>
<td>70</td>
<td>None</td>
<td>Alomone Labs</td>
<td>1,000</td>
<td>#ANC-012</td>
</tr>
<tr>
<td>53</td>
<td>Postsynaptic Density protein 95/PSD95</td>
<td>95</td>
<td>None</td>
<td>Cell Signaling</td>
<td>4,000</td>
<td>#3450</td>
</tr>
<tr>
<td>54</td>
<td>Fragile X mental retardation protein/FMRP</td>
<td>80</td>
<td>None</td>
<td>Cell Signaling</td>
<td>2,000</td>
<td>#4317</td>
</tr>
</tbody>
</table>
Additional File 1: Table S2. Biochemical Pathways and Metabolites Interrogated.

<table>
<thead>
<tr>
<th>No.</th>
<th>Pathway</th>
<th>Metabolites</th>
<th>No.</th>
<th>Pathway</th>
<th>Metabolites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-Carbon, Folate, Formate, Glycine, Serine Metabolism</td>
<td>9</td>
<td>9</td>
<td>Pentose Phosphate, Gluconate Metabolism</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Amino Acid Metabolism (not otherwise covered)</td>
<td>4</td>
<td>10</td>
<td>Phosphate and Pyrophosphate Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Amino-Sugar, Galactose, & Non-Glucose Metabolism</td>
<td>10</td>
<td>11</td>
<td>Phospholipid Metabolism</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Bile Salt Metabolism</td>
<td>8</td>
<td>12</td>
<td>Phytanic, Branch, Odd Chain Fatty Acid Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Bioamines and Neurotransmitter Metabolism</td>
<td>11</td>
<td>13</td>
<td>Phytochemicals, Bioactive Botanical Metabolites</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Bioperin, Neopterin, Molybdopterin Metabolism</td>
<td>2</td>
<td>14</td>
<td>Plasmalogens Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Biotin (Vitamin B7) Metabolism</td>
<td>1</td>
<td>15</td>
<td>Polyamine Metabolism</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Branch Chain Amino Acid Metabolism</td>
<td>13</td>
<td>16</td>
<td>Purine Metabolism</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>Cardiolipin Metabolism</td>
<td>12</td>
<td>17</td>
<td>Pyrimidine Metabolism</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Cholesterol, Cortisol, Non-Gonadal Steroid Metabolism</td>
<td>29</td>
<td>18</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Eicosanoid and Resolvin Metabolism</td>
<td>36</td>
<td>19</td>
<td>Sphingolipid Metabolism</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>Endocannabinoid Metabolism</td>
<td>2</td>
<td>20</td>
<td>Taurine, Hypotaurine Metabolism</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Fatty Acid Oxidation and Synthesis</td>
<td>39</td>
<td>21</td>
<td>Thyroxine Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Food Sources, Additives, Preservatives, Coloring, and Dyes</td>
<td>3</td>
<td>22</td>
<td>Triacylglycerol Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Forensic Drugs</td>
<td>1</td>
<td>23</td>
<td>Tryptophan, Kynurenine, Serotonin, Melatonin Metabolism</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>GABA, Glutamate, Arginine, Ornithine, Proline Metabolism</td>
<td>6</td>
<td>24</td>
<td>Tyrosine and Phenylalanine Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Gamma-Glutamyl and other Dipeptides</td>
<td>6</td>
<td>25</td>
<td>Ubiquinone and Dolichol Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Ganglioside Metabolism</td>
<td>12</td>
<td>26</td>
<td>Urea Cycle</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>Glycolysis and Gluconeogenesis Metabolism</td>
<td>18</td>
<td>27</td>
<td>Very Long Chain Fatty Acid Oxidation</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>Gonadal Steroids</td>
<td>4</td>
<td>28</td>
<td>Vitamin A (Retinol), Carotenoid Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>Heme and Porphyrin Metabolism</td>
<td>4</td>
<td>29</td>
<td>Vitamin B2 (Riboflavin) Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>Histidine, Histamine, Carnosine Metabolism</td>
<td>4</td>
<td>30</td>
<td>Vitamin B2 (Riboflavin) Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>Isoleucine, Valine, Threonine, or Methionine Metabolism</td>
<td>4</td>
<td>31</td>
<td>Vitamin B3 (Niacin, NAD+), Metabolism</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>Ketone Body Metabolism</td>
<td>2</td>
<td>32</td>
<td>Vitamin B5 (Pantothenate, CoA) Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Krebs Cycle</td>
<td>17</td>
<td>33</td>
<td>Vitamin B6 (Pyridoxine) Metabolism</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>Lysine Metabolism</td>
<td>3</td>
<td>34</td>
<td>Vitamin C (Ascorbate) Metabolism</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>Microbiome Metabolism</td>
<td>3</td>
<td>28</td>
<td>Vitamin D (Calciferol) Metabolism</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>Nitric Oxide, Superoxide, Peroxide Metabolism</td>
<td>6</td>
<td>29</td>
<td>Vitamin E (Tocopherol) Metabolism</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>OTC and Prescription Pharmaceutical Metabolism</td>
<td>3</td>
<td>30</td>
<td>Vitamin K (Menaquinone) Metabolism</td>
<td>1</td>
</tr>
</tbody>
</table>

Subtotal: 304 Subtotal: 369
TOTAL Pathways: 60 TOTAL Metabolites: 673
Additional File 1: Table S3. Metabolites Changed by Antipurinergic Therapy in the Fragile X Model.

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>VIP Score</th>
<th>Metabolite</th>
<th>VIP Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xanthine</td>
<td>8.283</td>
<td>Myristoylcarnitine</td>
<td>1.8395</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>6.9083</td>
<td>Trihexosylceramide 18:1/24:0</td>
<td>1.8222</td>
</tr>
<tr>
<td>Inosine</td>
<td>6.3985</td>
<td>Cholic acid</td>
<td>1.8062</td>
</tr>
<tr>
<td>LTB4</td>
<td>4.7929</td>
<td>Octanoylcarnitine</td>
<td>1.7888</td>
</tr>
<tr>
<td>Guanosine</td>
<td>4.1962</td>
<td>Pimelylcarnitine</td>
<td>1.7778</td>
</tr>
<tr>
<td>1-Methylnicotinamide</td>
<td>3.4567</td>
<td>Ceramide (d18:1/26:0)</td>
<td>1.7619</td>
</tr>
<tr>
<td>11-Dehydro-thromboxane B2</td>
<td>3.0285</td>
<td>PG(16:0/16:0)</td>
<td>1.7575</td>
</tr>
<tr>
<td>4-hydroxyphenyllactic acid</td>
<td>2.9524</td>
<td>Dodecenoylcarnitine</td>
<td>1.7435</td>
</tr>
<tr>
<td>L-cystine</td>
<td>2.8156</td>
<td>Nicotinamide N-oxide</td>
<td>1.724</td>
</tr>
<tr>
<td>Hexanoylcarnitine</td>
<td>2.766</td>
<td>Dodecanoylcarnitine</td>
<td>1.6983</td>
</tr>
<tr>
<td>Dihexosylceramide 18:1/24:1</td>
<td>2.7087</td>
<td>L-Homocysteic acid</td>
<td>1.6739</td>
</tr>
<tr>
<td>Ceramide (d18:1/24:1)</td>
<td>2.6984</td>
<td>9-Decenoylcarnitine</td>
<td>1.6702</td>
</tr>
<tr>
<td>Ceramide (d18:1/24:0 OH)</td>
<td>2.6743</td>
<td>Hydroxyisocapric acid</td>
<td>1.6696</td>
</tr>
<tr>
<td>2,3-Diphosphoglyceric acid</td>
<td>2.6413</td>
<td>Propionic acid</td>
<td>1.6633</td>
</tr>
<tr>
<td>Pi (26:1)</td>
<td>2.5143</td>
<td>5-alpha-Cholesterol</td>
<td>1.6542</td>
</tr>
<tr>
<td>Dihexosylceramide 18:1/20:0</td>
<td>2.5094</td>
<td>Glyceric acid 1,3-biphosphate</td>
<td>1.6112</td>
</tr>
<tr>
<td>Ceramide (d18:1/16:0 OH)</td>
<td>2.4973</td>
<td>Bismonoacylphospholipid (18:1/18:0)</td>
<td>1.6108</td>
</tr>
<tr>
<td>Trihexosylceramide 18:1/16:0</td>
<td>2.2984</td>
<td>3-methylphenylacetic acid</td>
<td>1.6055</td>
</tr>
<tr>
<td>Cysteineglutathione disulfide</td>
<td>2.2284</td>
<td>Cytidine</td>
<td>1.5738</td>
</tr>
<tr>
<td>dTDP-D-glucose</td>
<td>2.1762</td>
<td>Oxaloacetic acid</td>
<td>1.5682</td>
</tr>
<tr>
<td>Trihexosylceramide 18:1/22:0</td>
<td>2.1755</td>
<td>9-Hexadecenoylcarnitine</td>
<td>1.5637</td>
</tr>
<tr>
<td>Bismonoacylphospholipid (18:1/18:1)</td>
<td>2.0984</td>
<td>Dehydroisoandrosterone 3-sulfate</td>
<td>1.5627</td>
</tr>
<tr>
<td>Malondialdehyde</td>
<td>2.0928</td>
<td>Ceramide (d18:1/20:1)</td>
<td>1.5607</td>
</tr>
<tr>
<td>PC (18:0/20:3)</td>
<td>2.087</td>
<td>11(R)-HETE</td>
<td>1.5384</td>
</tr>
<tr>
<td>3, 5-Tetradecadienecarnitine</td>
<td>2.0594</td>
<td>PE (38:5)</td>
<td>1.5338</td>
</tr>
<tr>
<td>14,15-epoxy-5,8,11-eicosatrienoic acid</td>
<td>1.9964</td>
<td>Pyridoxamine</td>
<td>1.5335</td>
</tr>
<tr>
<td>Cardiolipin (24:1/24:1/1:14:1)</td>
<td>1.9754</td>
<td>11,12-DiHETE</td>
<td>1.5284</td>
</tr>
<tr>
<td>Trihexosylceramide 18:1/24:1</td>
<td>1.9105</td>
<td>Sedoheptulose 7-phosphate</td>
<td>1.5159</td>
</tr>
<tr>
<td>8,9-Epoxyeicosatrienoic acid</td>
<td>1.8643</td>
<td>AICAR</td>
<td>1.5150</td>
</tr>
</tbody>
</table>
Additional File 1: Figure S1

Naviaux, et al., 2015
Additional File 1: Figure S2

Naviaux, et al., 2015
Additional File 1: Figure S3A

![Graph showing plasma acyl-carnitine concentrations](image)

- L-Carnitine
- Acetylcarnitine
- Propionylcarnitine
- Butyrylcarnitine
- Isovalerylcarnitine
- Glutarylcarnitine
- Octanoylcarnitine
- Dodecanoylcarnitine
- Myristoylcarnitine
- Palmitoylcarnitine
- Octadecanoylcarnitine
- 3-Hydroxyisovalerylcarnitine

Legend:
- FVB Control
- FMR/FVB

Plasma Acyl-Carnitine Concentration (µM)

- 0.0001
- 0.0010
- 0.0100
- 0.1000
- 1
- 10
- 100

Naviaux, et al., 2015
Additional File 1: Figure S3B

Naviaux, et al., 2015
Additional File 1: Figure S3C

Naviaux, et al., 2015
L-Carnitine
Acetylcarnitine
Propionylcarnitine
Butyrylcarnitine
Isovalerylcarntine
Glutaryl carnitine
Octanoylcarnitine
Dodecanoylcarnitine
Myristoylcarnitine
Palmitoylcarnitine
Octadecanoylcarnitine

Plasma Acyl-Carnitine Concentration (µM)

FMR/B6
B6 Control

Naviaux, et al., 2015

Naviaux, et al., 2015
Additional File 1: Figure S4

A.

B.

C.

D.

E. Mean Assay Precision (CV) = +/-15%

F. Percent of Total Variation

<table>
<thead>
<tr>
<th>Protein</th>
<th>Samples/ Group</th>
<th>Replicates</th>
<th>Total Samples/ Groups (KO-Sal v KO-Sur)</th>
<th>Day x Treatment Interaction</th>
<th>Day</th>
<th>Suramin Treatment</th>
<th>F</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGSK</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>0.3%</td>
<td>0.3%</td>
<td>(1,24) = 47.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>StAR</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>1%</td>
<td>1%</td>
<td>(1,24) = 93.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>P2Y1R</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>0.6%</td>
<td>0.6%</td>
<td>(1,24) = 20.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>P2X3R</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>0.4%</td>
<td>0.4%</td>
<td>(1,24) = 7.5</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Naviaux, et al., 2015
Neurobiology of Disease

P2X7 Receptors Drive Poly(I:C) Induced Autism-like Behavior in Mice

Gergely Horváth,1,2* Lilla Otrokocsi,1,2* Katinka Beko,1,2 Mária Baranyi,1 Ágnes Kittel,1 Pablo Antonio Fritz-Ruenes,1 and Béta Sperlágh1

1Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary, and 2János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, 1085 Budapest, Hungary

Maternal immune activation (MIA) is a principal environmental risk factor contributing to autism spectrum disorder (ASD), which compromises fetal brain development at critical periods of pregnancy and might be causally linked to ASD symptoms. We report that endogenous activation of the purinergic ion channel P2X7 (P2rx7) is necessary and sufficient to transduce MIA to autistic phenotype in male offspring. MIA induced by poly(I:C) injections to P2rx7 WT mouse dams elicited an autism-like phenotype in their offspring, and these alterations were not observed in P2rx7-deficient mice, or following maternal treatment with a specific P2rx7 antagonist, JNJ47965567. Genetic deletion and pharmacological inhibition of maternal P2rx7s also counteracted the induction of IL-6 in the maternal plasma and fetal brain, and disrupted brain development, whereas postnatal P2rx7 inhibition alleviated behavioral and morphological alterations in the offspring. Administration of ATP to P2rx7 WT dams also evoked autistic phenotype, but not in KO dams, implying that P2rx7 activation by ATP is sufficient to induce autism-like features in offspring. Our results point to maternal and offspring P2rx7s as potential therapeutic targets for the early prevention and treatment of ASD.

Key words: ASD; ATP; JNJ47965567; MIA; P2X7; poly(I:C)

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental psychiatric disorder caused by genetic and environmental factors. Recent studies highlighted the importance of perinatal risks, in particular, maternal immune activation (MIA), showing strong association with the later emergence of ASD in the affected children. MIA could be mimicked in animal models via injection of a nonpathogenic agent poly(I:C) during pregnancy. This is the first report showing the key role of a ligand gated ion channel, the purinergic P2X7 receptor in MIA-induced autism-like behavioral and biochemical features. We show that genetic or pharmacological inhibition of both maternal and offspring P2X7 receptors could reverse the compromised brain development and autistic phenotype pointing to new possibilities for prevention and treatment of ASD.

Significance Statement

Autism spectrum disorder (ASD) is a neurodevelopmental psychiatric disorder caused by genetic and environmental factors. Recent studies highlighted the importance of perinatal risks, in particular, maternal immune activation (MIA), showing strong association with the later emergence of ASD in the affected children. MIA could be mimicked in animal models via injection of a nonpathogenic agent poly(I:C) during pregnancy. This is the first report showing the key role of a ligand gated ion channel, the purinergic P2X7 receptor in MIA-induced autism-like behavioral and biochemical features. We show that genetic or pharmacological inhibition of both maternal and offspring P2X7 receptors could reverse the compromised brain development and autistic phenotype pointing to new possibilities for prevention and treatment of ASD.
lating immune cells. In turn, IL-6, directly or indirectly, influences critical steps of brain development via downstream induction of IL-17a (Choi et al., 2016; Shin Yim et al., 2017), leading to autism-like behavioral symptoms in offspring (Estes and McAllister, 2016). While these cytokines are normally down-regulated during mid-pregnancy, increased levels of gestational IL-6 were associated with later emergence of ASD and correlated with intellectual disability in humans (Jones et al., 2017). Maternal cytokines profoundly affect neurogenesis, gliogenesis, neuroglial migration, synapse formation, and elimination leading to aberrant cortical and cerebellar development (Meyer et al., 2006; Deverman and Patterson, 2009; Shin Yim et al., 2017). Recently, it has been found that region-specific disorganization of cortical cytoarchitecture manifested in a loss of transcription factors special AT-rich-sequence-protein 2 (SATB2), and T-brain-1 (TBR1) is the main target of maternal IL-17a produced by Th17 cells during cellular damage or inflammatory conditions, and its activation (Suzuki et al., 2015). In addition to MIA, further postnatal factors might contribute to altered immune homeostasis and maintain dysfunctional behavior. These observations raise the possibility that interaction with molecular signaling pathways instrumental for permanently altered immune status in the brain characterized by microglia activation (Suzuki et al., 2013) and elevated levels of proinflammatory cytokines (Masi et al., 2015). In addition to MIA, further postnatal factors might contribute to altered immune homeostasis and maintain dysfunctional behavior. These observations raise the possibility that interaction with molecular signaling pathways instrumental for permanently altered immune status might also be able to reverse behavioral symptoms.

The purinergic P2X7 receptor (P2rx7) is a ligand-gated ion channel sensitive to high extracellular ATP levels, expressed by immune cells and intrinsic cells of the CNS (Sperlah and Illes, 2014). P2rx7s are activated by the elevation of extracellular ATP during cellular damage or inflammatory conditions, and its activation serves as a maturation signal for post-translational processing of proinflammatory cytokines, such as IL-1β, IL-6, or IL-18. This process requires two signals: a primary signal, termed pathogenic or danger associated molecular patterns (PAMPs and DAMPs), acting at TLR receptors, which leads to the transcription of a cytokine precursor; and a secondary stimulus triggering nucleotide-binding domain-like receptors (NLRP3) oligomerization into intracellular multiprotein complexes, forming inflammasomes. These inflammasomes then cleave proteolytically the precursor protein into mature, leaderless cytokines, which are released to the extracellular space and boost further inflammation (Bartlett et al., 2014; de Torre-Minguela et al., 2017; Adinolfi et al., 2018). P2rx7 activation is one of such secondary stimuli, which could be responsible for converting innate immune response to inflammation following MIA. Although P2rx7 activation has been recognized as a trigger or mediator of many CNS pathologies (Sperlah and Illes, 2014; Bhattacharya, 2018; Wei et al., 2018), no such role has been demonstrated in animal models of ASD.

Materials and Methods

Animals

Animals were kept under standard laboratory conditions in 12 h light-dark cycles with food and water provided ad libitum. All efforts were taken to minimize animal suffering and reduce the number of animals used. All experiments followed the ARRIVE guidelines and were conducted in accordance with the principles and procedures outlined in the Guide for the care and use of laboratory animals, US Public Health Service. The local Animal Care Committee of the Institute of Experimental Medicine approved all experimental procedures (Permission PEI/001/778-6/2013). Experiments were performed between 9:00 and 14:00 in the animal housing room. Experiments were performed on male and female P2rx7+/− (C57BL/6) and P2rx7-deficient mice (weighing 25–30 g) for breeding, and their male offspring for behavior and further experiments. P2rx7−/− mice were obtained, bred, and genotyped as described previously (Koványa et al., 2016). Briefly, homozygous P2rx7+/− mice were bred on a C57BL/6J background. The original breeding pairs of P2rx7−/− mice were kindly supplied by Christopher Gabel from Pfizer. The animals contained the DNA construct P2X7-F1 (5′-CGGCGTGC GTTTTGACATCT-3′) and P2X7-B2 (5′-AGGGCCCTGGGTTC TC-3′), previously shown to delete the P2rx7 (Solle et al., 2001). Genomic DNA was isolated from the tails of P2rx7+/+ and P2rx7−/− animals, and the genotypes were confirmed by PCR analysis. An overall eight backcrosses on C57BL/6 were performed for the P2rx7 KO mouse colony used in our experiments.

Experimental design

The MIA model protocol was designed and performed based on the protocol of R.K. Niauvaia et al. (2013). Primiparous dams were mated at 12–14 weeks of age. Mating trios of P2rx7−/+ and P2rx7−/− mice consisted of 2 females and 1 male in each box. In Experiments 1–8, breeding partners were from the same genotype; in Experiments 9 and 10, females and males were from different genotypes. Exposed sires were 3 months old. Sires were randomly assigned as mating pairs for dams regardless of further treatment (poly(I:C) or saline). To induce MIA, a 3 mg/kg dose of poly(I:C) on E12.5 of D (Experiments 1–4 and 6–10) and 1.5 mg/kg of poly(I:C) on E17.5 (Experiments 1, 3, 4, 6–9) were injected intraperitoneally to pregnant dams randomly assigned to different treatment groups. In Experiment 5, 400 μM ATP was injected intraperitoneally to pregnant dams on E12.5. Control mice received saline injection (100 μl) at the same time as immune-activated animals. Offspring were weaned at 4 weeks of age into cages of 3–5 animals. Behavioral experiments were performed on test-naïve male mice at 8 weeks of age in the same order (social preference, self-grooming test, marble-burying test, rotated) by an experimenter blinded to the treatments. After the behavior tests, animals were killed under light CO2 anesthesia at an age of 80–90 d, and samples were collected for synaptosome preparation and electron microscopy (EM).

In other cases (Experiment 2), experiments were terminated 2 or 48 h after the first dose of poly(I:C) injection, and maternal plasma and fetal brain samples were collected for flow cytometric bead array analyses, HPLC, and immunohistochemistry, respectively.

Mice survival analysis was calculated previously (Charan and Kantha, 2013). A pilot study was performed to measure the basic sociability scores of MIA and saline-treated mice. We estimated sample size using G*Power 3.1.9.2 software (power: 0.8; error probability: 0.05; direction of effect: two tails, effect size: 0.669398; coefficient of determination ρ2: 0.44868533; expected attrition or death of animals: 10%; sample size: 13 animals/group) that indicated 156 male offspring were required. Because fecundity was 40% after poly(I:C) treatment and 80% after saline treatment, we calculated a theoretical sample size of 270 male offspring. Based on our previous experience, one pregnant dam gives birth to an average of 5 males; therefore, 54 breeding pairs were established for the experiments. Samples for ex vivo experiments were taken from animals used in behavioral tests.

Every experiment was performed on at least 2 or 3 independent litters; and when P2rx7−/+ and P2rx7−/− animals were compared, littermate controls were used.

Drugs and treatments

The following drugs were used in our experiments: poly(I:C) potassium salt (Sigma-Aldrich, P9582, batch 086M4045V), INJ47965567 (30 mg/kg, Tocris Bioscience), and ATP disodium salt hydrate (Sigma-Aldrich, A2383). Drugs were dissolved in sterile saline, except for INJ47965567, which was dissolved in 30% Captisol solution (sulfobutyl ether-7

Horváth, Otrokoci et al. • P2X7 Receptors Drive Autism-like Behavior in Mice J. Neurosci., March 27, 2019 • 39(13):2542–2561 • 2543
controls within a 10 min testing period. Marbles were counted as buried if
onto the marble free area, and the number of marbles buried was mea-
arrangement at the same distance from each another. At least one-fifth of
marbles were gently placed onto the surface of the bedding in a 4
R.K. Naviaux et al. (2013). Mice were placed in the middle of a white
test was performed according to the
method described by R.K. Naviaux et al. (2013) with minor modifica-
tions. Social preference was measured by using a 3-chamber Plexiglas
arena (40 × 60 cm) divided into 3 equal chambers (20 × 40 cm each)
with a 4 × 4 cm square opening cut into them to allow test mice to move
between chambers. Plexiglas cages were put into both of the side cham-
s. Sniffing zones were assigned around the cages. The experiments
consisted of two phases. In Phase 1, the test mouse could explore the
whole arena (habituation). In Phase 2, the test mouse was put into the
center chamber briefly, the doors were closed, and one unfamiliar
stranger mouse of the same age and sex was placed into one of the cages.
The other cage remained empty. Then the doors were opened, and the
test mouse could explore the arena for 10 min. Ethovision XT 10 system
(Noldus) connected with an overhead camera was used to video track
and record the time the test mouse spent in each of the sniffing zones.
The location of the stranger mouse was alternated across trials. Social preference
as a percentage was calculated as 100 multiplied by the time the test mouse spent
interacting with the stranger mouse (tS) divided by the total time a test mouse spent with the stranger and the empty cage (tE) as follows:

\[SP = \frac{100 \times t_S}{t_M + t_E} \]

Rotarod test. Rotarod test was performed according to the method described by R.K. Naviaux et al. (2013) using an IITC Rotarod apparatus
(4-cm-diameter rod). The instrument enables the simultaneous exami-
nation of 5 mice in separate compartments. Mice were trained at con-
stant 4 rpm speed for three consecutive trials to achieve the ability to
maintain balance on the rod for at least 30 s. Acceleration phase testing
was performed on two subsequent days at four trials/d. Mice were individ-
ually placed onto the rod. The initial speed was 4 rpm, which acceler-
ated to 40 rpm in 5 min. The intertrial interval was at least 30 min. Latency of falling down was measured in seconds.

Self-grooming test. Self-grooming test was performed by the method described by Kyzar et al. (2011) with minor modifications. Before the experiments, the mice were transported to the experimental room to
acclimatize for at least 1 h. Test mice were put into clear glass observation cylinders (12 cm diameter, 20 cm height) individually for 10 min, and their spontaneous novelty-evoked grooming behavior was video re-
corded. The observation cylinder was cleaned using water between the
tests. Behavior was manually scored using Observer XT software (Nol-
dus), and the cumulative duration of self-grooming in seconds was
counted by the software.

Marble burying test. Marble burying test was designed based on the
method described by Malkova et al. (2012). Clean cages (36.7 × 14.0 × 20.7 cm) were filled with 5 cm corn cob bedding. Then, 20 blue glass marbles were gently placed onto the surface of the bedding in a 4 × 5
arrangement at the same distance from each another. At least one-fifth of
the surface remained free from marbles. Testing animals were placed
onto the marble free area, and the number of marbles buried was mea-
sured within a 10 min testing period. Marbles were counted as buried if
they were covered by ≥60% bedding.

Open field test. Open field test was performed following the protocol of
R.K. Naviaux et al. (2013). Mice were placed in the middle of a white
square box (40 × 40 cm), and locomotor activity was recorded by the
Ethovision XT 10 system (Noldus) for 10 min. The total distance covered
during the analysis was measured in centimeters.

Brain neuropathology and confocal microscopy
After perfusion with 4% PFA and overnight postfixation of brains in 4%
PFA at 4°C, 50 μm parasagittal sections of the cerebellar vermis were used
for immunoreaction. Slices were permeabilized with blocking solution
containing 5% normal horse serum, 1% BSA, and 0.3% Triton X-100 in
0.1 M PB for 2 h at room temperature (RT), and incubated overnight at
4°C with anti-calcibindin antibody (Swant, CB-38a, 1:12,000). Sections were carefully rinsed and washed with PB and stained with fluorescent
secondary antibody (Alexa-488 against rabbit, 1:3000, Invitrogen) for 2 h
at RT. Purkinje cells in lobe VII of the cerebellum were imaged with a
confocal Nikon C2 microscope, and counting was performed manually
while the length of the lobe was measured by ImageJ.

Synaptosome preparation and EM
Synaptosome fractions were prepared following the protocol of Kofalvi
et al. (2003). After decapitation, half brains were homogenized in
sucre-HEPES solution (0.32 mM sucrose, 0.01 mM HEPES free acid, 0.63
mM Na2EDTA, pH 7.4) at 4°C and centrifuged at 3000 × g for 5 min.
Supernatant was recentrifuged at 13,000 × g for 10 min. P2 pellets were
resuspended in 45% (v/v) Percoll-Krebs solution (Krebs: 113 mM NaCl, 3
mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, 25 mM
NaHCO3, 5.5 mM glucose, 1.5 mM HEPES, pH 7.4) and centrifuged at
13,000 × g at 4°C for 2 min to eliminate mitochondria. The top layer was
washed twice at 4°C and centrifuged at 13,000 × g for 2 min in Krebs study.
Synaptosome pellets were fixed with 4% PFA in 0.1 M PBS for 60
min at RT followed by washing with PBS, and samples were postfixed in
1% OsO4 (Taab Laboratories) for 30 min. After rinsing the intact fixed
pellets within the Eppendorf tubes with distilled water, the pellets were
dehydrated in graded ethanol, including block staining with 1% uranyl-
acetate in 50% ethanol for 30 min, and were embedded in Taab 812 (Taab
Laboratories). Overnight polymerization of samples at 60°C was fol-
lowed by ultrathin sectioning and imaging by a 7100 electron microscope
(Hitachi) equipped with a Megaview II digital camera (lower resolution,
Soft Imaging System). Electron micrographs were taken at 20,000 or
30,000 magnifications in all investigated groups, with 4–6 animals per
group. Intact and malformed synaptosomes, 45–55 for each investigated
animal, were counted manually twice by an investigator blinded to the
treatments.

Fetal brain immunohistochemistry
Fetal heads were collected 48 h after the intraperitoneal injection of
dams with poly(I:C) (3 mg/kg) or saline, and samples were immersion fixed in
4% PFA for 24 h at 4°C. After cryoprotection in 15% sucrose (20 min)
and 30% sucrose overnight at 4°C, 20 μm cryosections were cut using a
cryostat (Microm HM550, Thermofisher Scientific) and embedded in
Tissue-Tek OCT Compound (Sakura Finetek). Sections were washed in
PB, permeabilized with 100 mM Na-citrate for 30 min at 65°C and 0.4%
Triton X-100 for 20 min at RT, and blocked in 2% normal goat serum
and 1% BSA for 1 h at RT. Primary SATB2 and TBR1 antibodies (SATB2
1:100 ab51502, TBR1 1:500 ab31940, Abcam) were applied overnight at
4°C; then slices were rinsed and washed with PB and stained with fluorescent
secondary antibodies (1:400 AlexaFluor-594 AffiniPure
donkey Anti-Mouse 715–585–150, Jackson ImmunoResearch Laborato-
ries, 1:1000 Alexa-488 Anti-Rabbit, Invitrogen) containing 1:10,000
 Honolulu, Otrokoczi et al. ● P2X7 Receptors Drive Autism-like Behavior in Mice

Maternal plasma and fetal brain cytokine analyses
Fetal brain samples and maternal plasma were collected 2 h after the
intraperitoneal injection of poly(I:C) (3 mg/kg) or saline. After tissue
homogenization and centrifugation, as described previously (Chapman
et al., 2009; Dénès et al., 2010), supernatants were collected to measure
the levels of the following inflammatory mediators: IL-1α, IL-1β, IL-6,
IL-10, TNF-α and CXCL1 (KC) using BD Cytometric Bead Array Flex
Sets (BD Biosciences). Measurements were performed on a BD FACSSVerse flow cytometer, and data were analyzed using the FCAP Ar-
array version 5 software (Soft Flow). Cytokine concentrations of brain
tissue were normalized to total protein levels measured by photometry
using a BCA Protein Assay Kit (Thermo Fisher Scientific, Pierce), Absorb-
bance was measured at 560 nm with a Victor 3 V 1420 Multilabel Counter

P2X7 Receptors Drive Autism-like Behavior in Mice

Horváth, Otrokoczi et al. • P2X7 Receptors Drive Autism-like Behavior in Mice

2544 • J. Neurosci., March 27, 2019 • 39(13):2542–2561
Figure 1. P2X7 receptor (P2rx7) gene deficiency disrupts MIA by poly(I:C) (PIC) on the offspring autistic phenotype. A. Overview of experimental protocol (Experiment 1). B. MIA elicited social deficit in P2rx7−/− mice, whereas no effect of PIC was observed in P2rx7−/− animals, although P2rx7−/− mice displayed decreased social preference compared with P2rx7+/+ counterparts. White columns represent the percentage of interaction with the inanimate cages. PIC-treated P2rx7+/+ animals showed (C, D) impaired motor coordination that was absent in P2rx7−/− mice and (E, F) increased repetitive behaviors (i.e., self-grooming and marble burying that were absent in P2rx7−/− mice). G. Basal locomotor activity was not affected by poly(I:C) administration in either WT (P2rx7+/+) or KO (P2rx7−/−) animals. H. Cerebellar Purkinje cell number decreased in lobule VII by MIA in P2rx7+/+ offspring is ameliorated in P2rx7−/− (Figure legend continues.)
HPLC determination of monoamines, adenine nucleotides and nucleoside content

Adenine nucleotides (ATP, ADP, AMP), adenosine (Ado) in extracts from embryonic mouse brain tissue and maternal plasma were determined by using HPLC. Potassium citrate-treated maternal blood was cooled in an ice water bath for 15 min and, after that time, gently centrifuged for 10 min at 2000 rpm and 0°C. The plasma samples were centrifuged again to remove platelets and remaining cells (5000 rpm, 5 min, 0°C). The resulting plasma samples (200 µl) were treated with 20 µl of ice-cold 4 mM perchloric acid solution that contained theophylline (as an internal standard) at 100 µM concentration and centrifuged at 6000 rpm for 10 min at 0°C to remove precipitated proteins. To neutralize the pH of the resulting solution, supernatant (100 µl) was treated with 4 M K₂HPO₄ (10 µl) and diluted with water (490 µl), and the centrifugation step was repeated. For analysis (500 µl) the resulting sample was injected onto the column. After the preparation of the whole embryonic mouse brain, the native tissue was frozen by liquid nitrogen. The weighed frozen tissue was homogenized in an appropriate volume of ice-cold 0.1 M perchloric acid that contained theophylline (as an internal standard) at 10 µM concentration and 0.5 mM sodium metabisulphite (antioxidant for biogenic amines). The suspension was centrifuged at 3510 × g for 10 min at 0°C-4°C. The perchloric anion was precipitated by addition of 3 µl of 1 M potassium hydroxide to 70 µl of the supernatant. The precipitate was then removed by centrifugation. The supernatant was kept at −20°C until analysis. The pellet was saved for protein measurement (Lowry et al., 1951). The levels of adenine nucleotides and adenosine were determined by online column switching HPLC using Discovery HS C18 50 × 2 mm and 150 × 2 mm columns (5 and 3 µm packing, respectively) with LC-20 AD (Shimadzu, Analytical & Measuring Instruments Division) and were detected (set at 253 nm) by its UV absorption (Agilent Technologies, 1100 series). The flow rate of the mobile phases (A: 10 mM potassium phosphate, 0.25 mM EDTA, 0.45 mM octane sulfonyl acid sodium salt; and B: with 6% acetonitrile (v/v), 2% methanol (v/v), pH 5.2) was 350 or 450 µl/min, respectively, in a step gradient application. The enrichment and stripping flow rate of buffer A was during 4 min, and were detected (set at 253 nm) by its UV absorption (Agilent Technologies). The enrichment and stripping flow rate of buffer A was during 4 min, and were detected (set at 253 nm) by its UV absorption (Agilent Technologies). The enrichment and stripping flow rate of buffer A was during 4 min, and were detected (set at 253 nm) by its UV absorption (Agilent Technologies). The enrichment and stripping flow rate of buffer A was during 4 min, and were detected (set at 253 nm) by its UV absorption (Agilent Technologies).
<table>
<thead>
<tr>
<th>Figure</th>
<th>Statistical analysis</th>
<th>F value</th>
<th>p value/df value</th>
<th>Post hoc</th>
<th>p value</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>Two-way ANOVA</td>
<td>12.044</td>
<td>0.00128</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.000054 9,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.524 8,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.000038 9,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.433</td>
<td>0.0272</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.00201 5,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.412 10,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0119 5,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C,D</td>
<td>Two-way ANOVA</td>
<td>5.1135</td>
<td>0.0296</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0199 8,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.404 8,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E</td>
<td>Two-way ANOVA</td>
<td>0.37383</td>
<td>0.544</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0049 9,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.079 8,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>Two-way ANOVA</td>
<td>0.08529</td>
<td>0.36674</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.394482 6,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.667652 6,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1G</td>
<td>Two-way ANOVA</td>
<td>5.162</td>
<td>0.0464</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0000566 4,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0201 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.9389</td>
<td>0.00773</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.000235 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H</td>
<td>Two-way ANOVA</td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.00023 6,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.959 4,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.000246 8,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>Mann–Whitney</td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.000056 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0000519 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0000044 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.007849 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.000004 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>Mann–Whitney</td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.0000719 6,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.000236 6,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>Two-way ANOVA</td>
<td>20.965</td>
<td>0.0118</td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.006896 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.024084 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.046575 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.003971 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.019628 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2E</td>
<td>Two-way ANOVA</td>
<td>11.415</td>
<td>0.00284</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.065896 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JNJ-saline–JNJ-poly(I:C) 0.020484 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F</td>
<td>Two-way ANOVA</td>
<td>3.6735</td>
<td>0.06899</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.046575 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JNJ-saline–JNJ-poly(I:C) 0.019628 4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G</td>
<td>Two-way ANOVA</td>
<td>0.6374</td>
<td>0.08580</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.0000001 5,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JNJ-saline–JNJ-poly(I:C) 0.011356 4,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2H</td>
<td>Two-way ANOVA</td>
<td>17.126</td>
<td>0.00100</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.000342 5,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JNJ-saline–JNJ-poly(I:C) 0.204446 4,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2I</td>
<td>Two-way ANOVA</td>
<td>17.348</td>
<td>0.00011</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.000001 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2rx7+/−-saline–P2rx7+/−-poly(I:C) 0.009244 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2J</td>
<td>Two-way ANOVA</td>
<td>15.4</td>
<td>0.00051</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.0000001 3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JNJ-saline–JNJ-poly(I:C) 0.000076 8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JNJ-saline–JNJ-poly(I:C) 0.0868 8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3C,D</td>
<td>Two-way ANOVA</td>
<td>10.245</td>
<td>0.00340</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.0285 8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JNJ-saline–JNJ-poly(I:C) 0.0194 8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Two-way ANOVA</td>
<td>2.1410</td>
<td>0.155</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.0122 8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F</td>
<td>Two-way ANOVA</td>
<td>27.917</td>
<td>0.000001</td>
<td>vehicle-saline–vehicle-poly(I:C) 0.0000992 8,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Table continues.)
Table 1. Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Statistical Analysis</th>
<th>Result</th>
<th>Post hoc</th>
<th>p value</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,45) = 10.538 0.00221</td>
<td>vehicle–saline–vehicle–poly(I:C)</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00001 3,3</td>
<td></td>
</tr>
<tr>
<td>3H</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,16) = 61.075 0.00000075</td>
<td>vehicle–saline–vehicle–poly(I:C)</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.0000000005 3,8</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.13636 0.71470</td>
<td>vehicle–saline–vehicle–poly(I:C)</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.0478 4,5</td>
<td></td>
</tr>
<tr>
<td>4C, D</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.36544 0.55037</td>
<td>vehicle–saline–vehicle–poly(I:C)</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.773 8,8</td>
<td></td>
</tr>
<tr>
<td>4E</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.05454 0.81704</td>
<td>vehicle–saline–vehicle–poly(I:C)</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.818855126 8,8</td>
<td></td>
</tr>
<tr>
<td>4F</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.59189 0.44813</td>
<td>vehicle–saline–vehicle–poly(I:C)</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.622871459 8,8</td>
<td></td>
</tr>
<tr>
<td>4G</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,69) = 2.4837 0.11961</td>
<td>vehicle–saline–vehicle–poly(I:C)</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.519973276 8,8</td>
<td></td>
</tr>
<tr>
<td>5H</td>
<td>Two-way ANOVA F<sub>interaction genotype × treatment</sub>(1,41) = 2.5759 0.01383</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00269 12,15</td>
<td></td>
</tr>
<tr>
<td>5I</td>
<td>Two-way ANOVA F<sub>interaction genotype × treatment</sub>(1,23) = 27.482 0.00000</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.04854 9,9</td>
<td></td>
</tr>
<tr>
<td>5J</td>
<td>Two-way ANOVA F<sub>interaction genotype × treatment</sub>(1,9) = 20.168 0.00015</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00000 3,3</td>
<td></td>
</tr>
<tr>
<td>6B</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.13636 0.71470</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00000 3,3</td>
<td></td>
</tr>
<tr>
<td>6C, D</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.36544 0.55037</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00000 9,9</td>
<td></td>
</tr>
<tr>
<td>6E</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.05454 0.81704</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.01158 12,9</td>
<td></td>
</tr>
<tr>
<td>6F</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.59189 0.44813</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00159 12,15</td>
<td></td>
</tr>
<tr>
<td>6G</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,69) = 2.4837 0.11961</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.48681 9,9</td>
<td></td>
</tr>
<tr>
<td>6H</td>
<td>Two-way ANOVA F<sub>interaction pretreatment × treatment</sub>(1,20) = 0.13636 0.71470</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00028 3,3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Two-way ANOVA F<sub>interaction maternal tr × postnatal tr</sub>(1,48) = 12.419 0.00094</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.00007 3,3</td>
<td></td>
</tr>
<tr>
<td>8B</td>
<td>Two-way ANOVA F<sub>interaction maternal tr × postnatal tr</sub>(1,28) = 0.00840 0.92761</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.3023 3,3</td>
<td></td>
</tr>
<tr>
<td>8C, D</td>
<td>Two-way ANOVA F<sub>interaction maternal tr × postnatal tr</sub>(1,28) = 0.93197 0.34262</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.4171 8,8</td>
<td></td>
</tr>
<tr>
<td>8E</td>
<td>Two-way ANOVA F<sub>interaction maternal tr × postnatal tr</sub>(1,28) = 0.54089 0.46818</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.208 8,8</td>
<td></td>
</tr>
<tr>
<td>8F</td>
<td>Two-way ANOVA F<sub>interaction maternal tr × postnatal tr</sub>(1,28) = 0.02312 0.88024</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.536 8,8</td>
<td></td>
</tr>
<tr>
<td>8G</td>
<td>Two-way ANOVA F<sub>interaction maternal tr × postnatal tr</sub>(1,50) = 1.4293 0.23753</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.776 8,8</td>
<td></td>
</tr>
<tr>
<td>8H</td>
<td>Two-way ANOVA F<sub>interaction maternal tr × postnatal tr</sub>(1,16) = 0.26085 0.62333</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.943 8,8</td>
<td></td>
</tr>
<tr>
<td>9B</td>
<td>Two-way ANOVA F<sub>interaction genotype × treatment</sub>(1,25) = 0.00495 0.77310</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.0428 3,3</td>
<td></td>
</tr>
<tr>
<td>9C, D</td>
<td>Two-way ANOVA F<sub>interaction genotype × treatment</sub>(1,28) = 0.87193 0.35841</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.742 3,3</td>
<td></td>
</tr>
<tr>
<td>9E</td>
<td>Two-way ANOVA F<sub>interaction genotype × treatment</sub>(1,25) = 1.3108 0.26309</td>
<td>P2rx7+/−saline–P2rx7+/−ATP</td>
<td>JNJ-saline–JNJ-poly(I:C)</td>
<td>0.50930 3,3</td>
<td></td>
</tr>
</tbody>
</table>

(Table continues.)
not P2rx7−/− mice (Fig. 2E). IL-1β, TNFα, IL-10, and IL-1α remained below detection limit in maternal plasma in both genotypes (Fig. 2D). Likewise, only insignificant and genotype-independent changes were observed in IL-1α, IL-1β, and IL-10 levels in fetal brain and TNFα remained undetectable (Fig. 2E).

Next, we asked how the P2rx7 gene deletion interacted with disrupted fetal brain development and TBR1 and SATB2 expressions were examined following MIA in both genotypes. Eighteen fetal brain samples were immunostained for TBR1 and SATB2, showing alterations in offspring. A single injection of the potent and selective P2rx7 antagonist (JNJ47965567, 30 mg/kg i.p.) or its vehicle appeared, accompanied by Purkinje cell loss in the cerebellum (Fig. 4A, J) and higher ratio of malformed synaptosomes in the developing cortical plate (Fig. 2I, K). In contrast, this change was not observed in P2rx7−/− mice (Fig. 2I, K).

Maternal P2rx7 inhibition reproduces the effect of gene deficiency on MIA-induced phenotype in WT mice

In Experiment 3, we determined whether maternal P2rx7 receptors are instrumental for converting MIA to autistic phenotypic alterations in offspring. A single injection of the potent and selective P2rx7 antagonist (JNJ47965567, 30 mg/kg i.p.) or its vehicle was administered to pregnant WT dams 2 h before the respective saline/poly(I:C) administration on E12.5 and E17.5 and the experiment was continued as described for Experiment 1 (Fig. 3A). The effect of maternal poly(I:C) treatment was similar in vehicle-treated compared with saline-treated offspring in Experiment 1, and all features of the autistic phenotype were observed: that is, social deficit (Fig. 3B), impairment of sensorimotor coordination (Fig. 3C,D), increase in repetitive behaviors in self-grooming (Fig. 3E) and marble burying tests (Fig. 3F), dropout of cerebellar Purkinje neurons (Fig. 3G,I), and synapse-some destruction (Fig. 3H,J). Notably, maternal JNJ47965567 treatment, by itself, did not have any significant effect on behavior. In contrast, P2rx7 antagonist treatment alleviated the poly(I:C) effect in social preference (Fig. 3B), rotarod (Fig. 3C,D), self-grooming (Fig. 3E), and marble burying tests (Fig. 3F) compared with an identical treatment with vehicle. Interestingly, poly(I:C)-induced loss of Purkinje cells (Fig. 3G, I) and increased synaptosome malformation (Fig. 3H, J) did not occur after JNJ47965567 treatment either.

To cross-validate the effect of genetic deficiency and maternal blockade of P2rx7s, identical P2rx7 antagonist/vehicle treatment was administered to pregnant P2rx7−/− dams (Experiment 4; Fig. 4A). We could not observe any aspects of poly(I:C)-induced autistic phenotype under these conditions (Fig. 4B–F).

These results indicated that maternal P2rx7s are essential for autistic phenotype alterations in offspring. To identify the underlying molecular signaling machinery, we investigated whether maternal P2rx7 antagonist treatment reproduced the effect of genetic deletion on maternal plasma and fetal brain cytokine profiles (Fig. 2F, G). The significant induction of IL-6 in maternal plasma (Fig. 2F) and fetal brain (Fig. 2G) by maternal poly(I:C) treatment was attenuated by pretreatment with P2rx7 antagonist JNJ47965567 (30 mg/kg i.p. 2 h before poly(I:C)), compared with vehicle (Fig. 2F, G). Furthermore, maternal JNJ47965567 prevented the poly(I:C)-induced loss of TBR1 intensity in the developing cortical plate (Fig. 2I, K).

Endogenous activation of P2rx7 is sufficient to elicit autistic changes in WT offspring

Single administration of P2rx7 agonist ATP (400 μM) elevated the nucleotide levels in the maternal plasma (Fig. 5B) and fetal brain (Fig. 5C) after ATP administration. ATP treatment resulted in similar behavioral and morphological alterations observed in poly(I:C)-induced MIA model (Experiment 5). In the offspring of WT dams, social impairment (Fig. 5D), excessive self-grooming (Fig. 5F), and motor coordination deficit (Fig. 5E, F) appeared, accompanied by Purkinje cell loss in the cerebellum (Fig. 5I, K) and higher ratio of malformed synaptosomes in the whole brain (Fig. 5J, L). In P2rx7-deficient mice, ATP did not

Table 1. Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Statistical analysis</th>
<th>F value</th>
<th>p value</th>
<th>U value</th>
<th>Post hoc</th>
<th>p value</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>9F</td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,24) = 0.05514</td>
<td>0.81626</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.648889</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9G</td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,24) = 27.482</td>
<td>0.96603</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.874954</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9H</td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,24) = 0.05420</td>
<td>0.82176</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.392272</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10B</td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,12) = 12.497</td>
<td>0.00411</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.170924</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,12) = 3.9123</td>
<td>0.07136</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.000000</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,12) = 0.23116</td>
<td>0.63931</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.000824</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,12) = 5.0053</td>
<td>0.04502</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.029039</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,24) = 0.20677</td>
<td>0.65340</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.000003</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two-way ANOVA</td>
<td>Finteraction-genotype × treatment(1,24) = 0.03547</td>
<td>0.55701</td>
<td>P2rx7+/−-saline−P2rx7+/−-poly(I:C) 0.524458</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J. Neurosci., March 27, 2019 • 39(13):2542–2561 • 2549
Figure 2. Poly(I:C)-induced nucleotide and cytokine levels in maternal plasma and fetal brain and effect on fetal brain development. A, Experimental protocol (Experiment 2). B, C, MIA increased ATP and ADP levels in P2rx7+/− maternal plasma, whereas in fetal brain, higher ATP, but decreased AMP levels were detected. D, E, IL-6 was induced in maternal blood after PIC treatment in P2rx7+/− and P2rx7−/− mice; however, the induction was substantially ameliorated in P2rx7−/− mice. y axis is interrupted to increase visibility of results. IL-1α and KC levels also showed significant elevation subsequent to MIA. In fetal brain, IL-6 and KC were also induced significantly, although moderately. F, G, PIC induced upregulation of IL-6, and KC is attenuated in maternal plasma and fetal brain of P2rx7−/− mice by pretreatment with the selective P2rx7 antagonist JNJ47965567. Cytokine values measured in the plasma are expressed in picograms per milliliter, and in the fetal brains as picograms per total protein, and they were logarithmically transformed before statistical analyses. Figures show original dataset. Exact n, F, and p values are provided in Table 1. H, Representative stitched image of the fetal brain. White rectangle represents the location of images presented in I and K. K, L, MIA decreased the intensity (Figure legend continues.)
trigger any of these features, confirming the instrumental role of P2rx7 in the mechanism leading to an autism-like condition.

Postnatal P2rx7 inhibition reverses MIA-induced behavioral and histological alterations in WT, but not P2rx7-deficient offspring.

The effect of postnatal P2rx7 antagonist treatment on maternal poly(I:C)-induced autistic phenotype in P2rx7+/+ offspring was
examined to determine whether persistent behavior changes are reversible by P2rx7s inhibition (Experiment 6). JNJ47965567 (30 mg/kg i.p.) or its vehicle was administered as a single treatment before the first behavior test (Fig. 6A). Postnatal vehicle treatment had no effect on social deficit (Fig. 6B), sensorimotor coordination (Fig. 6C, D), increase in self-grooming (Fig. 6E) and marble burying behaviors (Fig. 6F), atrophy of cerebellar Purkinje cells (Fig. 6G, I), and destruction of synapses (Fig. 6H, J) elicited by maternal poly(I:C) administration. Furthermore, postnatal P2rx7 antagonist treatment did not affect the phenotype in the lack of maternal poly(I:C) treatment (Fig. 6B–J). In contrast, all poly(I:C)-induced alterations were reversed by postnatal treatment with JNJ47965567 (Fig. 6B–J).

Figure 4. Maternal treatment of P2rx7-deficient dams with the P2rx7 antagonist JNJ47965567 (JNJ, 30 mg/kg i.p., 2 h before PIC injection) did not affect the phenotype of P2rx7-/- offspring. A, Overview of the experimental protocol (Experiment 4). JNJ pretreatment did not alter the social behavior (B), motor coordination deficits (C, D), and repetitive behaviors (E, F, G). The pharmacological inhibition of maternal P2rx7s in MIA did not influence the density of Purkinje cells (H) or the structure of synapses in the offspring. Exact n, F, and p values are provided in Table 1. I, Representative image of calbindin-labeled Purkinje cells in lobule VII of the cerebellum. Scale bar, 100 μm. Data show 17–20 technical replicates in n = 3 animals. J, Representative EM image of synaptosomes. Asterisks indicate disturbed synaptosomes. Arrows indicate normal synapses. Scale bar, 500 nm. *p < 0.05. ***p < 0.001.
The loss of cerebellar Purkinje cells and its reversal by the antagonist was not due to the alterations in subsequent behavior experiments as Purkinje cell loss was observed on young adult offspring of poly(I:C)-treated P2rx7/H11001/H11001 dams without preceding behavior tests and JNJ47965567 (30 mg/kg i.p.) treatment reversed this change as well (Experiment 7; Fig. 7). Once again, we cross-validated the effect of gene deficiency with the effect of postnatal P2rx7 antagonist treatment, but no maternal poly(I:C)-induced autistic phenotype was observed in offspring of P2rx7/H11545/H11546 heterozygous offspring are not affected by poly(I:C) administration

In Experiment 9, we showed that both maternal and paternal P2rx7/H11001/H11001 alleles are necessary to induce MIA in offspring. After cross-breeding P2rx7/H11001/H11001 and P2rx7/H11002/H11002 mice, the heterozygous offspring resembled the P2rx7/H11002/H11002 phenotype regardless of ma-
ternal or paternal origin of the allele deficiency. Social preference was not observed in any of the groups (Fig. 9B), neither exaggerated repetitive behaviors (Fig. 9E, F) nor impaired sensorimotor skills (Fig. 9C, D). In addition to behavioral analyses, also the morphological alterations were investigated; however, cerebellar Purkinje cell numbers (Fig. 9G, I) and condition of synaptic vesicles (Fig. 9H, J) were not affected by poly(I:C) administration or parental genotype.

We also examined cytokine levels in this experimental condition (Experiment 10; Fig. 10A), showing that in maternal plasma MIA is able to induce IL-6 and KC production (Fig. 10B) similarly to Experiment 2, both in P2rx7+/+ and P2rx7−/− dams, but
and morphological changes in the offspring are as follows: (1) In basal locomotor activity, was observed in different studies (Basso et al., 2009; Csoól et al., 2013a,b), schizophrenia (Koványi et al., 2016), atypical autism, such as major depression, bipolar disorder (Basso et al., 2009; Csöllő et al., 2013a,b), schizophrenia (Koványi et al., 2016), but not in ASD models. The experimental proof for endogenous P2rx7s participation in MIA-induced behavioral and morphological changes in the offspring are as follows: (1) In P2rx7−/− mice, maternal poly(I:C) did not induce social deficit, sensorimotor impairment, repetitive behaviors; in addition, cerebellar Purkinje cell atrophy and synaptosome destruction were also absent or alleviated. Genetic disruption by itself elicited baseline changes in some offspring phenotypes (e.g., decreased social preference, moderate, but significant Purkinje cell loss), and increased proportion of malformed synaptosomes. However, these are probably related to permanent deficiency of P2rx7s and consequent developmental changes as we could not reproduce them acutely with either maternal or offspring P2rx7 antagonist treatment. Similar socio-communicative and sensorimotor impairment and autistic-like phenotype were observed in another genetic mouse model affecting purinergic signaling (i.e., in mice genetically deficient in P2X4 receptors) (Wyatt et al., 2013). Baseline phenotype of P2rx7−/− mice has been extensively analyzed in previous studies: altered stress reactivity, but no change in basal locomotor activity, was observed in different studies (Basso et al., 2009; Csöllő et al., 2013b; Bartlett et al., 2014; Otrókcsi et al., 2017) in agreement with the present study (Fig. 1G). These findings indicate that the lack of responsiveness of P2rx7−/− offspring to MIA is probably not due to a “ceiling effect” of genetic disruption. (2) The effect of permanent knockdown of P2rx7 on poly(I:C)-induced changes could be mimicked by acute blockade of P2rx7s with specific P2rx7s antagonist on WT mice. It has been shown that JNJ47965567 has a selective action on P2rx7 in vitro and reaches high target engagement in vivo both in the systemic circulation and in the brain (Bhattacharya et al., 2013). (3) The above protective effects of JNJ47965567 could be observed in P2rx7−/−, but not in P2rx7−/− littermates, showing that the effect of P2rx7 antagonist is specifically related to P2rx7 inhibition. (4) We demonstrated the instrumental role of P2rx7 in the process leading to autistic-like condition via triggering behavioral and morphological alterations by the endogenous activation of P2rx7 during pregnancy. A single ATP injection resulted in similar autistic features observed in poly(I:C)-induced MIA model; therefore, the activation of P2rx7 is not only necessary, but sufficient, to induce autistic phenotype in WT mice. P2rx7-deficient mice were not affected by ATP administration, further strengthening our hypothesis. (5) Heterozygous offspring resemble P2rx7−/− phenotype; therefore, P2rx7 needs to be present in both parents to elicit MIA-induced autistic features in offspring.

Discussion

Here we show the pivotal role of P2rx7s in the poly(I:C)-induced MIA model of ASD (Fig. 11). P2rx7s and downstream signaling pathways coupled to them are common signaling highways in the pathophysiological nervous system; their involvement has been shown previously in animal models of psychiatric disorders (Cheffer et al., 2018), such as major depression, bipolar disorder (Basso et al., 2009; Csöllő et al., 2013a,b), schizophrenia (Koványi et al., 2016), but not in ASD models. The experimental proof for endogenous P2rx7s participation in MIA-induced behavioral and morphological changes in the offspring are as follows: (1) In P2rx7−/− mice, maternal poly(I:C) did not induce social deficit, sensorimotor impairment, repetitive behaviors; in addition, cerebellar Purkinje cell atrophy and synaptosome destruction were also absent or alleviated. Genetic disruption by itself elicited baseline changes in some offspring phenotypes (e.g., decreased social preference, moderate, but significant Purkinje cell loss), and increased proportion of malformed synaptosomes. However, these are probably related to permanent deficiency of P2rx7s and consequent developmental changes as we could not reproduce them acutely with either maternal or offspring P2rx7 antagonist treatment. Similar socio-communicative and sensorimotor impairment and autistic-like phenotype were observed in another genetic mouse model affecting purinergic signaling (i.e., in mice genetically deficient in P2X4 receptors) (Wyatt et al., 2013). Baseline phenotype of P2rx7−/− mice has been extensively analyzed in previous studies: altered stress reactivity, but no change in basal locomotor activity, was observed in different studies (Basso et al., 2009; Csöllő et al., 2013b; Bartlett et al., 2014; Otrókcsi et al., 2017) in agreement with the present study (Fig. 1G). These findings indicate that the lack of responsiveness of P2rx7−/− offspring to MIA is probably not due to a “ceiling effect” of genetic disruption. (2) The effect of permanent knockdown of P2rx7 on poly(I:C)-induced changes could be mimicked by acute blockade of P2rx7s with specific P2rx7s antagonist on WT mice. It has been shown that JNJ47965567 has a selective action on P2rx7 in vitro and reaches high target engagement in vivo both in the systemic circulation and in the brain (Bhattacharya et al., 2013). (3) The above protective effects of JNJ47965567 could be observed in P2rx7−/−, but not in P2rx7−/− littermates, showing that the effect of P2rx7 antagonist is specifically related to P2rx7 inhibition. (4) We demonstrated the instrumental role of P2rx7 in the process leading to autistic-like condition via triggering behavioral and morphological alterations by the endogenous activation of P2rx7 during pregnancy. A single ATP injection resulted in similar autistic features observed in poly(I:C)-induced MIA model; therefore, the activation of P2rx7 is not only necessary, but sufficient, to induce autistic phenotype in WT mice. P2rx7-deficient mice were not affected by ATP administration, further strengthening our hypothesis. (5) Heterozygous offspring resemble P2rx7−/− phenotype; therefore, P2rx7 needs to be present in both parents to elicit MIA-induced autistic features in offspring.

We have examined the potential underlying mechanism of the anti-autistic effect of genetic/pharmacologic disruption of P2rx7s. At first, we demonstrated the elevation of ATP level in maternal blood and fetal brain, a prerequisite of endogenous P2rx7 activation 2 h after the first poly(I:C) treatment. Because P2rx7s are involved in regulating circulating cytokine production, such as IL-1β, IL-6, and IL-18 following primary inflammatory stimuli (Solle et al., 2001; Bartlett et al., 2014), it was also worthwhile to examine an array of cytokines at the same time point. As expected, a strong induction of IL-6 was observed in maternal circulation of P2rx7−/− mice, which was attenuated by both genetic deletion and maternal inhibition of P2rx7s. Because maternal IL-6 is sufficient to induce autistic phenotype in offspring (Samuelsson et al., 2006; Hsiao and Patterson, 2011), maternal IL-6 is a likely mediator of the effect of endogenous P2rx7 activation upon maternal poly(I:C)-induced challenge. The action could be either direct, through the placenta (Wu et al., 2017), or indirect, through downstream Th17 cytokines, such as IL-17a, as described in other studies (Choi et al., 2016; Kim et al., 2017; Shin Yim et al., 2017). Interestingly, we could not detect significant change in IL-1β levels in response to MIA in either P2rx7−/− or P2rx7−/− animals, which argues against the activation of the canonical P2rx7-IL-1β-NLRP3 signaling pathway, at least at this early time point. Consistently, maternal P2rx7 inhibition, but not IL-1β blockade, was effective to prevent preterm birth and neonatal brain injury in a mouse model of perinatal intrauterine inflammation (Tsimis et al., 2017). Nevertheless, it cannot be excluded that at later time points other cytokines and soluble mediators also participated in maternal and fetal response to poly(I:C)-induced endogenous P2rx7 activation.

We also show here that, 48 h after poly(I:C) injection, TBR1 immunolabeling is decreased in the developing cortical plate of WTs, demonstrating compromised brain development following MIA under our experimental conditions. Importantly, in P2rx7−/− mice, or after maternal P2rx7 antagonist treatment, no
Figure 8. The P2rx7−/− phenotype was not affected in the MIA model by postnatal administration of selective P2X7 antagonist JNJ47965567 (JNJ, 30 mg/kg i.p., 2 h before the first behavior test) in the offspring. A, Overview of the experimental protocol (Experiment 7). JNJ pretreatment had no influence on the social behavior (B), motor coordination deficits (C, D), and repetitive behaviors (E, F). G, The number of Purkinje cells was not altered in offspring after the pharmacological blockade of P2rx7s in MIA. H, Synaptosome malformation was not affected by the antagonist treatment in the offspring. Exact n and p values are provided in Table 1. I, Representative images of calbindin-labeled Purkinje cells in lobule VII of the cerebellum. Scale bar, 100 μm. Data show 11–15 technical replicates in n = 3 animals. J, Representative EM image of synaptosomes. Asterisk indicates malformed synaptosome. Arrows indicate unharmed synapses. Scale bar, 500 nm. *p < 0.05.
Figure 9. Heterozygous offspring are not affected by poly(I:C) administration. Cross-breeding the P2rx7+/+ and P2rx7−/− genotypes resulted in an anti-autistic phenotype of heterozygotes, similar to the P2rx7−/− phenotype. A, Experimental protocol (Experiment 9). Poly(I:C) could not induce MIA and social preference (B), aberrant motor coordination (C, D), or increased repetitive behaviors (E, F) in the offspring regardless of parental origin of P2rx7. G, Purkinje cells were unharmed in heterozygotes. I, Representative images of calbindin-labeled cells in the cerebellum. Scale bar, 100 μm. Data show 22–24 technical replicates in n = 3 animals. H, Synaptosome preparations did not reveal any difference in heterozygotes. J, Representative EM synaptosome images. Arrows indicate intact synaptosomes. Asterisks label malformed synaptosome. Scale bar, 500 nm. *p < 0.05.
significant decrease is observed in response to poly(I:C), illustrating the impact of P2rx7 inhibition on MIA-induced alterations in brain development. TBR1 is a transcription factor protein expressed by developing glutamatergic projection neurons with a critical role in neuronal migration and axonal pathfinding in the cortex, and is a high-confidence risk gene for ASD (Deriziotis et al., 2014; Huang and Hsueh, 2015). There are several mechanisms whereby TBR1 loss might influence developing neuronal circuits, and it also acts as a master gene controlling the expression of many other ASD-associated genes (Huang and Hsueh,
mice exhibit autism-like behaviors (Huang et al., 2014); therefore, it is a plausible explanation that MIA leads to similar behaviors through TBR1 depletion. In contrast, we could not observe change in SATB2 immunofluorescence, another transcription factor instrumental for normal brain development, which is the marker of postmitotic neurons in superficial cortical layers (Alcamo et al., 2008).

Finally, we demonstrated the reversal of MIA-induced behavioral and morphological phenotype by JNJ47965567 treatment in offspring. This finding implies that offspring phenotypic alterations developed as a result of the long-term impact of MIA are reversible by P2rx7 inhibition. Interestingly, there were minor differences in the effects of JNJ depending on the application protocols. This holds true for the sensorimotor coordination impairments (Figs. 3C, D, 6C, D), marble burying test (Figs. 3F, 6F), and synaptosome malformation analyses (Figs. 3H, H), where there are small, but significant, differences in case of the maternal JNJ administration, which is not detected when JNJ was administered postnatally, although P2rx7 antagonist injection to either pregnant dams or adult offspring counteracted the poly(I:C)-induced changes. Overall, the pharmacological blockade of P2rx7 with JNJ seems efficient in alleviating all of the features of poly(I:C)-induced autism in mice; however, the mechanisms following receptor inhibition could possibly be diverse, whether acting in the maternal organism or in the adult offspring, which might be responsible for differences mentioned above.

As for the potential mechanism of effect of postnatal P2rx7 blockade, it is known that the cerebellum remains plastic even after weeks/month after birth (Wang and Zoghbi, 2001). Probably prenatal poly(I:C) treatment induced such mechanisms that would have resulted in Purkinje cell loss only at the young adult age, when JNJ was administered; therefore, the antagonist could alleviate this effect. Furthermore, our observation on the reversal of Purkinje cell loss after postnatal antipurinergic treatment is not unique. J.C. Naviaux et al. (2014) demonstrated that a single-dose administration of the nonselective P2 receptor antagonist suramin corrected abnormal behaviors and Purkinje cell loss in adult mice in a similar MIA model of autism. Moreover, the alleviation of autistic symptoms by postnatal suramin administration has also been observed in a small human study (R.K. Naviaux et al., 2017).

Nevertheless, identifying the exact cell types and mechanisms responsible for the beneficial action of postnatal P2rx7 blockade awaits further investigation.

In conclusion, we discovered that activation of P2rx7s is necessary to transduce MIA to an autistic phenotype in offspring and that both behavioral and morphological alterations could be reversed by pharmacological inhibition of either maternal or off-
spring P2rx7s. In addition, direct P2rx7 activation alone is sufficient to elicit autistic phenotype in WT mice. Endogenous P2rx7 activation might disrupt cortical development and elicit phenotypic changes via proinflammatory cytokines in the ASD model. Consequently, maternal and offspring P2rx7s function as triggers to turn on and off immune activation and subsequent perinatal brain reprogramming elicited by poly(I:C), which could be used as diagnostic and/or therapeutic intervention target for the precision treatment of ASD.

References
hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 290:R1345–R1356.

Stress-Induced Metabolic Disorder in Peripheral CD4⁺ T Cells Leads to Anxiety-like Behavior

Graphical Abstract

Highlights
- Peripheral CD4⁺ T cells control stress-induced anxiety-like behavior
- Mitochondrial fission in peripheral CD4⁺ T cell causes severe anxiety symptoms
- T cell-derived xanthine acts on the oligodendrocytes in the left amygdala
- IRF-1 controls purine synthesis in CD4⁺ T cells and triggers the onset of anxiety

Authors
Ke-qi Fan, Yi-yuan Li, Hao-li Wang, ..., Xin-Hua Feng, Ren-jie Chai, Jin Jin

Correspondence
jjin4@zju.edu.cn (J.J.), renjiec@seu.edu.cn (R.-j.C.)

In Brief
Xanthine metabolism in CD4⁺ T cells is found to be central to mediating the effects of stress-induced anxiety like behavior in mice through its effects on oligodendrocyte proliferation and neuronal hyperactivation.
Stress-Induced Metabolic Disorder in Peripheral CD4+ T Cells Leads to Anxiety-like Behavior

Ke-qi Fan,1,9 Yi-yuan Li,1,9 Hao-li Wang,1 Xin-tao Mao,1 Jin-xin Guo,1 Fei Wang,1 Ling-jie Huang,2 Yi-ning Li,1 Xiang-yu Mo,3,4,5 Zheng-jun Gao,1 Wei Chen,6 Dan-dan Qian,3 Wen-jin Xue,3 Qian Cao,2 Lei Zhang,2 Li Shen,1 Long Zhang,1 Chao Tong,1 Jiang-yan Zhong,1 Wei Lu,3 Ling Lu,4 Ke-ming Ren,2 Guisheng Zhong,8 Yuan Wang,6 Mingliang Tang,3 Xin-Hua Feng,1 Ren-jie Chai,3,4,5,* and Jin Jin1,2,10,*

1MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
2Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
3Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
4Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
5Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
6Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
7Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
8Human Institute, ShanghaiTech University, Shanghai 201210, China
9These authors contributed equally
*Correspondence: jjin4@zju.edu.cn (J.J.), renjiec@seu.edu.cn (R.-j.C.)
https://doi.org/10.1016/j.cell.2019.10.001

SUMMARY

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.

INTRODUCTION

Emotional reactions, including fear and stress, are considered normal psychological and physical reactions to positive or negative situations in our lives. However, frequent acute emotional reactions referred to as chronic stress (CS) are pathological conditions that increase the risk of depression and anxiety (de Kloet et al., 2005; Krishnan and Nestler, 2008; McEwen et al., 2015). Most of the current therapeutic drugs for anxiety or depression, such as selective monoamine neurotransmitter re-uptake inhibitors, directly target the central nervous system (CNS). However, these drugs are accompanied by many side effects, including sexual dysfunction, systemic metabolic disorder, and persistent hypertension. Therefore, it is of great significance to understand the pathogenesis of mood disorders to develop nontraditional therapeutic drugs.

In addition to causing anxiety behaviors, stress can lead to disorders of the immune, metabolic, and cardiovascular systems (Dimsdale, 2008; Glaser and Kiecolt-Glaser, 2005; Reiche et al., 2004; Tamashiro et al., 2011). Acute-stress conditions appear to enhance the immune response, while CS diminishes immune responses, including decreasing leukocyte trafficking, impairing neutrophil phagocytosis, and reducing the number of peripheral lymphocytes (Glaser and Kiecolt-Glaser, 2005; Padgett and Glaser, 2003). Some recent studies have also highlighted the physiological function of various immune molecules in the onset of anxiety-like behaviors. IL-6 and IL-1β derived from innate immune cells can affect many aspects of the CNS, including neurotransmitter metabolism, neuronal endocrine function, and neuroplasticity in a mouse model (Chourbaji et al., 2006; Engler et al., 2017; McKim et al., 2018; Wakabayashi et al., 2015). Adaptive immunity is also involved in the maintenance of the CNS and is relevant to stress-triggered behaviors, including anxiety (Filiano et al., 2016). IFN-γ derived from meningeal T cells acts on neurons in the prefrontal cortex (PFC) to promote GABAergic inhibition and prevent abnormal excitability (Filiano et al., 2016). Programmed Cell Death 1 KO (Pdcd1−/−) T cells exhaust tryptophan (Trp) and tyrosine, which leads to substantial deficiencies in neurotransmitters and anxiety-like behavior.
involved in ES-induced mood disorders, we depleted CD4+ or CD8+ T cell deficiency still prevented RS-treated mice from induced behavioral changes, we exposed wild-type (WT) or Rag1−/− mice (Figure 1A). In contrast to WT mice, immunodeficient Rag1−/− mice did not exhibit reduced interest in exploring the central region and locomotion in the open-field test (OFT) (Figure 1B), implying that the adaptive immunity is required for the onset of anxiety. Consistent with previous reports (Dhabhar, 2008; Dragos and Tanaseanu, 2010), mice with acute ES exposure exhibited significantly increased frequencies and numbers of peripheral CD4+ and CD8+ lymphocytes compared to those of nontreated (NT) controls (Figures S1A and S1B).

To investigate which subpopulation of lymphocytes is involved in ES-induced mood disorders, we depleted CD4+ or CD8+ T cells by intravenous (i.v.) injection with neutralizing antibodies before inducing the ES model (Figure 1A) and verified the removal efficiencies by fluorescence-activated cell sorting (FACS) analysis (Figure S1C). Surprisingly, only CD4+ T cell depletion significantly reversed the ES-induced anxiety-like behavior in the OFT and elevated plus-maze (EPM) test (Figures 1C and 1D). To further confirm the role of CD4+ T cells in CS, we extended the procedures of the ES models to 30 days. As shown in Figure S1D, CD4+ T cells were also required for chronic ES-induced anxiety-like behavior. In contrast to the ES model, an acute restraint stress (RS) model reduced the frequency of CD4+ T cells (Figure S1E), which is consistent with observations in patients with anxiety (Figure S1F). However, CD4+ T cell deficiency still prevented RS-treated mice from developing anxiety (Figure 1E), suggesting that CD4+ T cells have a broad impact on physical stress-induced anxiety-like behavior.

To assess whether T cells retain anxiety imprints, NT or ES-induced splenic CD4+ or CD8+ T cells were adoptively transferred into Rag1−/− mice (Figure 1F). Only the Rag1−/− mice that received ES-induced CD4+ T cells developed anxiety-like behavior in the OFT (Figure 1G). Surprisingly, the NT CD4+ T cells induced weak anxiety-like symptoms, suggesting that some natural products derived from CD4+ T cells have the ability to regulate physical reactions (Figure 1G). T cell-derived IFN-γ has also been shown to be involved in regulating neuronal connection and social behavior (Filiano et al., 2016). Without additional stimulation, the splenic CD4+ T cells from ES mice exhibited a significant reduction in IFN-γ expression compared to that in NT mice (Figure S1G). However, serum IFN-γ showed no difference compared to that in NT mice, due to the increased total cell number (Figure S1H).

To elucidate whether the pathological CD4+ T cells in anxiety exercise their functions in a manner dependent on their activation, we compared the abilities of naive and effector CD4+ T cells to induce anxiety symptoms by adoptive transfer into Rag1−/− mice. In addition to naive CD4+ T cells, we added two effector control groups including the Effector-L (from the same mice) and Effector-H groups (the same cell number). Although the transferred naive and effector CD4+ T cells displayed similar activation features (Figure S1I), naive CD4+ T cells triggered a more severe anxiety than did those from the two effector control groups (Figure 1H). Consequently, these data implied an important role for CD4+ T cells in stress-induced anxiety independent of their activation status.

Stress Induces Mitochondrial Fission in Peripheral CD4+ T Cells

To examine the distinct ability of CD4+ and CD8+ T cells to drive anxiety, we analyzed the transcriptome of naive ES-induced CD4+ and CD8+ T cells by RNA sequencing (RNA-seq). Although most of the genes in ES CD4+ T cells were similar to those in the other three groups (Figure 2A and Table S1), 128 specifically differentially expressed genes (DEGs) were identified in ES-induced CD4+ T cells (Figures 2B and 2C). Gene ontology (GO) analysis revealed that a large number of these DEGs encoded mitochondrial proteins (Figure 2D). Additionally, both ES- and RS-treated naive CD4+ T cells exhibited severely reduced levels of glycolysis (Figure 2E) and oxidative phosphorylation (OXPHOS) (Figure 2F), as measured by the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR), respectively. These data implied that stress affected the structure of mitochondria, which profoundly influences the biogenesis and function of mitochondria (Wai and Langer, 2016; Zhan et al., 2013). Confocal microscopy images demonstrated that ES-treated naive CD4+ T cells predominately exhibited punctate mitochondria (Figure 2G). Consistently, compared to those from healthy donors, naive CD4+ T cells from the patients with anxiety also displayed severe mitochondrial division (Figure S2A). Immunoblotting (IB) further revealed that the outer membrane proteins that mediated mitochondrial fusion, including MFN2 and MIGA2, were significantly reduced in ES-treated naive CD4+ T cells (Figure 2H and Figure S2B). Collectively, these data suggest that CD4+ T cells under stress exhibit abnormal mitochondrial morphology and metabolic dysfunction.

Various neurotransmitters and hormones including dopamine, cortisol, GABA, adrenaline, L-glutamic acid and serotonin have been proven to be associated with the onset of anxiety. Surprisingly, these critical molecules in the serum did not display any consistent trends of changes between the ES- and RS-induced anxiety models (Figure S2C). Adrenal glucocorticoids appear to weaken inflammation and T-cell proliferation. Although injection of prednisone, a glucocorticoid, triggered anxiety-like behavior, CD4+ T-cell depletion had no effect on these anxiety symptoms (Figure S2D), suggesting
that glucocorticoids may not be involved in CD4+ T-cell-induced anxiety. Several findings have demonstrated that depressive animals exhibit increases in omega-6 fatty acids and arachidonic acid (AA) in the brain. AA is known to be a critical component of the inflammatory process via metabolism into leukotriene B4 (LTB4) and prostaglandin (PG) E2, which may further act on peripheral lymphocytes. Of all AA metabolites, only LTB4, PGB1, and 15-Δ12,14-PGJ2 (15-d-PGJ2) showed a consistent increase by LC-MS (Figure 2I). In contrast to PGB1, LTB4 administration caused a severe anxiety-like behavior, which was restored by CD4+ T cell removal (Figure 2J). Although 15-d-PGJ2 also led to mild anxiety symptoms, CD4+ T cells were not involved in this process (Figure 2J). LTB4 significantly promoted mitochondrial fission in vitro (Figure 2K) and reduced MFN-2 and MGA2 expression in naive CD4+ T cells (Figure 2L). In summary, stress-induced LTB4...
Figure 2. Stress Causes Metabolic Disorder and Mitochondrial Fission in CD4⁺ T Cells

(A) Venn diagram summarizing the expression of genes in naive T lymphocytes isolated from the spleens of NT- or ES-treated mice, as determined by RNA-seq data.

(B) Heatmap showing the differentially expressed genes (DEGs) in T lymphocytes between NT- and ES-treated mice. The DEGs were identified with a fold change of ES/NT > 2.0 or < 0.5.

(C) Comparison of the number of DEGs and gene ontology (GO) analysis of 128 specific DEGs in CD4⁺ T cells.

(D) Heatmap showing the expression of the DEGs encoding mitochondrial proteins.

(legend continued on next page)
triggers mitochondrial fission in peripheral CD4+ T cells and the onset of anxiety, although the underlying mechanism remains to be further investigated.

CD4+ T Cells with Diverse Mitochondria Cause Severe Anxiety-like Symptoms

To confirm the relationship between the mitochondrial morphology of T cells and anxious behavior, we generated Mitoguardin 2 KO (Miga2−/−) mice and observed highly fragmented mitochondria in naive CD4+ T cells (Figure 3A). Ultrastructural analysis with electron microscopy (EM) further confirmed many small, diverse mitochondria dispersed in the cytoplasm of Miga2−/− naive CD4+ T cells (Figure 3B). Interestingly, Miga2-deficient mice displayed decreased locomotor activity and spent much less time in the center than their WT littermates in the OFT (Figure 3C). Consistently, these Miga2-deficient mice were obviously afraid to enter into the open arms in the EPM test (Figure 3D). In the dark-light transition assay, Miga2-deficient mice exhibited fewer transitions from the dark zone to the light zone and spent less time in the light zone than WT mice (Figure S3A). Moreover, Miga2-deficient mice stopped struggling earlier in the tail suspension test (Figure S3B) and exhibited less social motivation and curiosity (Figure S3C), suggesting that these mice also have severe depression.

Similar to the data in the ES stress model, depletion of CD4+, but not CD8+, T cells restored the anxiety symptoms caused by continuous mitochondrial division (Figure 3E). Although inflammatory microglia lead to depression and anxiety by inhibiting the release of dopamine (Li et al., 2014; McKim et al., 2018; Wang et al., 2018; Wohleb et al., 2011), microglia were not involved in the onset of anxiety caused by Miga2 deficiency, as revealed by selectively eliminating myeloid cells by liposomal clodronate (LCCA), PLX3397, or anti-CD11b antibody, which disrupt T cell migration into the CNS. Surprisingly, neither the VLA-4 nor CD6 antibody had any effect on anxiety symptoms in Miga2-deficient mice (Figure S3D). All of these data indicate that Miga2 deficiency-induced anxiety is independent of pathological CD4+ T cell migration into the brain. To further clarify the particular function of mitochondrial fission in peripheral CD4+ T cells, we generated Miga2 T cell-conditional knockout (KO) (Miga2TKO) mice. In contrast to another mitochondrial fusion protein Opa1, which is required for memory T cell characteristics (Buck et al., 2016), Miga2-deficient T cells did not show any obvious abnormalities in the development and homeostasis of T lymphocytes (Figures S3E and S3F). Miga2TKO mice also displayed comparable sensitivities in models of experimental autoimmune encephalomyelitis (EAE) (Figure S3G), as revealed by comparable clinical scores, levels of immune cell infiltration in the CNS, and proliferative capacity (Figures S3H and S3I). Nevertheless, Miga2TKO mice still displayed anxiety-like behavior similar to that of Miga2−/− mice (Figure 3G). Furthermore, Miga2TKO mice exhibited normal extinction of fear memory in the continuous EPM test (Figure 3H), indicating that Miga2-deficient CD4+ T cells have no effect on normal learning and memory. To eliminate a particular function of the MIGA2 protein in anxiety, we generated Mfn1 and Mfn2 T cell-conditional double KO (Mfn1/2TKO) mice. Behavioral assessment indicated that the mice lacking Mfn1/2 in T cells also exhibited anxiety-like behavior compared to their WT littermates (Figure 3I), suggesting that anxious behavior is promoted by the morphological disorder of mitochondria rather than by a specific function of certain mitochondrial proteins in CD4+ T cells.

Continuous Mitochondrial Fission in T Cells Causes a Systemic Purine Metabolism Disorder

Mitochondria morphology has been intimately linked to metabolic regulation across cell types and tissues (Mishra and Chan, 2016; Wai and Langer, 2016). Consistently, partial least-squares discrimination analysis (PLS-DA) revealed that the metabolomic profile of Miga2TKO mice was significantly different from that of their WT littermates (Figure 4A and Table S2). Some amino acids, including Trp and glutamate (Glu), account for the majority of excitatory and inhibitory neurotransmitters in the nervous system. Although various amino acids were upregulated in the serum of Miga2TKO mice (Figure S4A), these neurotransmitter amino acids and their derivatives were not included (Figure S4B).
Hierarchical clustering and KEGG analyses indicated that the differential metabolites in Miga2TKO mice were mainly enriched in purine metabolism (Figures 4B and 4C). Most of the purines and their derivatives including adenine, hypoxanthine, and xanthine were 10 to 100 times more abundant in Miga2TKO mice than in their WT littermates (Figure 4D). Interestingly, xanthine mainly accumulated in the brain but was markedly decreased in the peripheral immune organs (Figure S4C). After the removal of CD4+ T cells, the serum concentration of xanthine in Miga2TKO mice was significantly decreased (Figure 4E). Current clinical evidence has revealed that patients with depression have an increased level of xanthine compared with that of healthy

Figure 3. Sustained Mitochondrial Fission in CD4+ T Cells Induces the Anxiety-like Behavior

(A) Mitochondrial morphology of splenic naive CD4+ T cells isolated from 6-to-8-week-old WT or Miga2TKO mice was visualized and quantified with 50 cells.

(B) Mitochondrial morphology of WT and Miga2TKO CD4+ T cells was analyzed by EM (scale bar, 500 nm or 1 μm).

(C) Representative tracks of WT and Miga2TKO mice in OFT (left, n = 10).

(D) Representative tracks in the EPM (n = 10). The number of entries into the open arms and the time spent in the open arms are presented as bar graphs (right).

(E) Some of WT and Miga2TKO mice were i.v. injected with distinct antibodies on days 0 and 7, and together i.v. injected with liposomal clodronate (LCCA, 70 mg/kg) or BLZ945 (200 mg/kg) on days 0, 2, 4, and 6. The anxiety-like behavior of these mice were then evaluated in OFT on day 8 (n = 6).

(F) Rag1TKO mice were adoptively transferred with 5 × 10^6 WT or Miga2TKO splenic CD4+ T cells every three days. Six days later, the anxiety-like behavior of recipient Rag1TKO mice was evaluated in OFT (n = 7).

(G) OFT results for 6-to-8-week-old Miga2TKO mice with their littermates (n = 10).

(H) The WT and Miga2TKO mice were continuously subjected to EPM each day and measured for their responsive experience in every other day (n = 4).

(I) Representative tracks of 6-to-8-week-old WT and Mfn1/2TKO mice in the OFT (n = 10). All data are representative of at least three independent experiments. Data are presented as means ± SEM. The significances of differences in (E) and (F) were determined by Dunnett’s test, and others were determined by t test. *p < 0.05; **p < 0.01; ***p < 0.005.
Figure 4. Mitochondrial Fission in CD4+ T Cells Leads to a Systemic Increase in Serum Purines

(A) Partial least-squares discrimination analysis (PLS-DA) of the serum metabolome of WT and Miga2TKO mice (n = 4). Each symbol represents the data of an individual mouse.

(B) Heatmap showing differential metabolic production (DMP) in the serum of WT and Miga2TKO mice. The DMPs were identified with a fold change of Miga2TKO/WT > 2.0 or < 0.5.

(C) KEGG analysis of these DMPs-enriched biological processes.

(D) Purine nucleotides and their derivatives in the serum were measured by PLS-DA and presented as the ratio of the abundance in Miga2TKO mice to those in WT mice (n = 4).

(E) Xanthine in the serum of CD4+ T cell-depleting Miga2TKO mice was measured by ELISA. The relative fold is to serum xanthine concentration of WT control.

(F) Dot plots showing the relative fold of xanthine in the serum of the patients with anxiety (n = 40) to those in healthy donors (n = 46).

(G) ELISA assay of the relative fold of xanthine in the serum of NT-, ES-, and RS-treated mice (n = 10).

(legend continued on next page)
controls (Ali-Sisto et al., 2016). We also found that serum xanthine was significantly higher in patients with anxiety (Figure 4F). Increased abundance of serum xanthine was also observed in two rodent anxiety models (Figure 4G) and the recipient Rag1−/− mice adoptively transferred with ES CD4+ T cells (Figure S4D). Similar to the observation that anxiety is mainly induced by naive T cells in Figure 1H, naive CD4+ T cells produced a higher level of xanthine than effector T cells (Figure S4E).

To verify the direct link between excessive levels of purines and anxiety symptoms, we intraperitoneally (i.p.) injected synthetic xanthine or adenosine into WT mice. Surprisingly, xanthine, adenosine, and adenosine arabinoside monophosphate (Ara-AMP) all had the ability to trigger anxiety-like behavior (Figure 4H and Figure S4F). Recent studies have revealed opposite effects of adenosine and xanthine on the activity of neurons (Phillis and Wu, 1982). Thus, we measured c-FOS expression on neurons, which indicates their activation after xanthine or adenosine administration. Similar to in Miga2−/− mice, xanthine treatment caused more c-FOS expression on the neurons than did PBS treatment. Oppositely, adenosine led to a reduction in c-FOS+ neurons, which could be reversed by xanthine coinjection (Figure S4G). Therefore, xanthine plays a more dominant role when the microenvironment contains both of these purines. BCX-1777, as a purine nucleoside phosphorylase (PNP) inhibitor, has been proven to be an efficient inhibitor of xanthine metabolism (Li et al., 1999; Miles et al., 1998). BCX-1777 treatment significantly reduced the anxiety symptoms in Miga2TKO and ES mice (Figures 4I and 4J) and significantly decreased the serum concentration of xanthine (Figure S4H). In summary, excessive xanthine caused by pathological CD4+ T cells plays a critical role in the onset of anxiety.

Xanthine Directly Acts on Oligodendrocytes in the Left Amygdala

A number of studies have suggested that the amygdala plays a critical role in generating fear and persistent anxiety (Davis, 1992; Shackman and Fox, 2016; Thomas et al., 2001). The left amygdala has been linked to social anxiety, compulsive disorders, and posttraumatic stress as well as to general anxiety (Phelps et al., 2001). Histological analysis of disorders, and posttraumatic stress as well as to general anxiety amygdala has been linked to social anxiety, compulsive 1992; Shackman and Fox, 2016; Thomas et al., 2001). The left amygdala or the amygdala of the WT control (Figure 5A and Figures S5A and S5B). The left amygdala of xanthine-treated mice displayed a pathological phenotype similar to that of Miga2TKO mice (Figure S5C). To clarify the pathological mechanism in the amygdala, we performed single-cell RNA sequencing (scRNA-seq) by using the 10x Genomics platform in an unbiased manner (Figure S5D and Table S3). Approximately 3,000 cells passed quality control, and unsupervised clustering revealed nine clusters, which we visualized with t-distributed stochastic neighbor embedding (tSNE) (Figure S5E). We defined each population with multiple specific genes and highlighted three markers for each subset (Figure 5C). Adenine and xanthine initiate their physiological functions through four receptor subtypes, namely A1, A2A, A2B, and A3. Interestingly, the scRNA-seq data revealed that A1 is mainly expressed in oligodendrocytes and oligodendrocyte progenitor cells (OPCs), while A2B and A3 are distributed in astrocytes and microglia, respectively (Figure 5D and Table S3). FACS immunofluorescence (IF) analysis further confirmed that A1 expression was largely distributed in oligodendrocytes, but no expression of A2A, A2B, or A3 was detected (Figures 5E–5F and Figure S5F). Due to the defect of adenosine receptors on neurons, we next analyzed the transcriptome of each nonneuronal cell in the amygdala of WT-, Miga2−/−, and xCD4-treated Miga2−/− mice (Table S4). Both scRNA-seq and FACS analysis indicated a significantly increased percentage of oligodendrocytes in Miga2−/− mice, which could be reversed by depleting CD4+ T cells (Figures 5G and 5H). Furthermore, more A1+ oligodendrocytes were observed in Miga2−/− mice but not in those treated with xCD4 (Figure 5F and Figure S5G). Consistently, only DEGs in oligodendrocytes were largely restored by removing CD4+ T cells in Miga2−/− mice (Figure S5H). KEGG analysis showed that these DEGs in oligodendrocytes were mainly enriched in the purine metabolic process and mitotic cell cycle process (Figure S5I). As a pathogenic factor, xanthine caused a significant increase in DNA synthesis and the cell cycle in oligodendrocytes, as measured by BrdU incorporation assays, while adenosine had a significant opposite effect (Figure S5J). Therefore, these data suggest that xanthine triggers the proliferation of oligodendrocytes directly.

Previous evidence has revealed that xanthine acts on A1 receptors and promotes the activity of protein kinase A (PKA)/cAMP (Darashchonak et al., 2014). Consistently, the intense bands of phospho-PKA substrates indicated that the PKA/cAMP pathway was clearly activated in oligodendrocytes of Miga2−/− mice and was downregulated by depleting CD4+ T cells (Figure S5K). As the only detectable adenosine receptor, A1 in oligodendrocytes was further specifically knocked down by injecting an adeno-associated virus (AAV) expressing myelin basic protein (MBP) promoter-driven Adora1 shRNA-GFP (AAV-MBP-shAdora1-GFP) into the left amygdala (Figure 5I). In parallel, an AAV expressing MBP promoter-driven non-silencing shRNA (AAV-MBP-NCshRNA-GFP) was used as a negative control (Figure 5I). Two weeks later, FACS analysis suggested a strong co-expression of GFP and MOG signals in the left amygdala (Figure 5J), indicating specific expression of Adora1 shRNA in oligodendrocytes. Without the A1 receptor in oligodendrocytes, Miga2-deficient mice no longer displayed anxiety-like symptoms (Figure 5K). In summary, the excessive xanthine caused by Miga2−/− T cells acts on oligodendrocytes.
Figure 5. CD4⁺ T Cell-Derived Xanthine Acts on the Oligodendrocytes at the Amygdala via AdorA1

(A) Histological analyses of whole brains were performed by Nissl staining. Scale bar, 100 μm. See also Figure S5B for the statistical results.

(B) tSNE plots of scRNA-seq show unsupervised clusters of cells in the amygdala. 9 major clusters; OPC, oligodendrocyte progenitor cell.

(C) Heatmap of each cluster’s expression of the 15 markable DEGs per cluster.

(legend continued on next page)
through the A1 receptor in the left amygdala and promotes anxiety-like behavior.

Mitochondrial Fission Promotes the de novo Synthesis of Xanthine in CD4+ T Cells

Purine can be synthesized via two distinct pathways: the de novo and salvage pathways. In the de novo synthesis pathway, the glucose metabolic product 5-phosphoribosyl-1-pyrophosphate (PRPP) provides a backbone to form the purine ring. Similar to ES-treated T cells, Miga2-deficient CD4+ T cells exhibited markedly reduced activities of OXPHOS and glycolysis (Figure 6A and Figures S6A and S6B). A similar metabolic pattern was observed in CD4+ T cells from Mfn1/2TKO mice (Figures S6C and S6D). A 13C carbon tracing assay further revealed that Miga2-deficient naive CD4+ T cells had lower glycolysis levels but produced more M+5 ribulose-5-p (R-5-P), CAIR, adenosine, and inosine than the WT naive CD4+ T cells (Figures 6B–6C and Table S5), demonstrating that glucose flows to the pentose phosphate pathway (PPP) for de novo purine synthesis upon the alteration of mitochondrial morphology from fission to fusion. 2-Deoxy-D-glucose (2-DG) is a glucose analog that inhibits its catabolic pathways including glycolysis, PPP, and de novo purine synthesis by inhibiting hexokinase activity. The administration of 2-DG clearly normalized the anxiety-like symptoms and pathological characteristics of the left amygdala in Miga2TKO mice (Figures S6E and S6F).

To clarify the underlying mechanism by which mitochondrial morphology regulates purine synthesis, we analyzed the transcriptome of WT and Miga2-deficient naive CD4+ T cells. Miga2-deficient CD4+ T cells showed reduced transcription of several critical enzymes related to the glycolytic and fatty acid β-oxidation pathway, but increases in the molecules required for purine synthesis, such as hexokinase 3 (HK3), adenosine deaminase (Ada), purine nucleoside phosphorylase 2 (Pnp2), and xanthine oxidase/xanthine dehydrogenase (Xdh) (Table S6 and Figure 6D). Additionally, qPCR and IB analyses in Miga2-deficient naive CD4+ T cells confirmed the elevated mRNA and protein levels of these genes (Figures 6E and 6F), which were consistent with the accumulation of the associated metabolites (Figures 4A and 4B).

PNP catalyzes the conversion of inosine and guanosine to hypoxanthine or guanine. Similar to PNP, PNP2 also functions as an enzyme regulating the purine metabolic pathway and xanthine production. Due to its low expression in primary CD4+ T cells, we proposed that its deficiency may not lead to a severe immunodeficiency as Pnp deficiency does (Arpaia et al., 2000; Markert, 1991; Stoop et al., 1977). Thus, we generated Pnp2−/− mice with CRISPR/CAS9 by targeting exon 2 (Figure 6H and Figure S6G) and verified with qPCR analysis (Figure S6H). Consistent with our hypothesis, Pnp2-deficient mice did not exhibit any obvious dysfunction of T lymphocyte development or maturation (Figure S6I) and were thus further crossed with Miga2−/− mice to generate Pnp2−/−Miga2−/− mice. In vitro, Pnp2 deficiency partially normalized the hyper-production of xanthine by Miga2−/− T cells (Figure 6I). After adoptive transfer into Rag1−/− mice, Pnp2−/−Miga2−/− CD4+ T cells did not induce anxiety symptoms as strong as those induced by Miga2−/− CD4+ T cells (Figure 6J). Because Pnp2 depletion cannot completely block the synthesis of xanthine, xanthine in the serum was still moderately increased in the recipient Rag1−/− mice transferred with Pnp2−/−Miga2−/− CD4+ T cells (Figure 6K). These results support the conclusion that CD4+ T-cell-derived excess xanthine directly causes anxiety-like behavior.

Mitochondrial Fission Leads to Excessive Xanthine by Promoting IRF-1 Accumulation

Interferon regulatory factor-1 (IRF-1), a transcription factor, participates in various cellular processes, including cell proliferation, differentiation, apoptosis, and immunological regulation. Our previous study revealed that constitutive mitochondrial fission promoted the accumulation of IRF-1 in innate immune cells (Gao et al., 2017). We found that the stability of IRF-1 was negatively regulated via monoubiquitination by the carboxyl terminus of hsp70-interacting protein (CHIP), which was degraded by the diverse mitochondria-recruited ubiquitin E3 ligase PARKIN (Gao et al., 2017) (Figure S6J). Similar to macrophages, Miga2 deficiency also triggered significant aggregation of IRF-1 in CD4+ T cells (Figure 7A). Consistently, ES also caused severe accumulation of IRF-1 in CD4+ T cells (Figure 7B). Analysis of public data regarding chromatin immunoprecipitation sequencing (ChIP-seq) of macrophages (Langlais et al., 2016) revealed that IRF-1 was enriched in the promoter regions of Ada, Xdh, and Pnp2. Thus, we analyzed the promoter sequence of these three genes and identified several potential IRF-1 binding motifs near the transcription start site (TSS) (Figure 7C). Chip-qPCR assays further revealed that the accumulated IRF-1 in Miga2-deficient CD4+ T cells was significantly enriched at certain binding sites in the TSSs of Ada, Pnp2, and Xdh compared to those in WT controls (Figure 7D). We next depleted IRF-1 in Miga2-deficient
CD4+ T cells by crossing with Irt1f/− mice. IRF-1 deficiency clearly normalized both the mRNA and protein levels of Ada and Xdh in Miga2-deficient CD4+ T cells (Figures 7E and 7F). Additionally, the lack of IRF-1 restored most of the anxiety-like phenotypes in Miga2KO mice (Figure 7G). A weak difference remained between Miga2KO/Irt1KO and Miga2WT/Irt1KO mice indicating that IRF-1 may not be the only factor contributing to T-cell-mediated anxiety-like behavior. Nonetheless, our results suggest that IRF-1 in CD4+ T cells plays an essential role in mitochondrial fission-mediated purine synthesis and anxiety symptoms.

DISCUSSION

As early as 1950, Han Selye built up the concept of neuroimmunology and began to explore the crosstalk between immune cells and the nervous system. Over nearly 70 years, the function of the innate immune system in the control of mood and the onset of anxiety has been well established, but the roles of the adaptive immune system have not yet been defined. Some evidences revealed that both Rag1−/− and TCRβ−/−δ−/− mice exhibit attenuated anxiety- and depression-like behavior (Beurel et al., 2013; Clark et al., 2015; Clark et al., 2014; Cushman et al., 2003; Rattazzi et al., 2013; Rilette et al., 2015). In contrast, some other studies showed that lymphocytes from chronically social defeated mice suppressed anxiety in recipient mice (Brachman et al., 2015; Lewitus et al., 2009). These results suggest that the controversial roles of T cells in mood disorders are largely attributed to the lack of sufficient genetic evidence.

Patients with infectious or autoimmune diseases, such as inflammatory bowel disease, displayed excessive T cell proliferation, which led to anxiety-like behavior (Gracie and Ford, 2019; Kipnis, 2018; Naidoo et al., 2015). Mice with T regulatory cell (Treg) deficiency or anti-PD-1 administration exhausted serotonin and 5-hydroxyindoleacetic acid levels in the brain because of excessively proliferative T cells. However, Trp supplementation only partially normalized behavioral symptoms and neurotransmitter levels (Miyajima et al., 2017). Surprisingly, low levels of inflammation and dysfunction of T cell responses in CS also trigger anxiety-like behavior, implying that T cells trigger anxiety in a nonconventional manner, even without traditional inflammatory characteristics. Here, our study revealed a critical association between peripheral CD4+ T cell-derived xanthine and anxiety-like behavior. Miyajima et al. also demonstrated accumulated purines in the sera of anxious mice treated with anti-PD-1 (Miyajima et al., 2017). Thus, it would be interesting to investigate whether xanthine is also involved in inflammation-induced anxiety.

Purine plays an essential role in various physiological processes including the synthesis of nucleic acids, lipid metabolism, and protein glycosylation. Purines are also required for the development and maintenance of mature T lymphocytes. Defects in critical genes in the purine synthesis pathway, including Ada and Pnp, cause severe immunodeficiency (Arpaia et al., 2000; Markert, 1991; Stoop et al., 1977). However, the major source of purines in vivo has not been clearly identified. Our study demonstrated that CD4+ T cells from NT mice produced a considerable amount of xanthine. Furthermore, we observed only weakly increased xanthine levels in the sera of recipient mice that were adoptively transferred with Miga2f/−Pnp2f/− CD4+ T cells. These results suggest that the purine required for the maturation and activation of peripheral T cells may be produced by themselves, which may explain why the Rag1f/− mice that received excessive NT CD4+ T cells also exhibited moderate anxiety.

In summary, our data establish peripheral CD4+ T cells as pivotal mediators of stress-induced mood disorders. In the future, it will be interesting to clarify whether a specific CD4+ T cell subpopulation regulates emotions and behavior in anxious patients. It is also important to clarify the mechanism by which LTB4 promotes the mitochondrial morphology of CD4+ T cells. Taken together, our results provide insights into the physiological function of adaptive immunity in neurodevelopment and neuropsychiatric disorders. We believe our findings have profound implications for developing a valuable therapeutic approach for various psychiatric and metabolic diseases.
Figure 7. Accumulated IRF-1 Controls Purine Synthesis in CD4+ T Cells and Anxiety-like Behavior

(A) IB analysis of IRF-1 expression in naive splenic CD4+ T cells from WT and Miga2TKO mice.

(B) The protein levels of IRF-1 in naive splenic CD4+ T cells from NT- and ES-treated mice was evaluated by IB.

(C) Schematic representation of IRF1-binding sites (BS) in the promoters of the mouse Ada, Xdh, and Pnp2 genes. BS, binding site. The sequences in red indicate IFN-stimulated responsive elements (ISREs).

(D) ChIP-QPCR assays show the abundance of IRF-1 binding on these promoters. The results are presented relative to the total input DNA.

(E–F) The mRNA and protein levels of indicated genes in Miga2TKO Irf1KO naive CD4+ T cells were monitored by qRT-PCR (E) and IB (F).

(G) Rag1−/− mice were adoptively transferred with 5 × 10^6 Miga2TKO Irf1−/− CD4+ T cells every other day. Six days later, the anxiety-like behavior of these recipient Rag1−/− mice was evaluated by the OFT (n = 8).

All data are representative of at least three independent experiments. Data are represented as means ± SEM. The significances of difference in (E) and (G) were determined by Dunnett’s test, and others were determined by t test. ns, no significance; **p < 0.01; ***p < 0.005.
SUPPLEMENTAL INFORMATION

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit monoclonal anti-Adenosine A1 Receptor (clone EPR6179), Alexa Fluor 488</td>
<td>Abcam</td>
<td>Cat# ab202949</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-Myelin oligodendrocyte glycoprotein (clone EP4281), Alexa Fluor 647</td>
<td>Abcam</td>
<td>Cat# ab199472</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-NeuN (clone EPR12763), Alexa Fluor 568</td>
<td>Abcam</td>
<td>Cat# ab207282</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-c-Fos (clone 2H2)</td>
<td>Abcam</td>
<td>Cat# ab208942; RRID: AB_2747772</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Adenosine A2a Receptor</td>
<td>Abcam</td>
<td>Cat# ab3461; RRID: AB_303823</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Adenosine A2b Receptor</td>
<td>Abcam</td>
<td>Cat# ab222901</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Adenosine A3 Receptor</td>
<td>Abcam</td>
<td>Cat# ab203298</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-IRF1 (clone EPR18301)</td>
<td>Abcam</td>
<td>Cat# ab186384</td>
</tr>
<tr>
<td>Mouse monoclonal anti-Mitofusin 2 (clone 6A8)</td>
<td>Abcam</td>
<td>Cat# ab56889; RRID: AB_2142629</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-ADA</td>
<td>Abcam</td>
<td>Cat# ab175310</td>
</tr>
<tr>
<td>Rabbit monoclonal anti- Xanthine Oxidase [EPR4605]</td>
<td>Abcam</td>
<td>Cat# ab109235; RRID: AB_10863199</td>
</tr>
<tr>
<td>Mouse monoclonal anti-GFAP (clone 2E1.E9), Brilliant Violet 421</td>
<td>Biolegend</td>
<td>Cat# 644710; RRID: AB_2566685</td>
</tr>
<tr>
<td>Mouse monoclonal anti-CX3CR1 (clone SA011F11), PE</td>
<td>Biolegend</td>
<td>Cat# 149015; RRID: AB_2565699</td>
</tr>
<tr>
<td>Mouse monoclonal anti-IRF1 (clone E-4)</td>
<td>Santa Cruz</td>
<td>Cat# sc-514544</td>
</tr>
<tr>
<td>Anti-BrdU (clone 3D4), Alexa Fluor 488</td>
<td>BD</td>
<td>Cat# 558598; RRID: AB_647075</td>
</tr>
<tr>
<td>Mouse monoclonal anti-β-Actin (clone AC-74)</td>
<td>Sigma</td>
<td>Cat# A2228; RRID: AB_476697</td>
</tr>
<tr>
<td>Rat Anti-mouse B220 (clone RA3-6B2), PE</td>
<td>BD</td>
<td>Cat# 553088; RRID: AB_394619</td>
</tr>
<tr>
<td>Hamster monoclonal anti-CD3e (clone 145-2C11), APC</td>
<td>eBioscience</td>
<td>Cat# 17-0031-83; RRID: AB_469316</td>
</tr>
<tr>
<td>Rat monoclonal anti-CD4 (clone RM4-5), eFluor 450</td>
<td>eBioscience</td>
<td>Cat# 48-0042-82; RRID: AB_1272194</td>
</tr>
<tr>
<td>Rat monoclonal anti-CD8a (clone 53-6.7), PerCP-Cyanine5.5</td>
<td>eBioscience</td>
<td>Cat# 45-0081-82; RRID: AB_1107004</td>
</tr>
<tr>
<td>Rat anti-mouse CD44 (clone IM7), FITC</td>
<td>BD</td>
<td>Cat# 561859; RRID: AB_10894581</td>
</tr>
<tr>
<td>Rat monoclonal anti-CD62L (clone MEL-14), APC</td>
<td>eBioscience</td>
<td>Cat# 17-0621-83; RRID: AB_469411</td>
</tr>
<tr>
<td>Anti-mouse CD4 (clone GK 1.5)</td>
<td>BioXcell</td>
<td>Cat# BE0003-1; RRID: AB_1107636</td>
</tr>
<tr>
<td>Anti-mouse/human CD49d (clone PS/2)</td>
<td>BioXcell</td>
<td>Cat# BE0071; RRID: AB_1107657</td>
</tr>
<tr>
<td>Anti-mouse CD8a (clone 2.43)</td>
<td>BioXcell</td>
<td>Cat# BE0061; RRID: AB_1125541</td>
</tr>
<tr>
<td>Anti-O4 MicroBeads</td>
<td>Mitenyi</td>
<td>Cat# 130-094-543</td>
</tr>
<tr>
<td>Anti-CD4 MicroBeads</td>
<td>Mitenyi</td>
<td>Cat# 130-117-043</td>
</tr>
<tr>
<td>Phospho-PKA Substrate (RRXS/T*) (100G7E)</td>
<td>Cell Signaling technology</td>
<td>Cat# 9624; RRID: AB_331817</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bacterial and Virus Strains</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV9-GFAP-GFP-miR30-shRNA(mAdora1)</td>
<td>vigenebio</td>
<td>N/A</td>
</tr>
<tr>
<td>AAV8-MBP-GFP-miR30-shRNA(mAdora1)</td>
<td>vigenebio</td>
<td>N/A</td>
</tr>
<tr>
<td>AAV8-MBP-GFP-miR30-shRNA(scramble)</td>
<td>vigenebio</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient’s and healthy people’s serum</td>
<td>Sir Run Run Shaw Hospital</td>
<td>http://www.srrsh-english.com</td>
</tr>
<tr>
<td>Patient’s and healthy people’s serum</td>
<td>Nanjing Drum Tower Hospital</td>
<td>http://www.njglyy.com</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td>yuaneyebio</td>
<td>Cat# S24458</td>
</tr>
<tr>
<td>vidarabine</td>
<td>yuaneyebio</td>
<td>Cat# S18122</td>
</tr>
<tr>
<td>Adenine</td>
<td>yuaneyebio</td>
<td>Cat# S18009</td>
</tr>
<tr>
<td>2-DG</td>
<td>yuaneyebio</td>
<td>Cat# S11070</td>
</tr>
<tr>
<td>Sodium taurocholate</td>
<td>yuaneyebio</td>
<td>Cat# S31336</td>
</tr>
<tr>
<td>Prostaglandin B1</td>
<td>yuaneyebio</td>
<td>Cat# ZC-20354</td>
</tr>
<tr>
<td>leukotriene B4</td>
<td>yuaneyebio</td>
<td>Cat# ZC-22879</td>
</tr>
<tr>
<td>15-deoxy-D12,14-prostaglandin J2</td>
<td>yuaneyebio</td>
<td>Cat# ZC-22860</td>
</tr>
<tr>
<td>γ-GABA</td>
<td>yuaneyebio</td>
<td>Cat# S20180</td>
</tr>
<tr>
<td>DL-adrenaline</td>
<td>yuaneyebio</td>
<td>Cat# S64536</td>
</tr>
<tr>
<td>Dicortol</td>
<td>yuaneyebio</td>
<td>Cat# S31439</td>
</tr>
<tr>
<td>BCX-1777</td>
<td>MCE</td>
<td>Cat# HY-16209</td>
</tr>
<tr>
<td>BLZ945</td>
<td>Topscience</td>
<td>Cat# T6119</td>
</tr>
<tr>
<td>pexidartinib</td>
<td>Topscience</td>
<td>Cat# T2115</td>
</tr>
<tr>
<td>xanthine</td>
<td>aladdin</td>
<td>Cat# H108384</td>
</tr>
<tr>
<td>hypoxanthine</td>
<td>aladdin</td>
<td>Cat# X104264</td>
</tr>
<tr>
<td>papain</td>
<td>sigma</td>
<td>Cat# P4762</td>
</tr>
<tr>
<td>7-AAD (7-amino-actinomycin D)</td>
<td>BD</td>
<td>Cat# 559925</td>
</tr>
<tr>
<td>BrdU</td>
<td>Sangon</td>
<td>Cat# E607203</td>
</tr>
<tr>
<td>DAPI</td>
<td>Biolegend</td>
<td>Cat# 422801</td>
</tr>
<tr>
<td>Mitospy orange CMTMros</td>
<td>Biolegend</td>
<td>Cat# 424803</td>
</tr>
<tr>
<td>D-Glucose-13C6</td>
<td>sigma</td>
<td>Cat# 389374</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse xanthine ELISA kit</td>
<td>Sangon</td>
<td>Cat# D720328</td>
</tr>
<tr>
<td>FITC Annexin V Apoptosis Detection Kit I</td>
<td>BD</td>
<td>Cat# 556547</td>
</tr>
<tr>
<td>Lightning-Link Kit (FITC)</td>
<td>Innova Biosciences</td>
<td>707-0010</td>
</tr>
<tr>
<td>Lightning-Link Kit (APC)</td>
<td>Innova Biosciences</td>
<td>705-0010</td>
</tr>
<tr>
<td>Lightning-Link Kit (PE)</td>
<td>Innova Biosciences</td>
<td>703-0010</td>
</tr>
<tr>
<td>Lightning-Link Kit (Perlp5.5)</td>
<td>Innova Biosciences</td>
<td>763-0030</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw and analyzed data</td>
<td>This paper</td>
<td>PRJNA528163</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse: C57BL/6J</td>
<td>The Jackson Laboratory</td>
<td>CAT#000664</td>
</tr>
<tr>
<td>Mouse: B6.129S7-Rag1tm1Mom/J</td>
<td>The Jackson Laboratory</td>
<td>CAT#002216</td>
</tr>
<tr>
<td>B6.Cg-Tg(Cd4-cre)1Cwi/BfluJ</td>
<td>The Jackson Laboratory</td>
<td>CAT#022071</td>
</tr>
<tr>
<td>Mouse: B6-Fam172tm1a(KOMP)Wtsi (Miga2/-/)</td>
<td>University of California, Davis Knockout Mouse Project Repository</td>
<td>CAT#048607-UCD</td>
</tr>
<tr>
<td>Mouse: B6.129S2-Irf1tm1Malu/J</td>
<td>The Jackson Laboratory</td>
<td>CAT#002762</td>
</tr>
<tr>
<td>Mouse: B6-Prnp2-ako1</td>
<td>ShanghaiModelOrganismsCenter, Inc</td>
<td>https://www.modelorg.com</td>
</tr>
<tr>
<td>Mouse: B6-Mfn1flx-Mfn2flx</td>
<td>Dr. Yuan Wang (East China Normal University)</td>
<td>N/A</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primers for genotyping, see Table S7</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Primers for qPRC, see Table S8</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Primers for CHIP-qPRC, see Table S8</td>
<td>This paper</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Jin Jin (jin4@zju.edu.cn).

All materials generated in this study are available for requests.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Miga2 KO first mice (C57BL/6 background) were a gift from the Prof. Heng-Yu Fan (Zhejiang University, P. R. China). *Miga2* KO first mice were targeted exon 3 of *Miga2* gene using a FRT-LoxP vector. *Miga2* floxed mice were generated by crossing the *Miga2* KO first mice with FLP deleter mice (Rosa26-FLPe; Jackson Laboratory). The *Miga2* floxed mice were further crossed with *Cd4* Cre mice (all from Jackson Laboratory, C57BL/6 background) to generate T cell conditional *Miga2* KO (Miga2/f/f Cd4-Cre, TKO) mice. *Irf1*+/−/− mice (C57BL/6 background) were provided by Prof. Shu-yu Zhang (Sichuan University, China). *Mfn1* flox *Mfn2* flox mice (C57BL/6 background) were provided by Prof. Yuan Wang (East China University of Science and Technology, China), and further crossed with *Cd4* Cre mice to generate *Mfn1-Mfn2* T cell conditional double KO mice. *Pnp2*−/− mice in B6 background was generated by Shanghai Model Organisms Center, Inc (SMOC) by targeting of exon 2 of *Pnp2* using CRISPR/CAS9.

Heterozygous mice were bred to generate littermate controls and KO (or conditional KO) mice for experiments. In the animal studies, WT and multiple KO mice at the age of 6-8 weeks are randomly grouped. Outcomes of animal experiments were collected blindly and recorded based on ear-tag numbers of the experimental mice. The different sex did not affect the final conclusion, thus male and female mice were equally grouped in the behavior test. The Genotyping primers were performed in Table S7. Mice were maintained in specific pathogen-free (SPF) facility with room temperature, and all animal experiments were conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee of Zhejiang University.

Patients and Samples preparation

Sample collection was performed at Sir Runrun Shaw Hospital and Nanjing Drum Tower Hospital between January and August 2019. Informed written consent was obtained from all participants. The Inclusion criteria were: 20 males and 20 females; age between 18 and 65 years; diagnosed with anxiety disorders according to the ICD-10 criteria; assess mood and anxiety symptoms through the Hamilton Anxiety Scale. The exclusion criteria were: using drugs targeting purine metabolism; complication with other autoimmune diseases; severe brain injuries or brain lesions have occurred. The inclusion criteria of control subjects were: age between 18 and 65 years; no psychiatric disorders according to ICD-10 criteria; no serious systemic diseases; no complications and tumor. Control group also matched the above exclusion criteria.

All blood samples of patients and healthy individuals were collected at 6:00 am, followed by centrifugation (3000 g, 10 min) to remove cells and debris, and then the serums were stored at −80°C until further analysis.

Study approval

All animal experiments were conducted in accordance with protocols (#12077) approved by the Institutional Animal Care and Use Committee of Zhejiang University.

For human studies, written informed consents were obtained from all subjects before the study protocol. All human experiments were conducted in accordance with protocols (#20190319–4) approved by the Medical Ethics Committee of Sir Run Run Shaw Hospital, Zhejiang University and Nanjing Drum Tower Hospital.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software and Algorithms</td>
<td>TissueFAXS6.0.123</td>
<td>Neoline, N/A</td>
</tr>
<tr>
<td></td>
<td>10x Cell Ranger package</td>
<td>10x Genomics, https://support.10xgenomics.com</td>
</tr>
<tr>
<td></td>
<td>FlowJo</td>
<td>https://www.flowjo.com</td>
</tr>
<tr>
<td></td>
<td>Prism</td>
<td>https://www.graphpad.com</td>
</tr>
<tr>
<td>Other</td>
<td>4-0 silk</td>
<td>Ethicon, Cat# W501</td>
</tr>
<tr>
<td></td>
<td>6-0 silk</td>
<td>Ethicon, Cat# W580</td>
</tr>
<tr>
<td></td>
<td>hemostat</td>
<td>Scanlan, Cat# 4635-06</td>
</tr>
<tr>
<td></td>
<td>needle holder</td>
<td>Scanlan, Cat# 6006-05</td>
</tr>
</tbody>
</table>

Cell 179, 864–879.e1–e8, October 31, 2019
METHOD DETAILS

Electric shock model
All animals were allowed to the experimental room for 1 h before the training. Mice were individually placed in a chamber with a grid floor connected to a shock generator. Two min after being placed in the chamber, the mice were exposed to a 3 s foot shock (0.6 mA) for 5 times during 120 s randomly for 8 or 30 consecutive days. For the control group, mice were placed in the chamber at the same time without foot shock. After training, mice were placed back into their home cages. Training chambers were cleaned with 75% ethanol before and after each trial to avoid any olfactive cues.

Restraint stress model
Mice were subjected to RS by placement in a small cage (5cm × 5cm × 5cm) and subjected for 6 h restraint from 9:00 a.m. to 3:00 p.m. during 8 or 30 consecutive days. The holes along the sidewall of the cages enabled air flowing. Animals could move head and the body but were not able to jump or run. The mice had no access to food and water during the restraint. Once the restraint ended, mice were put back to their home cages immediately with access to food and water freely. For the control group, the mice were placed in the home cage at the same time without food and water.

Open-field test
Mice were gently placed in the center of a white plastic open-field arena (50cm × 50cm × 50cm) and allowed to explore freely for 5 min. A video camera positioned directly above the arena was used to track the movement of each animal, and recorded on a computer with software (Any-maze by Stoelting) to track the total distance and the amount of time spent in the center of the chamber compared to the edges. Open field test is commonly used for measuring the exploratory behavior and general activity of animals. The test room were dark and sound-insulated, tracking instrument recognized mouse central body point with infrared lasers and sensors.

More time spent in the edges of the box with less time spent in the center of the box is interpreted as anxiety-like behavior. Before the test, the mice were acclimatized to the room for 1 h, and the arena was cleaned with 70% EtOH after every trial.

Elevated plus maze test
Mice were introduced into the center quadrant of a 4-arm maze with two open arms without walls and two closed arms with walls (25cm long, 5cm wide). This structure was elevated 60 cm above the floor. The mice were placed in the center and faced to a closed arm at the start of a trial. A video camera positioned directly above the arena was used to track the movement of each animal, and recorded on a computer with software (Any-maze by Stoelting). This software tracked the amount of time the mice spent in the closed arms versus the open arms throughout a 5-min session. Higher anxiety is indicated by a lower frequency of movement into open arms and less time spent there. Before the test, mice were acclimatized to the room for 1 h, and the arena was cleaned with 70% EtOH after every trial.

Tail suspension test
Mice were suspended by their tails with tape in a position that they could not escape or hold on to nearby surfaces for 6 min. This test is based on the fact that animals subjected to a short-term inescapable stress will develop an immobile posture. The total duration of the test can be divided into periods of agitation and immobility. Video tracking data were analyzed using software to extract the resulting escape-oriented behaviors. Higher depression is indicated by less time spent trying to escape.

Light–Dark box test
Mice were gently placed in a cage (50 × 25 × 25cm) divided into a small dark compartment (one-third) and a large illuminated compartment (two-thirds) by a partition with a door. The mice were allowed to move freely between the two chambers with the door open for 5 min. Video tracking data was analyzed using software to extract the movement trail and the time spent in each compartment. Based on the innate aversion of rodents to brightly illuminated areas and spontaneous exploratory behavior of the mice, the time spent in the dark chamber could serve as an index of anxiety-like behavior.

T cell depletion and drug treatment
For the depletion of CD4+ or CD8+ T cells, mice were injected intravenously (i.v.) with 500 μg anti-CD4 antibody (GK 1.5) or 500 μg anti-CD8 antibody (2.43) every 7 days. To inhibit leukocyte migration into the brain, mice were injected intravenously (i.v.) with anti-VLA-4 (αVLA-4, 20 mg/kg) or anti-CD6 (αCD6, 10 mg/kg) every three days. All antibodies were stocked in fridge and diluted to their working concentrations in PBS. Mice in control group were injected with PBS of the same volume at same time intraperitoneally.

For drug treatment experiment, the solutions of drugs (2-DG/adenine/xanthine/pnp2 inhibitor) were prepared freshly each time with 0.9% saline. 8-weeks-old mice were intraperitoneally injected with drug solution depending on their working doses on day 0, day 3 and day 6. The treatment continued one week until Open-field behavior testing was performed on day 8. For control group, mice were intraperitoneally injected with 0.9% saline of the same volume at same time.
Induction and assessment of EAE

For active EAE induction, age- and sex-matched mice were immunized s.c. with MOG35-55 peptide (300 μg) mixed in CFA (Sigma-Aldrich) containing 5 mg/mL heat-killed Mycobacterium tuberculosis H37Ra (Difco). Pertussis toxin (200 ng, List Biological Laboratories) in PBS was administered i.v. on days 0 and 2. Mice were examined daily and scored for disease severity using the standard scale: 0, no clinical signs; 1, limp tail; 2, paraparesis (weakness, incomplete paralysis of one or two hind limbs); 3, paraplegia (complete paralysis of two hind limbs); 4, paraplegia with forelimb weakness or paralysis; 5, moribund or death. After the onset of EAE, food and water were provided on the cage floor. Mononuclear cells were prepared from the CNS (brain and spinal cord) of EAE-induced mice and analyzed by flow cytometry.

T cell purification and adoptive transfers

CD4+ T cells were purified by positive magnetic cell sorting (CD4+ T cell isolation kit, Miltenyi Biotec) from the spleens and lymph nodes of 6-8 weeks-old mice. For some experiments, purified CD4+ T cells were further sorted on a FACS Aria II cell sorter (BD Biosciences) to obtain naive CD4+ T cells (CD4+CD44loCD62Lhi) using anti-CD44-FITC and anti-CD62L-APC antibodies. Sorted cells were spin down and washed with PBS and prepared for the following experiments.

For adoptive transfer experiments, 5 x 10^6 purified CD4+ T cells, CD8+ T cells, 3 x 10^6 naive CD4+ T cells or 1.5 x 10^6 effector CD4+ T cells (CD4+CD44hiCD62Llo) were transferred by intravenous (i.v.) injection into mice grouped as indicated at day 0, 3 and 6. Control group were injected with PBS in the same time. Open-field behavior testing was taken at day 8.

RNA-seq analysis

Fresh splenic naive T cells were isolated from young WT, Miga2TKO or Miga2−/− mice (6–8 weeks-old). In some experiment, Fresh splenic CD4+ or CD8+ T cells were isolated from WT, RS or ES mice. These T cells were used for total RNA isolation with Trizol (Invitrogen), and subjected to RNA-seq analysis. RNA sequencing was performed by the Life Science Institute Sequencing and Microarray Facility using an Illumina sequencer. The raw reads were aligned to the mm10 reference genome (build mm10), using Tophat2 RNA-Seq alignment software. The mapping rate was 70% overall across all the samples in the dataset. HTseq-Count was used to quantify the gene expression counts from Tophat2 alignment files. Differential expression analysis was performed on the count data using R package DESeq2. P values obtained from multiple binomial tests were adjusted using FDR (BH). Significant genes are defined by a BH corrected p value of cut-off of 0.05 and fold-change of at least two.

Fluorescence microscopy

Naive CD4+ T cells (CD44loCD62Lhi, 5 x 10^5) were isolated and spread to 12-well plate containing 70% alcohol-pretreated slide for starvation 2 h. These CD4+ T cells were stained with 250 nM of MitoSpyTM Orange CMTMRos for 20 min, and fixed with 4% paraformaldehyde (PFA) for 20 min. Then the cells were washed with PBS for three times and stained with 10 μg/mL DAPI. All the samples were imaged on a confocal microscope LSM710 (Carl Zeiss) outfitted with a Plan-Apochromat 63x oil immersion objective lenses (Carl Zeiss). Data were collected using Carl Zeiss software ZEN 2010. For quantification of mitochondrial morphology in MitoSpyTM Orange CMTMRos-stained macrophages, scoring was analyzed with Image-Pro blindly. Short were cells with a majority of mitochondria less than 7 μm; long were cells in which the majority of mitochondria were more than 7 μm.

T cell isolation and stimulation

Primary CD4+ T cells were isolated from the spleen and lympho-nodes (LNs) of young adult mice (6-8 weeks old) using anti-CD4 magnetic beads (Miltenyi Biotec). Naive CD4+ cells were further purified by flow cytometric cell sorting based on CD4+CD44loCD62Lhi surface markers, respectively (Aria II). The cells were stimulated with plate-bound anti-CD3 (1 μg/mL) and anti-CD28 (1 μg/mL) in replicate wells of 96-well plates (0.2 million cells per well) for T cell proliferation and apoptosis, 48-well plates (0.4 million cells per well) for T cell differentiation, 12-well plates (10^6 cells per well) for quantitative RT-PCR (qRT-PCR). Where indicated, the cells were acutely stimulated using an antibody cross-linking protocol.

Transmission Electron Microscopy

WT and Miga2 KO naive CD4+ T cells were washed in PBS and fixed in 2.5% GA on ice for 15 min. Then the cells were scrapped and put into a 1.5 mL EP tube. The GA solution was refreshed and the cells were suspending and incubated at 4 °C overnight. Then, the cells were embedded into agarose gel. The gel was cut into small pieces, washed in PBS and post-fixed in 1% Osmic acid for 1-2 h. Then the samples were washed in PBS and dehydrated in a series of gradient ethanol (50%, 75%, 85%, 95% and 100% ethanol), each for 15 min. Then the samples were embedded in Epon resin. Embedded samples were cut into 60 nm ultrathin sections. Sections were counterstained with uranyl acetate and lead citrate. All the samples were observed using a Hitachi HT7700 electron microscope.
CD4+ T cell proliferation
Naive CD4+ T cells were first purified from spleens and LNs of WT or Miga2TKO mice. For CFSE dilution assay, T cells were labeled in 5 μM CFSE (Life Technologies) in 37°C and washed with PBS for 3 times. The cells were normalized and cultured in 96-well plates with plate-coated anti-CD3 (1 μg/mL) and anti-CD28 (1 μg/mL) for 48 and 72 h. Sorted T cells were analyzed by flow-cytometry using CytoFlex (Beckman Coulter).

Single cell dissociation
Artificial cerebrospinal fluid was prepared as following: αCSF, in mM: 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 75 sucrose, 20 gluccoses, 1 CaCl2, 7 MgSO4, adjusted to pH 7.4, equilibrated in 95% O2 and 5% CO2. Mice were deeply anesthetized and perfused through the heart with cold αCSF prepared previously. The amygdala was collected after the brains were removed from the skull, and dissociated using Papain diluted in αCSF followed by manual trituration using pipettes. After 30 min enzymatic digestion at 37°C with shaking of the tube every 10 min, the suspensions were filtered through αCSF-equilibrated 35 μm cell strainer. After filtering, the suspension was diluted in a large volume (50 mL total) ice-cold αCSF, followed by centrifugation (200 g, 5 min) to reduce debris. The supernatant was removed carefully and precipitated cells were resuspended in a minimal volume ice-cold DMEM containing 1% BSA. These suspensions were then carried out with 10x Genomics Chromium Single Cell Kit for Single-Cell RNA-seq. Importantly, αCSF equilibrated in 95% O25% CO2 was used in all steps for improved cell viability, and cells were kept on ice or at 4°C at all times except for enzymatic digestion.

Flow cytometry and intracellular cytokine staining
Spleen or lymph nodes were subjected to flow cytometry using CytoFlex (Beckman Coulter) and the following fluorescence-labeled antibodies from Abcam: FITC-conjugated anti-AdorA1 (EPR6179); Alexa fluor 647-conjugated anti-myelin oligodendrocyte glycoprotein (MOG, EP4281) and Alexa fluor 568-conjugated anti-NeuN. These suspensions were further sorted on a FACS AriaII cell sorter (BD Biosciences) to obtain naive CD4+ T cells

Metabolic Assays
Naive CD4+ T cells were isolated from spleens and LNs of WT or Miga2TKO mice. For metabolic assays, T cells were labeled with anti-CX3CR1 (SA011F11), some antibodies were purchased from Biolegend: Brilliant violet 421-conjugated anti-GFAP (2E1.E9) and PE-CY7-conjugated (EPR12763). c-FOS (ab208942), AdorA2A (ab3461), AdorA2B (ab222901) and AdorA3 (ab203298) were purchased from Abcam. Alexa fluor 647-conjugated anti-myelin oligodendrocyte glycoprotein (MOG, EP4281) and Alexa fluor 568-conjugated anti-NeuN (EPR12763). c-FOS (ab208942), AdorA2A (ab3461), AdorA2B (ab222901) and AdorA3 (ab203298) were purchased from Abcam plc. Some antibodies were purchased from Biolegend: Brilliant violet 421-conjugated anti-GFAP (2E1.E9) and PE-CY7-conjugated anti-CX3CR1 (SA011F11).

Isolation of oligodendrocytes
6 to 8-week-old WT, Miga2−/− and Miga2−/− plus αCD4 mice were sacrificed using CO2. The single cell dissociations of two-side amygdala are collected as described in single cell dissociation section. Oligodendrocytes from adult mouse brains were purified by positive magnetic cell sorting (Anti-O4 MicroBeads, # 130-094-543, Miltenyi Biotec). Then, the resuspended cells were incubated with anti-Mouse CD16/CD32 (553141, BD PharMingen), and stained with Alexa Fluor647-conjugated anti-MOG (Ab199472). After washing, incubated cells were further sorted on a FACS AriaII cell sorter (BD Biosciences) to obtain purified MOG+ cells. The sorted cells were washed with cold PBS and prepared for the following experiments.

Viral injection
The preparation of craniotomy is referred to the standard stereotaxic coordinates of 7-week-old B6 mice. AAV-MBP-GFP-miR30-shRNA(mAdoral) or AAV-MBP-GFP-miR30-shRNA(control) was constructed by Vigene Bioscience (Shandong, China) and injected into the left amygdala at 1E+11 v.g./mouse within 600 s via a pump. After recovery of the animal, the animal was fed as usual for 2 weeks. The expression of shRNA was measured based on the GFP level by FACS. These AAV-injected mice performed the open field-test two weeks after AAV injection.

LC-MS analysis for serum metabolome
The same amount of supernatant from each treated sample used as a QC sample. The blank sample was a matrix of the experimental sample, and the pretreatment process was the same as the experimental sample. LC separation was conducted on a Accucore HILIC
column with a Vanquish UHPLC system (Thermo). The mobile phase consisted of 0.1% formic acid and 10mM ammonium acetate in 95% acetonitrile (A) and 0.1% formic acid and 10mM ammonium acetate in 50% acetonitrile (B). The gradient program was as follows: 0–1 min, 98% A+2% B; 17–17.5 min, linear gradient to 50%A+50% B; 18–20 min, 98%A+2% B; flow rate, 0.3 mL/min. The column oven temperature was maintained at 40°C. The LC system was coupled with a triple-quadruple mass spectrometer QEx HF-X (Thermo).

13C tracing by liquid-chromatography Q-exactive mass spectrometry (LC–QEMS)
For 13C tracing experiments, splenic naive CD4+ T cells isolated from WT or Miga2TKO mice were cultured with [U6]-13Cglucose (Sigma-Aldrich) for 24 h. The cells were washed twice in saline and lysed in extraction solvent (80% methanol/water) for 30 min at −80°C. The supernatant extracts were analyzed by LC–QEMS after centrifugation at 12000 g, 10 min at 4°C. Liquid chromatography was performed using an HPLC (Ultimate 3000 UHPLC) system (Thermo) with an xbridge amide column (100 × 2.1 mm i.d., 3.5 μm; Waters). Mobile phase A was 20 mM ammonium acetate and 15 mM ammonium hydroxide in water with 3% acetonitrile, pH 9.0, and mobile phase B was acetonitrile. The linear gradient was as follows: 0 min, 85% B; 1.5 min, 85% B; 5.5 min, 30% B; 8 min, 30% B, 10 min, 85% B, and 12 min, 85% B. The flow rate was 0.2 mL/min. Sample volumes of 5 μL were injected for LC-MS analysis.

qRT-PCR
For qRT-PCR, total RNA was isolated using TRI reagent (Molecular Research Center, Inc.) and subjected to cDNA synthesis using RNase H-reverse transcriptase (Invitrogen) and oligo (dT) primers. qRT-PCR was performed in triplicates, using iCycler Sequence Detection System (Bio-Rad) and iQTM SYBR Green Supermix (Bio-Rad). The expression of individual genes was calculated by a standard curve method and normalized to the expression of Actb. The gene-specific PCR primers (all for mouse genes) are shown in Table S8.

Immunoblot (IB)
Whole-cell lysates or subcellular extracts were prepared as previously described (Uhlik et al., 1998). The samples were resolved by 8.25% SDS–PAGE. After electrophoresis, separated proteins were transferred onto polyvinylidene difluoride membrane (Millipore). For immunoblotting, the polyvinylidene difluoride membrane was blocked with 5% non-fat milk. After incubation with specific primary antibody, horseradish peroxidase-conjugated secondary antibody was applied. The positive immune reactive signal was detected by ECL (Amersham Biosciences).

Chromatin IP (ChIP) assay
ChIP assays were performed with naive T cells (5 × 10^6), which were fixed with 1% formaldehyde and sonicated. Lysates were subjected to IP with the IRF-1 antibodies (M-20, Santa Cruz), and the precipitated DNA was then purified by Qiaquick columns (QIAGEN) and quantified by QPCR using pairs of primers that amplify the potential target regions of the Ada, Pnp2 or Xdh promoter. The precipitated DNA is presented as percentage of the total input DNA. The gene-specific primers are shown in Table S8.

Tissue staining/IHC
Brain were collected at the indicated time course of each figure legend. After deeply anesthetized, animals were perfused through the heart with 4% paraformaldehyde in PBS. Then brains were removed from the skull, fixed overnight in 4% PFA, and then dehydration in 30% sucrose in PBS solution for 48 h until sunk to the bottom. H&E and Nissl staining of Brain coronal section were performed by Servicebio Biotechnology Co., Ltd (China). For immunohistochemistry, the sections were pre-treated using heat mediated antigen retrieval with sodium citrate buffer and blocked with 5% bovine serum albumin. The sections were stained overnight with antibodies against following: Alexa Fluor 647-conjugated anti-Myelin oligodendrocyte glycophosphoprotein; Alexa Fluor 488-conjugated anti-Adenosine A1 Receptor; Alexa Fluor 568-conjugated anti-NeuN. All antibodies were diluted in TBS contain 0.025% Triton X-100. Samples were further stained with DAPI for 15 min and mounted before image acquisition. Images were captured using the Vectra microscope (PerkinElmer).

In vivo BrdU proliferation assay
8-week-old C57BL/6 mice were injected intraperitoneally with 2mg BrdU (Sangon, E607203) in PBS. After 72 h, mice received an intracardiac perfusion with PBS to remove erythrocytes. The amygdala was collected and dissociated as described in single cell dissociation section. O4+ cells were purified with anti-O4 microbeads (Miltenyi, 130-094-543). After that, oligodendrocytes were isolated with Aria II based on the surface marker MOG. For BrdU staining, the purified cells were fixed with 70% ethanol for 30 min, denatured for 30 min with 2M HCL, neutralized for 10 min with 0.1M borate buffer, then washed with PBS three times before anti-BrdU (1:100, BD, 558599) and 7-AAD (1:50, BD, 559925) staining. Samples were acquired using flow cytometer (Beckman CytoFLEX), and the data were analyzed with FlowJo.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Prism software. For two-group comparison, two-tailed unpaired t tests were performed, and P values less than 0.05 were considered significant. The level of significance was indicated as *p < 0.05, **p < 0.01, ***p < 0.005.

For multiple group comparison, Dunnett’s multiple comparison test (one-way ANOVA) was performed, and P values less than 0.05 were considered significant. The Gehan-Breslow-Wilcoxon test was used for the animal survival assay. In the EAE model, the clinical scores were analyzed by Sidak’s multiple comparison test (two-way ANOVA) with 90% power and a significance level of 5%. P values less than 0.05 were considered significant, and the level of significance was indicated as *p < 0.05, **p < 0.01, ***p < 0.005.

All statistical tests are justified as appropriate, and data meet the assumptions of the tests. The groups being statistically compared show similar variance.

DATA AND CODE AVAILABILITY

The accession number for the RNAseq and single cell transcriptome data reported in this paper is [GenBank-Bioproject]: [PRJNA528163].
Figure S1. CD4+ T Cells are Affected by Stress-Induced Anxiety, Related to Figure 1

(A-B) Flow cytometry analysis of the frequency (A) and absolute numbers (B) of different T cell populations in the spleen (Spl) and inguinal lymph node (iLN) of NT or ES-treated mice (n = 5) on day 8. (C) Flow cytometry analysis of the frequency of different immune cells in the Spl and iLN of ES-treated mice, which were pretreated with isotype IgG, anti-CD4 (αCD4) or anti-CD8 (αCD8) as described in major Figures 1A (n = 3). (D) WT mice were induced anxiety by chronic ES treatment for continuous 28 days. These mice were administrated with isotype IgG or anti-CD4 (αCD4) (500 μg/mice) on day 21 and 28. Representative tracks and statistic results in open-field test (OFT) of NT and chronic ES mice on day 30 (n = 5). (E) Flow cytometry analysis of the frequency of T cell populations in the Spl of NT or restraint stress (RS)-treated mice on day 8 (n = 6). (F) The table showing the frequency of lymphocytes subpopulation in 18-65 years old patient with anxiety and healthy control by FACS analysis (n = 30). (G) CD4+ T cells were isolated from the spleen of 6-weeks-old NT and ES mice, and incubated with monensin (1ug/mL) for 4 h before harvest. Flow cytometric analysis of the percentage of IFN-γ- and IL-17-producing CD4+ T cells (n = 4). (H) ELISA assay to determine the levels of IFN-γ and IL-17A in serum from NT (n = 6), ES (n = 4) and RS (n = 4) mice on day 8 after inducing anxiety models. (I) Rag1−/− mice were adoptively transferred with 1.8 × 10^6 effector (Effector-L), 6 × 10^6 naive (Naive-H) and 6 × 10^6 effector (Effector-H) CD4+ T cells isolated from ES-treated mice for every three day. Flow cytometry analysis of the frequency and activated status of CD4+ in the spleen of recipient Rag1−/− mice on day 8 (n = 3). All data are representative of at least three independent experiments. Data are represented as means ± SEM. The significance of difference in (H) was determined by Dunnett’s multiple comparisons test. The significances of differences in all two group comparisons were determined by two-tailed Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.005.
Figure S2. Mitochondrial Fission in CD4+ T Cells is Associated with the Anxiety Symptom, Related to Figure 2

(A) Naive CD4+ T cells (CD4+CD44lo) in peripheral blood from patients with anxiety and healthy control were isolated by FACS sorter (n = 4). Mitochondrial morphology of these naive CD4+ T cells was visualized using MitospyTM Orange CMTMRos staining. Representative confocal images are shown, as well as length quantification with Image-Pro. Data are shown as the mean ± SEM of three independent experiments with 50 cells counted for each replicate; Colors indicate the morphology of the mitochondria (long, brown > 7 μm or short, gray < 7 μm). Bar, 5 μm. (B) Immuno-blot (IB) analyses of MGA2 and MFN2 in the splenic naive CD4+ T cells from three individual NT or ES-treated mice. #1, repeat 1; #2, repeat 2; #3, repeat 3. The relative density of these IB assay were evaluated by ImageJ. (C) LC-MS of indicated neurotransmitters and hormones in the serum of NT, ES-treated and RS treated mice, presented relative to the mean value for NT mice (n = 4). (D) WT mice were i.p. injected with prednisolone (50 mg/kg) every other day within 21 days. Anxiety-like behavior of these mice was assessed as traveled distance, percentage of distance and percentage of time spent in center area in OFT on day 22 (n = 4). All data are representative of at least three independent experiments. Data are represented as means ± SEM. The significances of differences were determined by two-tailed Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.005.
Figure S3. *Miga2*−/− Mice Performed Various Psychological Disorders, but Not CNS Inflammation, Related to Figure 3

(A) Representative tracks of 8-weeks-old WT and *Miga2*−/− mice in the light compartment, as well as transition numbers and the time spent in the light compartment (n = 7). (B) The time of immobility in the tail suspension test was recorded for WT and *Miga2*−/− mice (n = 6). (C) In the social novelty task, the contact time with Stranger 1 and Stranger 2 chambers of the WT and *Miga2*−/− mice are shown. (D) *Miga2*−/− mice were i.v. injected with anti-VLA-4 (sVLA-4, 20mg/kg) or anti-CD6 (sCD6, 10mg/kg) for every three days, and then evaluated anxiety-like behavior by open-field test on day 8 (n = 5). (E) Flow cytometry analysis of the frequencies of different lymphocytes in the spl of 6-8 weeks-old WT or *Miga2*TKO mice (n = 3). Data are presented as representative FACS plots. B cell is defined as CD3B220−; CD4+ T cell (CD4) is defined as CD3+B220−CD4+; CD8+ T cell (CD8) is defined as CD3+B220−CD8+; regulatory T cell (Treg) is defined as CD3+B220−CD4+Foxp3+. (F) Flow cytometry analysis of naive and memory T cells in the Spl of WT or *Miga2*TKO mice (n = 3). Naive T cell (N) is defined as CD44loCD62Lhi; Effector memory (EM) T cell is defined as CD44hiCD62Llo; Central memory (CM) T cell is defined as CD44hiCD62Lhi. (A) Mean clinical scores of 6-8 weeks-old WT and *Miga2*TKO mice subjected to MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) (n = 10/group). (H) Flow cytometry analysis of the immune cell infiltration into the CNS (brain and spinal cord) of EAE mice (n = 4, day 14 post-immunization). (I) Naive CD4+ T cells (CD44loCD62Llo) were isolated from the spleen of WT and *Miga2*TKO mice by FACS sorter. These T cells were labeled with 5 μM Carboxyfluorescein succinimidyl ester (CFSE), and stimulated with sCD3 (1 μg/mL)/sCD28 (1 μg/mL) for 72 h. The proliferative ratio was assessed as CFSE dilution by FACS. All data are representative of at least three independent experiments. Data are represented as means ± SEM. The significances of differences in comparisons were determined by two-tailed Student’s t test. ns, no significance; ***p < 0.005.
Figure S4. CNS-Enriched Xanthine Causes Anxiety-like Behavior Abnormality, Related to Figure 4

(A-B) The essential and non-essential amino acids (A) or the neurotransmitters derived from amino acids (B) in the serum were measured by PLS-DA and presented as the ratio of the abundance in Miga2TKO mice to those in WT mice (n = 4). (C) ELISA assay of xanthine in the different organs of WT and Miga2TKO mice are presented as relative fold to those in the heart of Miga2TKO mice (n = 4). (D) Rag1-TKO mice were i.v. adoptively transferred with 5 × 10^6 CD4+ or CD8+ T cells isolated from NT or ES-treated mice (donor) for every three days. Xanthine in the serum of recipient mice was measured by ELISA. The relative fold is to serum xanthine concentration of Rag1-TKO control that treated with PBS. (E) 4 × 10^6 purified effector or naive CD4+ T cells were isolated from ES or RS-treated mice as previous described. These CD4+ T cells were cultured in 500 μL medium in vitro, and the supernatants were collected after 24 h. Xanthine was measured by ELISA and presented as relative folds to that of effector group from NT mice. (F) WT mice were i.p. injected with Adenine and its derivatives (500 mg/kg) for three times in every three days. Anxiety-like behavior of these mice was assessed as traveled distance, percentage of distance and percentage of time spent in center area in (legend continued on next page)
OFT on day 8 (n = 4). (G) WT mice were injected i.p. with adenine (AD) or xanthine (XA) as indicated. Miga2TKO mice were injected i.p. with PBS alone. Flow cytometry analysis of c-FOS+ cells gating with NeuN+ cells in the amygdala (n = 7). (H) Miga2TKO mice were i.p. injected with BCX-1777 as described in major Figure 4I. The abundance of xanthine in serum of BCX-1777-treated Miga2TKO mice was measured by ELISA and presented as the relative fold to that in PBS-treated group. All data are representative of at least three independent experiments. Data are represented as means ± SEM. The significance of difference in D-G was determined by Dunnett’s multiple comparisons test. The significances of differences in all other two group comparisons were determined by two-tailed Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.005.
Figure S5. The Absence of Miga2 or Xanthine Causes Pathological Symptoms by Directly Acting on Oligodendrocytes the Left Amygdala, Related to Figure 5
(A) Histological analysis of the whole brain from WT, Miga2TKO and CD4+ T cell-depleting Miga2TKO mice was performed by H&E staining. Scale bar, 100 μm. (B) The statistical results of histological analysis in Figure 5A and Figure S7A were analyzed by Tissue FAXS System (TissueGnostics, AT), and presented as indication (n = 4). (C) Histological analysis of the amygdala was performed by H&E and nissel staining, when WT mice were injected with synthetic xanthine as described in Figure 4H. Scale bar, 100 μm. (D) Schematic showing the single-cell RNA sequencing (scRNA-seq) workflow. (E) The percentage of nine major clusters of cell types in the amygdala of WT mice revealed by scRNA-seq. (F) Flow cytometry analyses of AdorA2A+, AdorA2B+ and AdorA3+ cells gating with MOG+ cells in the amygdala of WT mice (n = 3). Oligodendrocytes (Oligo) are defined as MOG+. (G) Representative image of FITC-AdorA1 (Green), APC-MOG (Purple), PE-NeuN (Red) and DAPI (Blue) staining in mouse amygdala sections from Miga2−/− and αCD4-treated Miga2−/− mice. The scale bar is 5 μm. (H) The transcriptomes of astrocytes, microglia or oligodendrocytes in the amygdala were clustered among the WT, Miga2−/− (KO) and KO plus αCD4 groups. Heatmap showing the DEGs determined by scRNA-seq data. (I) The specific DEGs in oligodendrocytes of KO group were collected compared to those of WT and KO treated with αCD4 groups. KEGG analysis of these DEGs in indicated pathway that differ significantly (in abundance). (J) WT mice were injected intravenously injection of 2 mg BrdU together with AD or XA as indicated. 72 h later, purified oligodendrocytes were stained with anti-BrdU antibody and propidium iodide (PI). (K) Myelin oligodendrocyte glycoprotein (MOG) positive cells were isolated from the amygdala of 6-8 weeks WT, KO and KO treated with αCD4 mice by FACS sorter. PKA activity was monitored via the level of p-PKA subtracts by IB assay. Except panel D, other data are representative of at least three independent experiments. Data are represented as means ± SEM. The significances of differences were determined by Dunnett’s multiple comparisons test. ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.005.
Figure S6. Mitochondrial Fission in CD4+ T Cells Promotes Purine Synthesis, Related to Figure 6

(A-B) Mitochondrial fitness tests were used to compare ECAR (A) and OCR (B) of WT and Miga2TKO (TKO) CD4+ T cells (n=9). The statistic results of major figure 6a were presented as bar graph. (C-D) Mitochondrial fitness tests were measured by ECAR (C) and OCR (D) of CD4+ T cells isolated from WT and Mfn1/2TKO mice (n=9). The statistic results were presented as bar graph. (E) Miga2TKO mice were i.p. injected with 2-Deoxy-D-glucose (2-DG) (500 mg/kg) for three times in every three days. Anxiety-like behavior of these mice was assessed as traveled distance, percentage of distance and percentage of time spent in center area in open-field test on day 8 (n=5). (F) Histological analysis of the whole brain section from Miga2TKO and 2-DG-treated Miga2TKO mice described as above was performed by H&E and Nissl staining. Scale bar, 100 μm. (G) Pnp2−/− genotyping PCR. PCR was performed to detect the WT and Pnp2 depletion alleles (with primers described in Table S7). (H) QPCR assay showing ablation of Pnp2 in the CD4+ T cells of Pnp2−/− mice. These qPCR data were presented as fold relative to the Actb mRNA level and normalized by Bio-Rad CFX Manager 3.1. (I) Flow cytometry analysis of the frequencies of different lymphocytes in the spl of 6-8 weeks-old WT or Pnp2−/− mice (n=3). All panels are presented as representative FACS plots. The statics analysis was performed as plot graph. (J) A signal transduction model of mitochondrial fission in promoting IRF-1 stability. All data are representative of at least three independent experiments. Data are represented as means ± SEM. The significances of differences in two group comparisons were determined by two-tailed Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.005.
Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism

Mauro Mozael Hirsch a,b,c,*, Johanna Deckmann a,b,c, Júlio Santos-Terra a,b,c, Gabriela Zanotto Staevie a,b,c, Mellanie Fontes-Dutra a,b,c, Giovanna Carello-Collar a,b,c, Marília Körbes-Rockenbach a,b,c, Gustavo Brum Schwingel a,b,c, Guilherme Bauer-Negrini a,b,c, Bruna Rabelo a,b,c, Maria Carolina Bittencourt Gonçalves d, Juliana Corrêa-Veloso d, Yahaira Naaldijk d, Ana Regina Geciauskas Castilho d, Tomasz Schneider f, Victorio Bambini-Junior a,c,e,g, Henning Ulrich d,g, Carmem Gottfried a,b,c,g,*

HIGHLIGHTS

- ASD is characterized by deficits in sociability, sensory processing and by stereotypical behaviors.
- Purinergic signaling plays an important role in modulating these behaviors.
- Animals prenatally exposed to VPA showed purinergic-related molecular alterations.
- Suramin rescued ASD-like impairments in the VPA-animal model.
- Cytokine and purinergic signaling cross-talk are likely to modulate ASD features.

ABSTRACT

Autism spectrum disorder (ASD) is characterized by deficits in communication and social interaction, restricted interests, and stereotyped behavior. Environmental factors, such as prenatal exposure to valproic acid (VPA), may contribute to the increased risk of ASD. Since disturbed functioning of the purinergic signaling system has been associated with the onset of ASD and used as a potential therapeutic target for ASD in both clinical and preclinical studies, we analyzed the effects of suramin, a non-selective purinergic antagonist, on behavioral, molecular and immunological in an animal model of autism induced by prenatal exposure to VPA. Treatment with suramin (20 mg/kg, intraperitoneal) restored sociability in the three-chamber apparatus and decreased anxiety measured by elevated plus maze apparatus, but had no impact on decreased reciprocal social interactions or higher nociceptive threshold in VPA rats. Suramin treatment did not affect VPA-induced upregulation of P2X4 and P2Y2 receptor expression in the hippocampus, and P2X4 receptor expression in the medial prefrontal cortex, but normalized an increased level of interleukin 6 (IL-6). Our results suggest an important role of purinergic signaling modulation in behavioral, molecular, and immunological aberrations described in VPA model, and indicate that the purinergic signaling system might be a potential target for pharmacotherapy in preclinical studies of ASD.

https://doi.org/10.1016/j.neuropharm.2019.107930

Received 3 September 2019; Received in revised form 23 December 2019; Accepted 26 December 2019

Available online 02 January 2020

0028-3908/ © 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in communication and social interaction and repetitive or stereotyped behaviors (American Psychiatric Association, 2013). In the last years, the prevalence of ASD had a strong elevation (1:59 live births according to the most recent data from USA) (Baio et al., 2018), explained only in part by the changes in diagnostic parameters of DSM-5, demonstrating the necessity to expand studies in order to understand the pathways and possible risk factors involved in this disorder. Although the etiology is still unclear, it is already known that genetic and environmental factors are determinant for shaping the heterogeneous phenotypes exhibited by individuals with ASD (Chaste and Leboyer, 2012). The inflammatory dysregulation might appear as a potential etiologic factor in neurodevelopmental disorders (Boulanger-Bertolus et al., 2018), such as ASD (Eliazi et al., 2015).

Several studies demonstrated that the use of valproic acid (VPA) - an anticonvulsant drug widely used in the treatment of epilepsy, migraine and mood instabilities - during pregnancy, especially in the first trimester, can significantly increase the risk of developing autism (Christensen et al., 2013; Williams et al., 2001).

Prenatal exposure to VPA is one of the best characterized rodent models of autism with strong construct, face, and predictive validity (Mabunga et al., 2015; Roulet et al., 2013). Male offspring of dams injected with VPA on E12.5 show autistic-like brain abnormalities and a plethora of behavioral aberrations including decreased social behavior (Bambini-Junior et al., 2011), hyperactivity and stereotypies (Schneider and Przewlocki, 2005), increased anxiety, lower sensitivity to pain and diminished acoustic prepulse inhibition (Schneider and Przewlocki, 2005), resembling both core symptoms (Schneider and Przewlocki, 2005) and the most significant neurobehavioral derangements observed in autism (Fontes-Dutra et al., 2018; Lin et al., 2013; Markram et al., 2008). VPA offspring show also molecular and immunological aberrations including altered functioning of opioidergic (Schneider et al., 2007), serotonergic (Tsujino et al., 2007), dopaminergic (Nakasato et al., 2008), GABAergic (Robertson et al., 2016) and glutamatergic (Horder et al., 2018) signaling systems, decreased cellular immunity (Gottfried et al., 2015), electrophysiological impairments (Gogolla et al., 2009) and cytoarchitecture disruptions (Casanova et al., 2002; Fontes-Dutra et al., 2018; Hutslers and Casanova, 2016). Thus, it became necessary to understand how VPA induces developmental alterations that lead to ASD analyzing, for example, modulation of different components of synaptic transmission, like purinergic signaling.

Several studies have demonstrated mitochondrial dysfunctions in ASD (Filipek et al., 2003; Patowary et al., 2017). This impairment of mitochondrial energetic metabolism and consequent increase in extracellular ATP levels (Faas et al., 2017) leads to the onset of inflammatory processes via purinergic signaling, suggesting that this system may be involved in the etiology of ASD. Experimental evidence indicate the participation of ATP-activated P2X and P2Y purinergic receptors in embryonic brain development as well as in adult neurogenesis for maintenance of normal brain functions (Glaser et al., 2013; Oliveira and Ulrich, 2016; Ulrich et al., 2012) and alterations in this context have been already related to psychiatric disorders, like autism (Cheffer et al., 2018). Previous studies demonstrated that suramin, a non-selective inhibitor of the purinergic P2 receptors and ectonucleotidases has therapeutic effects on autistic-like behaviors in the animal model of autism through maternal immune activation (MIA) (Naviaux et al., 2014, 2013). Experimental evidence indicate that purinergic signaling could prevent behavioral changes in this animal model, which seem to be related with elevated levels of interleukin 6 (IL-6) (Smith et al., 2007). Interestingly, the Naviaux’s group recently demonstrated in a small, phase I/II, randomized clinical trial that a single intravenous dose of suramin was associated with improved scores for language, social interaction, and decreased restricted or repetitive behaviors. The five children who received placebo had no improvements these parameters (Naviaux et al., 2017). However, it is still unclear how the inflammatory response and the purinergic signaling is being modulated by both prenatal effect by VPA and post-natal treatment with the anti-purinergic suramin.

Based on these previous findings, the aim of this work was to evaluate the therapeutic effects of suramin on different behavioral pattern of an animal model of autism induced by prenatal exposure to VPA and elucidate the role of purinergic signaling on inflammatory responses in the context of autism.

2. Methods

2.1. Animals and ethics

Wistar rats obtained from the local breeding colony (ICBS-Federal University of Rio Grande do Sul) were maintained under standard laboratory conditions. The animals were mated overnight, and when pregnancy was established by the presence of spermatozoa in the vaginal smear, this day was considered the zero embryonic day (E0). The offspring was weaned at postnatal day 21 (P21) and only male animals were used in this study (Rambini-Junior et al., 2011). This project was approved by the local animal ethics committee (CEUA-UFRGS 23884) and all procedures were approved by the Institutional Ethics Committee on Animal Use in accordance with Brazilian Law 11794/2008 (Arouca Law) and National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023).

2.2. Treatments

Valproic acid (sodium valproate, Sigma-Aldrich, USA) was dissolved in 0.9% saline to a final concentration of 250 mg/mL. Pregnant females received a single intraperitoneal injection of 600 mg/kg VPA or physiological saline on E12.5. Male offspring received a single intraperitoneal injection of suramin (hexasodium salt, Sigma-Aldrich, USA) at 20 mg/kg or its vehicle 0.1M PBS on P30. Thus, four experimental groups were formed: Control (only vehicles injected), suramin (SUR), VPA and VPA + SUR. The litters were split equally among the experimental groups proposed by the present work as it follows: if the litter size presented an even number, half received suramin treatment and the other half, PBS treatment. If the litter size presented an odd number, for example, the size of three, two rats received suramin treatment and one rat received PBS treatment, and vice versa, randomly.

2.3. Behavioral tests

Behavioral testing was performed in offspring, between P32-P40, starting two days after the injection of suramin. All behavioral tests were performed under light conditions of 60 LUX by experienced researchers using a double-blind approach. The following behavioral tests were performed: elevated plus maze, open field/grooming, whisker nuisance task (WNT), three-chambered test, reciprocal sociability test and tail flick test. Except for the WNT and tail flick, all tests were videotaped for later evaluations.

2.3.1. Elevated plus maze (P32)

The anxiety-like behavior was assessed in an elevated plus maze apparatus with a 10 cm × 10 cm center, connecting two opposite open arms (length: 50 cm) and two opposite arms closed with 30 cm high walls (length: 50 cm), 1 m above the floor. Rats were placed in the middle of apparatus and its movements were recorded for 5 min using a camera connected to a laptop. The time spent in the closed arms is considered a measure of anxious behavior.
2.3.2. Open field test/self-grooming (P33)

Adapted from Schneider and colleagues (Schneider and Przewlocki, 2005), the exploratory and locomotor activity and the time and number of stereotyped movements (self-grooming behavior) were assessed in an open field arena, which consists of a wooden box measuring 50 × 50 × 50 cm. Rats were placed in the center of the arena and recorded during 30 min. Using the Anymaze Software®, we performed a tracking of locomotor activity (travelled distance and average speed) and time spent and number of entries in the central during the 30 min of test.

The self-grooming behavior was evaluated considering three different time periods (0–5, 10–15 and 20–25 min). We considered grooming as number of body cleaning with paws and face-washing actions and distinguished between complete (cleaning from snout to tail) and incomplete (fast and repetitive movements on snout) self-grooming.

2.3.3. Whisker nuisance task (P34-35)

Adapted from McNamara et al. (2010) and described by Fontes-Dutra and colleagues (Fontes-Dutra et al., 2018), in this test we observed the animal response to the vibrissae stimulation. One day prior to test, animals were set to the experimenter for 5 min, in an empty housing (57.1 × 39.4 × 15.2 cm) coated with an absorbent pad. On the day of test, the vibrissae were stimulated with a wooden toothpick for three consecutive periods of 5 min (15 min in total) with a 30 s interval between them. McNamara et al. (2010) developed a nonparametric scale of 0–2 according to the response (0 = absent/typical, 1 = present/light response and 2 = profound/accentuated response), distributed in 8 categories of behavior: freezing, stance and body position, breathing, whisker position, whisking response, evading stimulation, response to stick presentation and grooming (McNamara et al., 2010). The maximum test score is 16. High scores (8–16) indicate normal responses, in which the animal freezes, shakes, or is aggressive. The low scores (0–4) indicate normal responses, in which the rat is calm or indifferent to stimulation.

2.3.4. Three-chamber test (P36-37)

This test was performed as previously described by Bambini-Junior and colleagues (Bambini-Junior et al., 2011). Briefly, at the beginning, the animal was habituated in the central chamber of the apparatus for 5 min. In the Sociability Test, one object was placed in one of the side chambers and in the other an unfamiliar interaction animal (novel rat 1). We measured the time spent in each chamber and the time of exploration of either the rat or the object for 10 min.

In the Social Novelty Test, the novel rat 1 (now known rat) remained in this place and an unknown rat (novel rat 2 – an unfamiliar rat) was placed in the previously empty chamber. The time spent in each chamber and the time of exploration of both the rat known or not was also evaluated for 10 min.

2.3.5. Reciprocal social behavior (P38)

Adapted from Schneider et al. (Schneider and Przewlocki, 2005), the test was performed in the same box as the open field test during 15 min. The test animal was placed in the apparatus and, after a habituation period of 5 min, an unfamiliar and younger Wistar rat (21–28 days old) interaction animal was placed with the test animal. We evaluated the social behavior of the test animal using time and number of nose to nose interaction, anogenital inspection, flank exploration and following.

2.3.6. Tail flick (P39-40)

Nociceptive thresholds were evaluated using a tail flick analgesimeter (Insight Equipments, Ribeirão Preto, Brazil). One day prior the test, the animals were gently restrained by hand for 5 min in order to habituate to apparatus. Tail flick measurements were taken three times at 30 seconds intervals.

2.4. Tissue samples

The animals were deeply anesthetized on P41 with ketamine (300 mg/kg) and xilazine (40 mg/kg). After, the animals were decapitated, and the medial prefrontal cortex and hippocampus were dissected. The tissues were immediately homogenized in TRIzol® reagent (Invitrogen, Waltham, MA) and preserved at ultra-freezer until posterior molecular analysis.

2.4.1. RNA extraction and RT-qPCR procedure

After homogenization of tissues samples, chloroform was added to perform phase separation, and RNA was precipitated from the upper aqueous layer using isopropanol. The precipitated RNA was washed with ethanol to remove impurities, resuspended in RNase-free water and stored at ultra-freezer (Hummon et al., 2007).

The mRNA transcription levels of purinergic receptors and cytokines were evaluated by reverse transcriptase followed by quantitative polymerase chain reaction (RT-qPCR). Complementary DNA (cDNA) was synthesized from mRNA using reverse transcriptase reaction containing 2 μg of total RNA, 1 μL of 10 mM dNTP mix (Invitrogen, Waltham, MA), 1 μL of oligodT primer, 4 μL M-MLV reverse transcriptase 5X reaction buffer (Invitrogen, Waltham, MA), 2 μL of 0.1 M DTT (Invitrogen, Waltham, MA), 1 μL of RNase inhibitor (Invitrogen, Waltham, MA), 1.0 μL of M-MLV reverse transcriptase (Invitrogen, Waltham, MA), and sterile distilled water to a final volume of 20 μL. The synthesis of the cDNA was completed after a sequence of three incubations at 65 °C for 5 min, 37 °C for 50 min and 70 °C for 15 min.

The quantitative PCR mix was comprised by 8 μL of cDNA (1:40) and 12 μL reaction mix containing 0.5 μL of 10 μM dNTP mix (Invitrogen, Waltham, MA), 2.0 μL of 10X PCR buffer (Invitrogen, Waltham, MA), 0.8 μL of 50 mM MgCl2 (Invitrogen, Waltham, MA), 2.0 μL of 1X SYBR™ Green (Molecular Probes, USA), 0.1 μL of Platinum Taq DNA Polymerase (Invitrogen, Waltham, MA), 0.2 μL of specific forward and reverse (10 μM) primers (as specified in Supplementary Table 1) and sterile distilled water to a final volume of 20 μL. The fluorescence of SYBR™ Green was used to detect amplification, estimate Ct values, and to determine specificity after melting curve analysis. PCR cycling conditions were standardized to 95 °C for 5 min followed by 40 cycles at 95 °C for 10 s, 58 °C for 10 s, and 72 °C for 10 s. After the main amplification, sample fluorescence was measured from 60 °C to 95 °C, with an increasing ramp of 0.3 °C each, to obtain the denaturing curve of the amplified products and Tm estimation, to assure their homogeneity after peak detection. Data was obtained from an Applied Biosystems StepOne System (USA).

The RT-qPCR results were imported into Microsoft Excel and the geNorm program was used to assess the variance in expression levels of the mRNA analyzed (Vandesompele et al., 2002). This program scanned all mRNA evaluated and ranked accordingly to their stability. The more stable mRNAs were used as endogenous expression controls. PCR efficiency was calculated from the slope of the amplification curve by exponential amplification analysis using the LinRegPCR algorithm (Ramakers et al., 2003). The relative expression of mRNA was calculated considering the 100% PCR efficiency and the ΔΔCt values for each mRNA (Livak and Schmittgen, 2001) and were normalized to the endogenous genes identified by the geNorm software (Primer Design, Ltd., Southampton University, Highfield Campus, Southampton Haunts, UK).

2.5. Statistical analysis

IBM SPSS Statistics 20.0 (IBM SPSS, Armonk, NY, USA) was used to perform the statistical analysis. Kolgomorov-Smirnov and Shapiro-Wilk tests of normality were applied to determine data distribution. For behavioral tests, we used Generalized Estimating Equations (GEE) to weight both the interventions (VPA exposure and/or suramin treatment) and the litter effect in the behavioral outcome. Considering that...
GEE is a flexible method based on general linear models, allowing the analysis of data with different distribution patterns, this protocol was used to compare different correlated variables (Fontes-Dutra et al., 2019). We also divided the litter equally among the experimental groups. After a Wald Chi-Square test, we performed pairwise comparisons for the parameters that presented interaction effect between interventions (VPA-by-suramin interaction). If only main effects were observed, the individual effect of VPA or suramin was evaluated. Bonferroni’s post hoc test was used as the final evaluation. Data is reported as mean ± standard error of the mean (SEM). The Poisson distribution was used for discrete variables (number), while gamma distribution was used for time variables.

The relative expressions of purinergic receptors and cytokines were compared using one-way ANOVA followed by Bonferroni. The results were expressed as mean ± SEM. All statistical analyzes were supervised by the Biostatistics Unit at the Clinical Hospital of Porto Alegre.

3. Results

3.1. Behavioral tests

3.1.1. Social behavior analysis in the three-chambered test

Rats from control and suramin groups spent significantly more time in the chamber containing a conspecific novel rat than a novel object (CON: p < 0.001; SUR: p = 0.025; Fig. 1A). In contrast, VPA animals did not present preference between spending time in the chamber with a rat or an object (p = 0.550). Interestingly, suramin treatment of VPA-exposed rats was able to reestablish the social feature, as the VPA + SUR group showed preference to stay in the chamber together with the novel rat (p < 0.001). Concerning social interaction, rats from both control and suramin groups also spent significantly more time exploring the cage containing the conspecific rather than the object (CON: p < 0.001 SUR: p < 0.001), while the VPA group showed no preference between rat and object exploration (p = 0.131, Fig. 1A). Suramin treatment was again able to restore this social behavior (VPA + SUR: p < 0.001).

Fig. 1. Social behavior in VPA autism model. (A) Time spent in chambers and interaction time in sociability (B), social novelty tests in a three-chambered apparatus and (C) number and time of total pro-social interactions. Data expressed as means ± SEM. Asterisks indicate statistical differences with *p < 0.05, **p < 0.01, ***p < 0.001. Statistical analysis: Generalized Estimating Equations (GEE) followed by Bonferroni. Three-chambered test: CON (n = 15), SUR (n = 15), VPA (n = 11), VPA + SUR (n = 13). Reciprocal interactions: CON (n = 18), SUR (n = 16), VPA (n = 14), VPA + SUR (n = 13).
In the test for social novelty, all groups showed no significant difference between the time spent in the novel rat chamber and the known rat chamber (CON: p = 0.562; SUR: p = 0.760; VPA: p = 1.000; VPA + SUR: p = 0.235; Fig. 1B). However, rats from control and suramin groups spent significantly more time exploring the novel rat than the known rat (CON: p = 0.003; SUR: p = 0.005, Fig. 1B), indicating an interest in social novelty. VPA rats did not show preference in exploration time between novel and known rat (VPA: p = 0.13), whilst suramin treatment was able to prevent this social impairment in VPA-exposed animals (VPA + SUR: p = 0.016, Fig. 1B).

3.1.2. Reciprocal social behavior

Prenatal exposure to VPA significantly reduced every reciprocal social interaction parameter evaluated, except for following behavior (Supplementary Fig. S1). We observed only a VPA effect on total reciprocal social behavior, since VPA-exposed animals presented a decrease in number (p < 0.001) and time (p < 0.001) of social approaches and suramin treatment was not able to rescue these impairments (Fig. 1C).

3.1.3. Anxiety-like, exploratory and locomotor behavior

Rats from VPA group spent significantly less time exploring the open arm of the elevated plus-maze apparatus, compared to animals from control (p = 0.001) and suramin (p = 0.003) groups. VPA + SUR group spent more time exploring the open arm of the apparatus compared to the VPA group (p < 0.001; Fig. 2A), indicating that suramin was able to rescue the anxiety-like behaviors in rats exposed to VPA. It is worth to note that no differences were found among experimental groups in open arms entries (all p > 0.570; Supplementary Fig. S2A) and number of risk assessments in the elevated plus-maze apparatus (all p > 0.210; Supplementary Fig. S2B). In the open field arena, animals from VPA group spent significantly less time in central square compared to control (p = 0.007) and suramin (p < 0.001) groups. As observed in plus maze evaluation, suramin was able to rescue this alteration, since VPA + SUR group spent more time in central square compared to VPA group (p = 0.004, Fig. 2B).

Concerning the exploratory behavior, only the VPA-exposed rats presented lower number of rearing in an open field arena (p = 0.041, Fig. 2C). Finally, when locomotor activity of those rats in the open field arena was evaluated, no significant differences in distance travelled (all p > 0.910, Fig. 2D) and average speed (all p > 0.960, Supplementary Fig. S2D) were found among experimental groups.

3.1.4. Self-grooming behavior

The self-grooming behavior was evaluated across three testing periods (0–5, 10–15 and 20–25 min) and distinguished between complete and incomplete self-grooming. During the second period, VPA groups spent more time performing complete self-grooming compared to control animals (p = 0.039), and suramin was not able to rescue from this altered behavior. Similarly, in the third period, the same pattern was observed in VPA animals (p = 0.003, Table 1). Taking all periods together, VPA-exposed animals spent more time doing complete self-grooming with no reversion by suramin treatment in this behavior (p = 0.002, Fig. 3A).

Regarding to the time spent doing incomplete self-grooming, no difference was observed among the groups (all p > 0.100, Table 1 or p > 0.420, Fig. 3C). However, the VPA group presented a trend to spend more time self-grooming in 10–15 min (p = 0.065), a significant increase in the third period (p = 0.013, Table 1), considering the three periods of test (p = 0.002, Fig. 3E). In all cases, postnatal treatment with suramin was not able to rescue from these alterations.

Concerning the number of self-grooming events, VPA animals presented more events of complete self-grooming only in the third period (p = 0.002, Table 1) with a trend to increased total complete self-grooming (p = 0.088, Fig. 3B). When considered the number of incomplete self-grooming and all grooming events, no differences were observed among groups in the three periods analyzed (all p > 0.210, Table 1) or considering three periods together (all p > 0.553, Fig. 3D). Finally, when considered the number of all events of self-grooming, VPA-exposed animals presented an increase only following 20–25 min (p = 0.005, Table 1) with no differences in the total period of test (all p > 0.130, Fig. 3F).

Fig. 2. Anxiety, exploratory and locomotor behavior in VPA autism model. (A) Percent of time spent in the open arms in the elevated plus-maze; (B) Time spent in central square; (C) Number of rearings and (D) distance travelled in a 50 × 50 × 50 open field arena. Data expressed as means ± SEM. Different letters indicate statistical differences with p < 0.05 considered significant. Statistical analysis: Generalized Estimating Equations (GEE) followed by Bonferroni. Plus Maze: CON (n = 18), SUR (n = 16), VPA (n = 15), VPA + SUR (n = 15). Open Field: CON (n = 16), SUR (n = 15), VPA (n = 13), VPA + SUR (n = 14).
3.1.5. Sensory behavior

In the whisker nuisance task (WNT), VPA-exposed animals presented a significant increased score when compared to control animals (p = 0.001, Fig. 4A), indicating higher levels of nuisance when whiskers are stimulated. The postnatal treatment with suramin was not able to rescue this alteration.

Only a VPA effect was observed in the latency to tail withdrawal in noiceptive tail flick test, so that VPA-exposed animals presented higher latencies compared to non-exposed animals (p = 0.012, Fig. 4B).

3.2. Molecular analysis

3.2.1. Expression of purinergic receptors

The expression relative of mRNA was performed in the medial prefrontal cortex. GeNorm algorithm ranked P2Y2 and P2Y4 receptor gene expression for normalization purposes (endogenous genes) and determinatio of relative expression levels of further investigated purinergic receptors. The expression rate of the ionotropic P2X4 receptor showed no differences among experimental groups (Fig. 5B). Nevertheless, levels of remaining purinergic receptors. The expression rate of the ionotropic P2X4 receptor presented increased mRNA levels coding for metabotropic receptor P2Y2 in VPA and VPA + SUR group compared to control group (F (3, 28) = 6194; p = 0.0023). In both cases, suramin was not able to rescue this alteration.

3.2.2. Expression of cytokine mRNA levels

In the medial prefrontal cortex, considering GAPDH and Beta3-tubulin as endogenous genes, the animals from VPA group presented an increase in relative expression of IL-6 mRNA compared to control group (F (3, 24) = 5406; p = 0.005) and the postnatal treatment with suramin rescued the levels of IL-6 of VPA-exposed rats to control levels (Fig. 6A). On the other hand, IL-1β, IFN-γ and TNF-α showed no differences between groups. Regarding to hippocampus and considering the same normalizer mRNA, no differences were found in cytokine levels among all experimental groups (Fig. 6B).

4. Discussion

An important approach in VPA model is the possibility of developing therapeutic strategies to attenuate several features observed in ASD. For instance, our group demonstrated that resveratrol (RSV), an antioxidant and anti-inflammatory molecule, prevents VPA-induced social impairments in the three-chamber test (Bambini-Junior et al., 2014) and in the number and time of reciprocal social interactions (Hirsch et al., 2018). The present results corroborate impairments in sociability and social novelty exploration in the three-chamber test, as previously demonstrated (Bambini-Junior et al., 2014, 2011). As previously shown, the postnatal treatment with a single dose of suramin was able to rescue social impairments (Naviaux et al., 2014). It is important to consider that there could be different schedules of administration of suramin, but considering its half-life and relevant clinical data, here we employed a single dose of antipurinergic treatment.

Additionally, the decrease in total reciprocal social interaction was not reversed by suramin. In fact, the reciprocal social behavior test involves complex patterns of socialization between two free animals, unlike the three-chamber test, where the conspecific animal remains trapped in a cage. Therefore, this characteristic of the test could be forcing the analyzed animal towards more complex social behavior actions, possibly causing additional impairments not reversed by suramin.

Another main finding of our study was that VPA rats presented a more anxious-like behavior compared to control animals as seen in plus maze apparatus and open field arena. Anxiety behavior is one of most...
common comorbidities in ASD and has been reported to be present in around 50% of autistic children and adolescents (Simonoff et al., 2008; van Steensel et al., 2011). Our study corroborates previous studies that demonstrated increased anxiety-like behavior in animal models of autism (Patterson, 2011). Interestingly, the treatment with suramin was able to rescue completely this alteration, which was seen by the higher percentage of total time spent exploring the open arm of the apparatus compared to VPA group.

Fig. 3. Self-grooming behavior in VPA autism model. Time of (A) complete, (C) incomplete and (E) total grooming; Number of (B) complete, (D) incomplete and (F) total grooming. Data expressed as means ± SEM with **p < 0.01 considered significant. Statistical analysis: Generalized Estimating Equations (GEE) followed by Bonferroni. CON (n = 16), SUR (n = 15), VPA (n = 13), VPA + SUR (n = 14).

Fig. 4. Sensorial behavior in VPA autism model. (A) Total score in Whisker Nuisance Task and (B) latency to respond to thermal stimuli. Data expressed as means ± SEM with *p < 0.05. Statistical analysis: Generalized Estimating Equations (GEE) followed by Bonferroni. WNT: CON (n = 15), SUR (n = 14), VPA (n = 13), VPA + SUR (n = 13). Tail flick: CON (n = 17), SUR (n = 14), VPA (n = 13), VPA + SUR (n = 14).
We also observed that VPA-exposed animals do not present significant motor alterations or hyperactivity, but demonstrated a significant reduction in vertical exploratory activity, which could be related to the reduction in social interest of VPA animals described in sociability test, since animals with less exploratory tendencies possibly have impairments related to social approach. As observed in reciprocal sociability test, the postnatal treatment with suramin was not able to rescue the impairments observed in this exploratory behavior.

In addition to analyzing social behavior, the present study also assessed another core symptom of autism - the repetitive and stereotyped behavior. In animal models of autism, this feature can be measured by analyzing the repetitive self-grooming behavior. In present work, we assessed separately the self-grooming behavior as complete and incomplete events. The VPA-exposed animals showed increased time of complete self-grooming, without alteration in both number and time of incomplete grooming. Studies have demonstrated that only complete grooming is initiated by cerebellar midline or locus coeruleus stimulation (Strazielle et al., 2012) and that ATP can induce depolarization and increase excitability of norepinephrinergic system from locus coeruleus, possibly mediated by specific modulators of P2 receptors (Masaki et al., 2001; Yao and Lawrence, 2005), suggesting a putative role of the purinergic signaling system in grooming outcomes.

Previous studies already demonstrated that grooming behavior could be related to sensory components (Houghton et al., 2018). Corroborating a previous work from our group (Fontes-Dutra et al., 2018), we observed that VPA animals presented hypersensitivity to a non-harmful stimulus in WNT, suggesting a disturbance in sensory gating which could lead to increase in self-grooming behavior. Hyposensitivity to pain is also frequently observed in autistic subjects, although this feature is not a consensus, since different findings were observed depending on how the studies were conducted (Moore, 2015). In our study, VPA-exposed rats presented higher latencies to sense a thermal stimulus, indicating a lower nociceptive reactivity in accordance to previous work (Schneider et al., 2008). Postnatal treatment with...
suramin was not able to rescue these sensorial impairments in VPA animals. Taking together, in the present work we demonstrated that VPA-induced alterations in behavioral components related to social and anxiety behavior in the animal model of ASD can be modulated by the anti-purinergic molecule suramin, highlighting the role of purinergic signaling system in the pathophysiology of ASD.

There are only a few studies in literature indicating the roles of purinergic system in sensory processing. Nevertheless, it is known that purinergic signaling system is important for sensory pathways (Irnich et al., 2002). Our data presented increased expression of cortical heteromeric P2X4 receptor in VPA-exposed animals. Since this receptor is involved with immunological responses in several tissues, the involvement of purinergic signaling in the ASD pathophysiology may be related to neuroimmunological alterations, as already found in patients (Gottfried et al., 2015) and animal models of autism (Wei et al., 2012; Xu et al., 2015). It is already known that suramin has therapeutic effects on social deficits (Naviaux et al., 2014, 2013), although it is poorly able to cross the blood brain barrier (Hawking, 1978; Roboz et al., 1998). Our hypothesis is that suramin could be acting only at peripheral levels modulating some characteristics of autism, possibly through a crosstalk between immunological and central nervous systems of these animals.

In our study animals from VPA group showed increased levels of...
pro-inflammatory cytokine IL-6 in medial prefrontal cortex. Interestingly, a remarkable finding in the present work was the restoration IL-6 levels in this area after treatment with suramin. Since the levels of this cytokine are commonly increased in autistic patients (Gottfried et al., 2015) and in animal models of autism (Wei et al., 2012; Xu et al., 2015), the suramin-induced effect on IL-6 levels could play a role on its changes in social and anxiety-like behavior (Xu et al., 2015), which has also been rescued by suramin treatment. Therefore, the present data contribute to the understanding of how purinergic signaling is modulated in the VPA animal model of ASD, enlightening important VPA-induced alterations in ASD-related behaviors, changing both the expression pattern of purinergic receptors in medial prefrontal cortex and hippocampus, and the levels of IL-6, potentially pointing to a role of purinergic signaling system and inflammation status in VPA animal model. By contrast, postnatal treatment with suramin was capable to prevent alterations in social and anxiety-like behavior induced by VPA prenatal exposure, comitamontly reverting the high levels of IL-6.

5. Conclusion

In summary, our findings reinforce the idea of antipurinergic therapy as a novel pharmacological target in disorders associated with inflammatory dysregulation, including autism and provide new insights for the development of effective and safe treatments. Although VPA-exposed animals seem to present higher permeability in blood-brain barrier (Kumar et al., 2015; Kumar and Sharma, 2016a, Kumar and Sharma, 2016b), the limited access of suramin to CNS could explain the limitations of suramin-based therapeutic strategies. Even though suramin has been in humans for more than 100 years as a therapeutic agent, it has plethora of important dose-dependent side effects. However, the present data provide remarkable support for the hypothesis that a drug acting through peripheral immune and inflammatory components can modulate some molecular and behavioral alterations in VPA autism model. As pointed out in a recent review (Burrstock, 2018), the development of purinergic compounds for the treatment of a wide variety of diseases is still in its infancy, but for sure, suramin studies open an important window for new drug designs and therapies. Further preparations are necessary to elucidate the mechanisms of suramin action. In addition to this, the use of some specific and safer drugs could be more efficient to rescue autistic-related impairments.

Declaration of competing interest

The authors declare that there are no conflicts of interest.

Acknowledgements

We would like to thank the statistical support group of the Clinical Hospital of Porto Alegre (HCPA), Rio Grande do Sul, Brazil.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuropharm.2019.107930.

Funding

This work was supported by the Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM Projec number 465489/2014-1), Rio de Janeiro, Brazil; National Council of Technological and Scientific Development (CNPq); Coordination for the Improvement of Higher Education Personnel (CAPES), São Paulo Research Foundation (FAPESP Project numbers 2012/50880-4 and 2015/14343-2) and Clinical Hospital of Porto Alegre (FIPE-HCPA).

References

Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism

Federica Gevi¹, Lello Zolla¹*, Stefano Gabriele² and Antonio M. Persico³,⁴*

Abstract

Background: Autism spectrum disorder (ASD) is still diagnosed through behavioral observation, due to a lack of laboratory biomarkers, which could greatly aid clinicians in providing earlier and more reliable diagnoses. Metabolomics on human biofluids provides a sensitive tool to identify metabolite profiles potentially usable as biomarkers for ASD. Initial metabolomic studies, analyzing urines and plasma of ASD and control individuals, suggested that autistic patients may share some metabolic abnormalities, despite several inconsistencies stemming from differences in technology, ethnicity, age range, and definition of "control" status.

Methods: ASD-specific urinary metabolomic patterns were explored at an early age in 30 ASD children and 30 matched controls (age range 2–7, M:F = 22:8) using hydrophilic interaction chromatography (HILIC)-UHPLC and mass spectrometry, a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway.

Results: Urinary metabolites displaying the largest differences between young ASD and control children belonged to the tryptophan and purine metabolic pathways. Also, vitamin B₆, riboflavin, phenylalanine-tyrosine-tryptophan biosynthesis, pantothenate and CoA, and pyrimidine metabolism differed significantly. ASD children preferentially transform tryptophan into xanthurenic acid and quinolinic acid (two catabolites of the kynurenine pathway), at the expense of kynurenic acid and especially of melatonin. Also, the gut microbiome contributes to altered tryptophan metabolism, yielding increased levels of indolyl 3-acetic acid and indolyl lactate.

Conclusions: The metabolic pathways most distinctive of young Italian autistic children largely overlap with those found in rodent models of ASD following maternal immune activation or genetic manipulations. These results are consistent with the proposal of a purine-driven cell danger response, accompanied by overproduction of epileptogenic and excitotoxic quinolinic acid, large reductions in melatonin synthesis, and gut dysbiosis. These metabolic abnormalities could underlie several comorbidities frequently associated to ASD, such as seizures, sleep disorders, and gastrointestinal symptoms, and could contribute to autism severity. Their diagnostic sensitivity, disease-specificity, and interethnic variability will merit further investigation.

Keywords: Autism, Autism spectrum disorder, Kynurenine, Melatonin, Metabolomics, Purinergic signaling, Quinolinic acid, Serotonin, Tryptophan

* Correspondence: zolla@unitus.it; apersico@unime.it
¹Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
²Unit of Child and Adolescent Neuropsychiatry, Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Autism spectrum disorder (ASD) represents a highly heterogeneous collection of neurodevelopmental conditions characterized by social and communication deficits, stereotypic and rigid patterns of behavior, restricted interests, and unusual sensory processing with onset in early childhood [1]. The prevalence of autism has increased significantly during the last two decades from 2–5/10,000 to 1:68 children [2, 3]. Changes in diagnostic criteria and increased attention by the medical community have certainly contributed to this trend [4]. Also, increasing parental age at conception has been shown to confer ASD risk [5], as well as some environmental factors, active especially during critical periods in prenatal/early postnatal neurodevelopment [6]. Finally, genetic susceptibility plays a prominent role in ASD pathogenesis through complex and heterogeneous underpinnings, ranging from rare variants endowed with full penetrance to common variants each explaining very small proportions of the overall phenotypic variance, either alone or through gene × environment interactions [7, 8].

Despite major advances in our understanding of the pathophysiology of ASD, this level of complexity and interindividual heterogeneity has largely hampered the translation of scientific knowledge into more effective clinical practices. ASD is still diagnosed exclusively through observation, standardized behavioral scales, and parental interviews; developmental trajectories of ASD children are periodically monitored but cannot be reliably predicted especially at an early age. Sensitive and specific quantitative biomarkers, measurable through laboratory, brain imaging, and/or electrophysiological techniques, could greatly aid clinicians in providing earlier diagnoses, more timely referrals to behavioral intervention programs, and evidence-based prognostic predictions [9].

Metabolomic technologies offer a sensitive means to search human biofluids for metabolite profiles potentially usable as biomarkers for neurodevelopmental disorders. A few studies have recently begun exploring the potential of urinary metabolomics in identifying ASD-specific metabolic patterns or in stratifying ASD patients into pathophysiologically meaningful subgroups [10–17]. Most studies have been performed on urines [10–16]; one study has explored blood plasma [17]. The analytical platforms most commonly used to identify and quantify metabolites are gas or liquid chromatography combined with mass spectroscopy (gas chromatography (GC)-mass spectroscopy (MS) and liquid chromatography (LC)-MS, respectively) [12, 16] and nuclear magnetic resonance spectroscopy (NMR) [10, 13, 14, 16, 18, 19]. In general, NMR displays greater speed and good reproducibility but also lower sensitivity compared to MS. Hence, MS- and NMR-based techniques should be viewed as complementary, not as superimposable approaches. An initial study, using 1H-NMR methods, showed an abnormal composition of urinary solutes indicative of perturbations in (a) the tryptophan/nicotinic acid metabolic pathway, (b) sulfur and amino acid metabolisms, and (c) gut microbiome, with an excess of several gut-derived co-metabolites [10]. Two other studies presumably assessing the same clinical sample with two different NMR-based technologies largely replicated these initial findings [13, 14]. Other studies using GC-MS, either alone [12, 15] or in combination with liquid chromatography [11], also identified perturbations in amino acid metabolism and gut microbial co-metabolites, as well as metabolic signatures of oxidative stress. Only one very recent study used both NMR and LC-MS, providing support for abnormalities in tryptophan metabolism, gut bacterial-derived compounds, purine and pyrimidine metabolism [16]. The only study exploring blood plasma reported metabolomic patterns compatible with (a) mitochondrial dysfunction, yielding reduced energy production and unbalanced redox status, (b) excess gut microbial co-metabolites, and (c) unbalances in various metabolic pathways, such as the Krebs cycle [17]. Collectively, metabolomic studies performed to this date suggest that autistic patients may share several metabolic abnormalities, especially involving some amino acid metabolisms, energy production, and oxidative stress, as well as the gut microbiome.

Moving from broad metabolic pathways to single compounds unveils inconsistencies between studies, which may stem from several potential confounds. Interethnic differences in the gut microbiota, stemming from differences in the nutrient composition of local diets, as well as age-related changes in both gut microbiota and human metabolism indeed require that case and control samples be tightly matched for these two variables. Age-related changes may be especially relevant to studies of ASD, where we have recently reported levels of urinary p-cresol to be elevated in autistic children compared to age-matched controls both in Italy and in France, but exclusively up until 8 years of age [20, 21]. Similar age-related changes in ASD have been previously described for other parameters, such as brain serotonin synthesis capacity [22, 23] and excessive head growth rates [24]. Finally, some studies have contrasted ASD patients with unrelated population controls [11, 14, 16, 17], while others have enrolled unaffected siblings as controls [15] and one study has used both [10]. These strategies are not equivalent, as first-degree relatives often fall within the broad autism spectrum (i.e., they display behavioral phenotypes intermediate between patients and population controls) [25]. In addition, siblings may carry protective gene variants with peculiar functional correlates,
possibly distinct from the metabolic patterns of unrelated typically developing children.

Taking into consideration these methodological issues, in order to maximize the probability of reliably detecting differences in urinary metabolic patterns, we focused on autistic and unrelated typically developing children 2–8 years old, tightly matched by age, sex, Italian ancestry, and city of origin within the country [20]. To ensure broad metabolite detection coverage on urine samples, which comprise molecules generated both by human cells and by the gut microbiome, we employed hydrophilic interaction chromatography (HILIC)-LC-electrospray ionization (ESI)-MS, a technology particularly suitable to separate simple and complex mixtures of carbohydrates, amino acids, glycosides, and other natural polar products in biological fluids, such as human urine and plasma [26, 27]. Applying this experimental approach, urinary metabolites most significantly distinguishing autistic from typically developing children were found to primarily fall into the tryptophan and purine metabolic pathways.

Methods

Subjects

Thirty children with idiopathic ASD and thirty typically developing controls were recruited in Central and Northern Italy. These represent the vast majority of the 64 cases and controls aged 3–7 years assessed for urinary p-cresol in our previous study [20]. Their demographic and clinical characteristics are summarized in Additional file 1: Table S1. Diagnostic assessments and medical screening have been previously described [20] (also see Additional file 2 with Supplementary Methods). Tight sex- and age-matching (±1 year) was applied to recruit typically developing children devoid of any overt ASD symptomatology among the offspring of clinical/academic personnel [20]. Mean age (±SEM) of cases and controls was 4.83 ± 0.30 and 5.03 ± 0.32 years, respectively (Student’s t = −0.459, 58 df, P = 0.648, n.s.), and the M:F ratio was 22:8. All cases and controls were of Italian descent and matched by geographical area or city of origin.

Urine collection and metabolite extraction

First-morning urines were collected at home by parents using sterile containers untreated with preservatives and were brought to each clinical center the same morning in wet ice. Urine samples were then frozen, shipped in dry ice, and stored at −80 °C continuously until analysis.

Urinary specific gravity was measured by refractometry following centrifugation at 13,000g for 10 min) using a digital refractometer (Euromex Clinical Digital Refractometer RD.5712, NL) previously calibrated with LC-MS grade water.

Urine aliquots (200 μl) were mixed with 200 μl of methanol:acetonitrile:water (50:30:20), vortexed for 30 min at max speed at 4 °C and then centrifuged at 16,000g for 15 min at 4 °C. Supernatants were collected for metabolomic analysis. Quality controls (QCs) were obtained from a pooled mixture of 10 μl aliquots of all urine samples and were analyzed every 15 samples.

HILIC-UHPLC

Metabolite separation was performed as previously described [28], by hydrophilic interaction chromatography (HILIC) using the Ultimate 3000 Rapid Resolution HPLC system (Dionex, Sunnyvale, CA), featuring a binary pump and vacuum degasser, well-plate autosampler with a six-port micro-switching valve, and a thermostated column compartment. A Phenomenex Luna 3 μm HILIC 200 A (150 × 2.0 mm) column, protected by a HILIC 4 × 2.0 mm ID guard column (Phenomenex, Torrance, CA), was used to perform metabolite separation over a phase B-to-phase A gradient lasting 35 min. For the HILIC separation, mobile phase “A” consisted in 50 mM ammonium acetate mixed with acetonitrile (95:5, v/v), while eluent “B” was composed of a mixture of 50 mM ammonium acetate:water plus acetonitrile (95:5, v/v). Acetonitrile, formic acid, and HPLC-grade water were purchased from Sigma-Aldrich (St. Louis, MO).

Mass spectrometry

MS analysis was carried out on an electrospray hybrid quadrupole time-of-flight instrument MicroTOF-Q (Bruker-Daltonik, Bremen, Germany) equipped with an ESI ion source, as previously described [29]. Mass spectra for metabolite-extracted samples were acquired both in positive and in negative ion modes; only data produced in negative mode are shown, because more powerful in analyzing urinary samples. Only data produced in negative mode are shown, because more powerful in analyzing urinary samples. ESI capillary voltage was set at 4500 V (−) ion mode. The liquid nebulizer was set at 27 psi, and the nitrogen drying gas was set to a flow rate of 6 L/min. Dry gas temperature was maintained at 200 °C. Data were stored in centroid mode and acquired with a stored mass range of 50–1200 m/z. Instrument calibration was performed externally every day with 10 mM sodium hydroxide in 50% isopropanol: water, 0.1% formic acid. Automated internal mass scale calibration was performed through direct automated injection of the calibration solution at the beginning and at the end of each run by a six-port divert valve.

Data elaboration and statistical analysis

Data were normalized by urinary specific gravity, because creatinine excretion may be abnormally reduced in ASD children [30]. Replicates were exported as mzXML files and processed through MAVEN.52 (available at http://genomics-pubs.princeton.edu/mzroll/
index.php?show=index) [31]. Mass spectrometry chromatograms were elaborated for peak alignment, matching and comparison of parent and fragment ions, and tentative metabolite identification (within a 10-ppm mass deviation range between observed and expected results against the imported Kyoto Encyclopedia of Genes and Genomes (KEGG) database). Representative examples of mass determination and MS/MS fragmentation graphs are presented for kynurenine, melatonin, and tryptophan in Additional file 3: Figure S1. Multivariate statistical analyses were performed on the entire metabolomics data set using the MetaboAnalyst 3.0 software (http://www.metaboanalyst.ca) [32], which also overviewed data variance structure in an unsupervised manner and produced scatter plots.

Orthogonal partial least squares discriminant analysis (OPLS-DA), which defines a predictive model that describes the direction of the maximum covariance between a dataset (X) and class membership (Y), was then used to maximize the difference in metabolic profiles between cases and controls [33, 34]. OPLS-DA was performed using the Excel add-in Multibase package (Numerical Dynamics, Japan; http://www.numericaldynamics.com/) by applying orthogonal signal correction between cases and controls [33, 34]. OPLS-DA was performed using the Excel add-in Multibase package (Numerical Dynamics, Japan; http://www.numericaldynamics.com/) by applying orthogonal signal correction between cases and controls [33, 34].

Performance of the optimal model was tested by a receiver operating characteristic (ROC) curve analysis and the validation data set, as performed using MetaboAnalyst 3.0 software (http://www.metaboanalyst.ca) [32].

For case-control contrasts of single urinary metabolites, significance threshold was held at a nominal $P < 0.05$ with no correction for multiple testing, because (a) differences in single metabolite concentrations were tested only following significant differences in pathway enrichment were detected, (b) intra-pathway variability of single metabolites is non-independent, and (c) also different metabolic pathways are not fully independent, as some metabolites fall into more than one pathway. Detailed and summary statistics are provided in Additional files 4 and 5.

Results

The urinary metabolomes of young autistic and typically developing children are largely distinguishable on the three-dimensional OPLS-DA plot depicting the first three principal components (PC), which together explain 31.4% of the total variance (Fig. 1; accuracy, Q2 and R2 data are shown in Additional file 6). Approximately 10,000 peaks per sample were obtained referring to the KEGG database; among them, 202 metabolites were analyzed more precisely and identified. The top 25 most discriminating metabolites between cases and controls were further defined based on “variable influence on the projection” (VIP) scores >1 (Fig. 2). ROC analysis using this set of 25 metabolites yielded an AUC = 0.893 (95% CI 0.72–0.96), as shown in Additional file 7. The “metabolome overview” obtained through metabolic pathway analysis (MetPA) shows tryptophan metabolism, purine metabolism, vitamin B6 metabolism, and phenylalanine-tyrosine-tryptophan biosynthesis as the four most perturbed metabolic pathways in ASD (Fig. 3).

Given the relevance of tryptophan-derived compounds in many neural functions, tryptophan metabolism was assessed in greater detail at the level of specific intermediates (Fig. 4):

- The kynurenine pathway displays increases in xanthurenic acid and especially in quinolinic acid, paralleled by a considerable decrease in kynurenic acid (Fig. 4, path A).
- The serotonin pathway shows a significant decrease in melatonin and its catabolite N-acetyl-5-methoxy-tryptamine, which have the same molecular weight and thus fall under the same MS peak (Fig. 4, path B).
- Bacterial degradation of tryptophan yields in ASD, compared to controls, prominently larger urinary concentrations of indoxyl sulfate and other indole derivatives, including indolyl-3-acetic acid and especially indolyl lactate (Fig. 4, paths C and D).

Also, purine metabolism was found to convey sizable discriminative power, because ASD cases display higher urinary concentrations of many purine metabolites compared to controls, including, among others, inosine, hypoxanthine, and xanthosine (Fig. 5).

Discussion

The present study reports significant urinary metabolomic differences between young children with idiopathic ASD and typically developing controls. At least some of the metabolic perturbations described here may reflect pathophysiological meaningful abnormalities, possibly bearing functional consequences at the clinical level. Three strengths of the experimental design may have contributed to this positive outcome: (a) a focus on early infancy, by recruiting children within a relatively narrow age window precisely defined on the basis of previous urinary metabolic data [20, 21]; (b) the use of UHPLC-MS paired with HILIC, a very sensitive and reliable method ensuring maximum accuracy in the separation of small urinary solutes [26, 27]; (b) a pathway-centered approach, moving beyond the identification of single urinary ASD markers [10–17], as beautifully exemplified by urinary metabolomic studies of rodent models of ASD [35–37]. In particular, our recruitment strategy substantially differs from previous case-control study designs, minimizing age-dependent heterogeneity by

...
Fig. 1 OPLS-DA 3D plot based on normalized and mean-centered data. Each data point represents the metabolome of a single individual. Some data points may be superimposed to each other.

Fig. 2 The top 25 most discriminating metabolite ASD cases from controls, ranked by variable importance in projection (VIP) scores, and their KEGG biochemical pathway. VIP scores >1.0 were considered significant.
Fig. 3 Metabolic pathway analysis plot. Color intensity (white to red) reflects increasing statistical significance, while circle diameter covaries with pathway impact. The graph was obtained plotting on the y-axis the $-\log p$ values from the pathway enrichment analysis and on the x-axis the pathway impact values derived from the pathway topology analysis.

Fig. 4 Quantification of tryptophan metabolites: a kynurenine pathway, b serotonin/melatonin pathway, c-d bacterial degradation products. Peak areas for each metabolite were normalized by urinary specific gravity. Nominal P values: *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$
setting data-driven age thresholds (i.e., 2–8 years old) [20, 21], and applying tight age and sex matching between cases and controls. This strategy seemingly circumvents sample size limitations which would apply to an unfocused and unmatched case-control design. Future replications obtained applying similar recruitment criteria will enhance confidence in the pathophysiological relevance and the interethnic generalizability of our findings.

The tryptophan metabolic pathway collectively displays the largest perturbations in ASD (Fig. 3). Over 90–95% of dietary l-tryptophan is usually metabolized along the kynurenine pathway, 1–2% is converted to serotonin, and approximately 4–6% undergoes bacterial degradation prior to gut absorption through the Na⁺-amino acid co-transporter B₀AT₁ (Slc6a19) [38, 39]. The latter pathway yields indole derivatives not produced by mammalian metabolism, such as indoxyl sulfate [40]. Hence, changes in urinary amounts of multiple metabolites provide more reliable evidence of perturbed tryptophan metabolism, as compared to determinations of single metabolites or tryptophan itself, which also suffer from reduced statistical power due to control for multiple testing (Figs. 4 and 5). In the urines of young autistic children, we have indeed observed a substantial increase of xanthurenic acid and especially of quinolinic acid, paralleled by a decrease in kynurenine and kynurenic acid (Fig. 4, path A). This pattern is extremely interesting but must be interpreted with some caution in the absence of parallel assessments of the cerebrospinal fluid (CSF). On the one hand, the enzymes responsible for the synthesis of quinolinic acid and xanthurenic acid are primarily expressed in the microglia and in macrophages, whereas the path leading to kynurenic acid is functional in astrocytes [41]. Hence, it would be tempting to speculate that these opposite trends between cases and controls reflect an abnormal activation of microglia, which has been repeatedly seen in ASD postmortem brains [42–44], even as early as at 4 years of age [45]. On the other hand, urinary levels of quinolinic acid and kynurenic acid reflect peripheral production of these compounds, which do not pass the blood-brain barrier [41]. However, 3-hydroxykynurenene does pass the blood-brain barrier [41]. Interestingly, urinary concentrations of metabolite downstream of this compound (quinolinic acid and xanthurenic acid) are elevated in autistic children, whereas metabolite upstream of 3-hydroxykynurenene (kynurenine and kynurenic acid) are higher among controls (Fig. 4, path A). Conceivably, these trends could reflect an outflow of 3-hydroxykynurenene from the central nervous system (CNS) into the systemic circulation, where macrophage activation presumably at the level of the gut or in other peripheral organs, can transform this compound into quinolinic acid and xanthurenic acid, as well as into nicotinic acid (NAD), in agreement with previous data [10]. It will thus be important to verify this metabolomic scenario in the CSF, because it could have at least two important clinical implications: (a) quinolinic acid acts as
glutamate synthase; (b) quinolinic acid exerts excitotoxic effects by acting as an N-methyl-d-aspartate (NMDA) receptor agonist, stimulating glutamate release, blocking glutamate reuptake into astrocytes, and reducing the activity of glutamine synthase; instead, kynurenic acid exerts neuroprotection via NMDA antagonism at the glycine binding site, as well as antioxidant effects [41, 46, 47]. In summary, the urinary metabolic imbalance documented here, if present also in the CNS, could favor enhanced oxidative stress and the well-known excitation-inhibition imbalance present in ASD, fostering seizures in as many as 20% of autistic individuals [48].

Another consequence of the preferential metabolism of tryptophan along the main branch of the kynurenine pathway is the relative decrease in the production of serotonin and melatonin (Fig. 4, path B). The serotonin pathway sees tryptophan being converted into 5-hydroxytryptophan (5-HTP) by tryptophan hydroxylase and forwards to 5-hydroxytryptamine (5-HT) or serotonin by 5-HTP decarboxylase. Serotonin can then be catabolized to 5-hydroxyindoleacetic acid (5-HIAA) or transformed into N-acetylserotonin by aryalkylamine N-acetyltransferase (AANAT). N-acetylserotonin is further methylated by N-acetylserotonin O-methyltransferase (ASMT) to generate the neurohormone 5-methyl-5-methoxy-N-tryptamine or melatonin. Decreases in the serotonin metabolite 5-HIAA are only modest, while urinary melatonin and its catabolite N-acetyl-5-methoxytryptamine display a more pronounced mean reduction (both share the same molecular weight and fall under the same MS peak, labeled in Fig. 4, path B, as “melatonin” only). This confirms previous assessments performed in plasma or urine [10, 49–52], while lending further support to blunted melatonin synthesis possibly due to reduced ASMT enzyme activity in ASD [53, 54]. Melatonin is synthesized and released by the pineal gland into the systemic circulation and readily passes the blood-brain barrier [55]. Its well-known role in circadian rhythmicity makes it an ideal candidate to explain the frequent occurrence, especially at the onset of ASD and during early infancy, of sleep disorders highly responsive to melatonin as a pharmacological therapy [56].

Metabolites produced by gut bacteria are well-represented also in our ASD sample, as in previous studies [10–17]. In addition to urinary p-cresol, found elevated in these same urine samples both here (Fig. 3) and previously using a different technology [20], we also detect a significant increase in indole derivatives of bacterial tryptophan including indolyl-3-acetic acid, indoxyl sulfate, and most prominently, indolyl lactate (Fig. 4, path C). Bacterial species expressing tryptophanase, the enzyme responsible for transforming tryptophan into indole derivatives, include Escherichia coli, Proteus vulgaris, Paracolobactrum coliform, Achromobacter liquefaciens, and Bacteroides spp. [40]. Once produced in the gut lumen, indole is absorbed, oxidized to indoxyl, conjugated with sulfate, and excreted as urinary indoxyl sulfate. About 3% of tryptophan entered with the diet is excreted as indoxyl sulfate [37]. Additional small amounts of tryptophan are converted into other indole derivatives found elevated here in ASD children, such as indolyl-3-acetic acid and indolyl lactate (Fig. 4, path C). The latter compound and indolyl 3-acetic acid are direct precursors of indolyacrylol glycine, found elevated in ASD by some [57] but not all studies [58, 59]. Predictably, the exact urinary bacterial compounds found elevated in ASD do differ in distinct metabolomic studies. This is not surprising since, in addition to differences in sample demographics and sensitivity of available technologies, ethnicity also exerts profound influences on the microbiome, reflecting dietary, genetic, and immunological specificities involved in the host-microbiome interactions [60]. Despite these discrepancies at the level of single compounds, urinary metabolomic studies consistently report an excess of microbiome-derived urinary metabolites, collectively supporting gut dysbiosis in ASD. These results point toward possible negative effects on CNS function exerted by microbiome-derived metabolites. At least three examples are available, albeit with different degrees of support: (a) urinary p-cresol amounts were found correlated with ASD severity [20] or with the intensity of stereotypic behaviors in young autistic children [21]; (b) i.c.v. injection of propionic acid, an enteric-derived short chain fatty acid, produces ASD-like behaviors in the rat [61]; (c) indoxyl sulfate is a known risk factor for cognitive impairment in chronic renal disease [62]: its influx across the blood-brain barrier using the organic anion transporter 3 significantly reduces the efflux of various neurotransmitter metabolites through the same transporter, leading to their accumulation [63]. Importantly, sizable improvements in behavioral and serum metabolome abnormalities were recorded using the maternal immune activation (MIA) rodent model of ASD following the correction of gut dysbiosis using Bacteroides fragilis [64].

Purine metabolites are also well represented in the urines of ASD children, which display a large excess of inosine, hypoxanthine, and xanthosine (Figs. 3 and 5). This pattern bears an interesting resemblance to the excess of urinary inosine and hypoxanthine detected in Fmr1 knock-out mice, an animal model of fragile-X syndrome [35]. Also, mice exposed prenatally to MIA triggered by poly(I:C) injected at E12.5 and E17.5 show an excess of urinary inosine [36]. This excess of urinary
purinergic metabolites has been interpreted as part of a
“cell danger metabolic response” involving mitochondrial
dysfunction, adenosine triphosphate (ATP), and adeno-
sine diphosphate (ADP) release, activation of a variety of
purinergic receptors yielding microglial activation, in-
nate, and adaptive immunity responses and leukocyte
chemotactics [65]. Inborn errors of purine metabolism
are associated with behavioral abnormalities including
autistic features [66]. Strikingly, inhibition of purine
metabolism by suramin, a competitive antagonist at
P2X and P2Y purinergic receptors, reverses behav-
ioral, neurochemical, transcriptional, and metabololo-
gies abnormalities both in the Fmr1 knock-out mouse
and in MIA mice exposed to poly(I:C) during
pregnancy [35–37]. Conceivably, this metabolic abnor-
mality, shared between human ASD and genetic/ inmunological rodent models could thus represent a
valuable biomarker to help guide therapeutic inter-
ventions. In addition, the cell danger response also
yields relative vitamin B₆ deficiency and the enzyme
ekynureninase is B₆ dependent [65]; hence, a cell dan-
ger metabolic response in the presence of adequate
tryptophan intake could also explain the decreased
kynurenine and increased xanthurenic and quinolinic
acid observed here (Fig. 4). Interestingly, these abnor-
malities have been sometimes overcome with vitamin
B₆ supplementation [67], a therapeutic approach initially
proposed for ASD in conjunction with magnesium
supplementation [68]. In light of the present data, B₆-Mg++
supplementation in ASD may deserve further scrutiny in
urinary biomarker-driven therapeutic trials, as no firm
conclusion on its potential efficacy has yet been reached [69].

Conclusions
Targeting young autistic children and tightly matched
controls, using the sensitive approach HILIC UHPLC-
MS, and applying metabolic pathway analysis, we identi-
fied several urinary metabolic pathways significantly
altered in ASD: tryptophan, purine, and vitamin B₆
metabolisms; phenylalanine, and tyrosine biosynthesis;
and to a lesser extent, pantothenate and CoA, riboflavin,
and pyrimidine metabolisms. Several of these same path-
ways, especially tryptophan, purine, and gut microbiome
metabolisms, are also abnormal in animal models of
ASD and provide very interesting leads toward possible
pathophysiological explanations for specific symptoms
present in many autistic children, such as seizures and
sleep disorders. These metabolic abnormalities may
apply to young children only, as suggested by studies of
urinary p-cresol [20, 21]. It will indeed be very important
to now perform a similar metabolomic assessment on
ASD individuals and controls older than 8 years of age.
Investigations of CSF metabolomics will be necessary to
verify to what extent peripheral results reflect CNS
pathophysiology. Finally, studies involving other diag-
nostic groups bordering with ASD, such as ADHD, intel-
lectual disability, expressive language disorder, and
obsessive-compulsive disorder, will be required to assess
the disease specificity of the metabolomic abnormalities
reported here and to determine their potential value as
ASD-specific biomarkers, possibly able to aid clinicians
in providing more reliable diagnoses in early infancy.

Additional files

Additional file 1: Table S1. Demographic and clinical characteristics of
the autistic sample (N = 30, unless otherwise specified). Typically
developing controls were tightly sex- and age-matched, with Mf = 22–8,
age 5.03 ± 0.32 years, and no clinical evidence of ASD-related DSM-IV
diagnoses or intellectual disability. (DOCX 21 kb)

Additional file 2: Supplementary methods and references. (DOCX 15 kb)

Additional file 3: Figure S1. Accurate mass and MS/MS fragmentation
data for (a) kynurenine, (b) melatonin, and (c) tryptophan. (TIF 191 kb)

Additional file 4: Detailed and summary statistics for metabolites
displayed in Figs. 4 and 5. (DOCX 17 kb)

Additional file 5: Summary statistics. (XLSX 10 kb)

Additional file 6: Figure S2. Q2 and R2 data pertaining to the PCA.
*p < 0.05 refers to the best values of the currently selected measures (Q2),
(TIF 233 kb)

Additional file 7: Figure S3. ROC curve for the top 25 most
discriminating metabolites between ASD cases and controls, displayed in
Fig. 2. (TIF 131 kb)

Abbreviations
S-HBA: S-hydroxybenzoic acid; S-HT: S-hydroxytryptamine; S-HTTP: S-
hydroxytryptophan; AANAT: N-acetylserotonin by arylalkylamine N-
acetyltransferase; ADHD: attention deficit hyperactivity disorder;
ADP: adenosine diphosphate; ASD: autism spectrum disorder; ASMT: N-
acetylserotonin O-methyltransferase; ATP: adenosine triphosphate;
CNS: central nervous system; CSF: cerebrospinal fluid; ESI: electrospray
ionization; GC: gas chromatography; HILIC: hydrophilic interaction
chromatography; KEGG: Kyoto Encyclopedia of Genes and Genomes;
LC: liquid chromatography; MePAs: metabolic pathway analysis;
MIA: maternal immune activation; MS: mass spectroscopy; NAD: nicotinic
acid; NMDA: N-methyl-D-aspartate; NMR: nuclear magnetic resonance; OPLS-
DA: orthogonal partial least squares discriminant analysis; TOF: time of flight;
VIP: variable influence on the projection

Acknowledgements
We gratefully acknowledge the patients, controls, and family members who
participated in this study and the clinicians who contributed to patient
recruitment within the framework of the 2011 collaborative p-cresol project.

Funding
This work was supported by the Italian Ministry for University, Scientific
Research and Technology (PRIN n.2006058195), the Italian Ministry of Health
[CCM2012], the Fondazione Gaetano e Mafalda Luce (Milan, Italy), the Autism
Research Institute (San Diego, CA), and the Innovative Medicines Initiative
Joint Undertaking (EU-AIMS, n. 115300). LZ and FG are supported by mobility
studentship funds and post-doctoral research grant by the Interuniversity
Consortium for Biotechnologies (CIB).

Availability of data and materials
Not applicable.

Authors’ contributions
FG and LZ conducted the metabolomics analyses, analyzed and interpreted
the biochemical data, and drafted the manuscript. SG collected the urine
samples, interpreted the data, and drafted the manuscript. AMP designed
the study, was responsible for clinical assessments, interpreted the data, and wrote the manuscript. All authors read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The Institutional Review Board of University Campus Bio-Medico (Rome, Italy) approved the study protocol (n. 50/15 PAR). All parents gave written informed consent for their children, using the approved consent form.

Author details
1Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
2Unit of Child and Adolescent Neuropsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy.
3Unit of Child and Adolescent Neuropsychiatry, Interdepartmental Program “Autism 0-90”, Gaeta Martino University Hospital, University of Messina, Messina, Italy.
4Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.

Received: 25 December 2015 Accepted: 11 November 2016
Published online: 24 November 2016

References

67. Martineau J, Barthelemy C, Garreau B, Lelord G. Vitamin B6, magnesium, and we will help you at every step: Our selector tool helps you to find the most relevant journal. We accept pre-submission inquiries. • We provide round the clock customer support • Convenient online submission • Maximum visibility for your research. Submit your manuscript at www.biomedcentral.com/submit
Low-dose suramin in autism spectrum disorder: a small, phase I/II, randomized clinical trial

Robert K. Naviaux1,2,3,4, Brooke Curtis5, Kefeng Li1,2, Jane C. Naviaux1,6, A. Taylor Bright1,2, Gail E. Reiner1,6, Marissa Westerfield7, Suzanne Goh8, William A. Alaynick1,2, Lin Wang1,2, Edmund V. Capparelli13, Cynthia Adams9, Ji Sun9, Sonia Jain10, Feng He10, Deyna A. Arellano9, Lisa E. Mash7,11, Leanne Chukoskie7,12, Alan Lincoln5 & Jeanne Townsend6,7

1The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, 92103-8467, California
2Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, 92103-8467, California
3Department of Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, 92103-8467, California
4Department of Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, 92103-8467, California
5Alliant International University, 10455 Pomerado Road, San Diego, California, 92131
6Department of Neurosciences, University of California, San Diego School of Medicine, 9500 Gilman Drive., La Jolla, CA, 92093-0657
7The Research in Autism and Development Laboratory (RAD Lab), University of California, 9500 Gilman Drive, La Jolla, CA, 92093-0657
8Pediatric Neurology Therapeutics, 7090 Miratech Dr, San Diego, CA, 92121
9Clinical and Translational Research Institute (CTRI), University of California, San Diego, La Jolla, CA, 92037
10Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, 92093
11Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182
12Institute for Neural Computation, University of California, 9500 Gilman Drive, La Jolla, 92093-0523
13Department of Pediatrics, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0657

Correspondence
Robert K. Naviaux, The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467. Tel: 619-543-2904; Fax: 619-543-7868; E-mail: Naviaux@ucsd.edu

Funding Information
All funding for this study was philanthropic. This work was supported in part by gifts from the William Wright Family Foundation, the UCSD Christini Fund, the Autism Research Institute (ARI), the Lennox Foundation, the Gupta Family and Satya Fund, the Agrawal Family, Linda Clark, the N of One Autism Research Foundation, the Rodakis Family, the It Takes Guts Foundation, the UCSD Mitochondrial Disease Research Fund, Dr. Elizabeth Mumper Cooper, and the Daniel and Kelly White Family. Funding for the mass spectrometers was provided by a gift from the Jane Botsford Johnson Foundation. The funders of the study had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.

Abstract

Objective: No drug is yet approved to treat the core symptoms of autism spectrum disorder (ASD). Low-dose suramin was effective in the maternal immune activation and Fragile X mouse models of ASD. The Suramin Autism Treatment-1 (SAT-1) trial was a double-blind, placebo-controlled, translational pilot study to examine the safety and activity of low-dose suramin in children with ASD. Methods: Ten male subjects with ASD, ages 5–14 years, were matched by age, IQ, and autism severity into five pairs, then randomized to receive a single, intravenous infusion of suramin (20 mg/kg) or saline. The primary outcomes were ADOS-2 comparison scores and Expressive One-Word Picture Vocabulary Test (EOWPVT). Secondary outcomes were the aberrant behavior checklist, autism treatment evaluation checklist, repetitive behavior questionnaire, and clinical global impression questionnaire. Results: Blood levels of suramin were 12 ± 1.5 μmol/L (mean ± SD) at 2 days and 1.5 ± 0.5 μmol/L after 6 weeks. The terminal half-life was 14.7 ± 0.9 days. A self-limited, asymptomatic rash was seen, but there were no serious adverse events. ADOS-2 comparison scores improved by −1.6 ± 0.55 points (n = 5; 95% CI = −2.3 to −0.9; Cohen’s d = 2.8; P = 0.0028) in the suramin group and did not change in the placebo group. EOWPVT scores did not change. Secondary outcomes also showed improvements in language, social interaction, and decreased restricted or repetitive behaviors. Interpretation: The safety and activity of low-dose suramin showed promise as a novel approach to treatment of ASD in this small study.
Introduction

Autism affects 1–2% of children in the United States. Dozens of single genes and chromosomal copy number variants (CNVs) increase the relative risk of autism spectrum disorder (ASD) nearly 5–50 times over the current background risk. Yet no single gene or CNV causes ASD in 100% of children who carry the mutation, and no single DNA mutation accounts for more than 1–2% of all ASD. Specific environmental factors have also been shown to increase the risk of ASD. However, no single child has all of the known genetic risk factors for ASD, or is exposed to all the same environmental risks. Although the noncore symptoms of ASD are highly heterogeneous from child to child, making each child unique, the same core features used for diagnosis – abnormalities in social communication, restricted interests, repetitive behaviors, adherence to routine, and/or atypical sensory behaviors – are by definition expressed in every child. One approach to addressing the challenge of many etiologies of ASD is to define a common pathophysiology that can contribute to the core diagnostic symptoms, regardless of the initiating genetic and environmental triggers. We hypothesized that there is a conserved cellular response to metabolic perturbation or danger that is shared by all children with ASD. This is called the cell danger hypothesis. Aspects of the cell danger response (CDR) are also referred to as the integrated stress response. Preclinical studies showed that the cell danger response in mice produced a treatable metabolic syndrome that was maintained by purinergic signaling. Antipurinergic therapy with suramin corrected both the behavioral and metabolic features of these genetic and environmental mouse models of ASD.

The formulation of the cell danger hypothesis was based on the recognition that similar metabolic pathways were coordinately regulated as an adaptive response to cellular threat regardless of whether the perturbation was caused by a virus, a bacterium, genetic forms of mitochondrial disease, or neurodevelopmental disorders with complex gene–environment pathogenic mechanisms like autism. These metabolic pathways traced to mitochondria. Mitochondria are responsible for initiating and coordinating innate immunity and produce stereotyped changes in oxidative metabolism under stress that lead to the regulated release of purine and pyrimidine nucleotides like ATP and UTP through cell membrane channels. Inside the cell, ATP is an energy carrier. Outside the cell, extracellular ATP (eATP) is a multifunctional signaling molecule, a potent immune modulator, and a damage-associated molecular pattern (DAMP) that can activate microglia, and trigger IL-1β production and inflammasome assembly. Extracellular purines like ATP, ADP, and adenosine, and pyrimidines like UTP are ligands for 19 different purinergic (P2X, P2Y, and P1) receptors. The intracellular concentration of ATP (iATP) in mammalian cells is typically 1–5 mmol/L, but drops when ATP is released through membrane channels under stress. Typical concentrations of extracellular adenine nucleotides in the unstirred water layer at the cell surface where receptors and ligands meet are about 1–10 μmol/L, near the effective concentration for most purinergic receptors, but can increase when ATP is released during cell stress. Concentrations of eATP in the blood are another 500 times lower (10–20 nmol/L). Purinergic effectors like ATP are also coreleased with canonical neurotransmitters like glutamate, dopamine, and serotonin during depolarization at every synapse in which they have been studied and play key roles in activity-dependent synaptic remodeling. These and other features led us to test the hypothesis that the CDR was maintained by purinergic signaling.

Suramin has many actions. One of its best-studied actions is as an inhibitor of purinergic signaling. It is the oldest member of a growing class of antipurinergic drugs (APDs) in development. Suramin was first synthesized in 1916, making it one of the oldest manmade drugs still in medical use. It is used to treat African sleeping sickness (trypanosomiasis), and remains on the World Health Organization list of essential medications. Concerns about the toxicity of high-dose suramin arose when the cumulative antitrypanosomal dose was increased 5 times or more over several months to treat AIDS or kill cancer cells during chemotherapy. When blood levels were maintained over 150 μmol/L for 3–6 months at a time to treat cancer, a number of dose-limiting side effects were described. These included adrenal insufficiency, anemia, and peripheral neuropathy. In contrast, mouse studies suggested that high-dose suramin was not necessary to treat autism-like symptoms. These studies showed that low-dose suramin that produced blood levels
of about 5–10 μM was effective in treating ASD-like symptoms and did not produce toxicity even when used for at least 4 months.12,14

Here, we report the findings of the Suramin Autism Treatment-1 (SAT-1) trial, the first direct test of suramin, the cell danger hypothesis, and the relevance of abnormal purinergic signaling in children with ASD. These data help form the foundation for future studies that will test the safety and efficacy of suramin, provide fresh directions for the development of new antipurinergic drugs, and add support to the hypothesis that a potentially treatable metabolic syndrome may contribute to the pathogenesis of autism.

Materials and Methods

Study design and participants

The SAT-1 trial was an investigator-initiated, phase I/II, double-blind, placebo-controlled, randomized clinical trial to examine the safety and activity of single-dose suramin or placebo in 10 children with autism spectrum disorders (ASD). All children met DSM-5 diagnostic criteria for autism spectrum disorder, and received confirmatory testing by Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2) examination. Inclusion criteria were male subjects, ages 4–17 years, living in the San Diego, California region, with a confirmed diagnosis of ASD. Exclusion criteria included children who weighed less than the 5th percentile for age, took prescription medications, or had laboratory evidence of liver, kidney, heart, or adrenal abnormalities. Children living more than a 90-min drive from the testing sites in La Jolla, CA were excluded to eliminate the possibility of aberrant behaviors resulting from extended car travel. Children with known syndromic forms of ASD caused by DNA mutation or chromosomal copy number variation (CNV) were excluded in this first study. Families were asked not to change their children’s therapy (e.g., supplements, speech, and behavioral therapies) or diet throughout the study period. The study was conducted between 27 May 2015 (date of the first child to be enrolled) and 3 March 2016 (date of the last child to complete the study).

Regulatory approvals, registration, CONSORT, and informed consent

The research plan, clinical trial protocol, informed consents, advertising, and amendments were approved by the University of California, San Diego (UCSD) Institutional Review Board (IRB Project #150134) before implementation. The study was authorized by the U.S. Food and Drug Administration (IND#118212), and conformed to the World Medical Association Declaration of Helsinki-Ethical Principles for Medical Research Involving Human Subjects,35 and the International Council for Harmonization (ICH) E6 Good Clinical Practice (GCP) guidelines. The trial was registered with clinicaltrials.gov (https://clinicaltrials.gov/ct2/show/NCT02508259). Reporting of the SAT-1 trial conformed to CONSORT 2010 guidelines.34 Signed informed consent, with additional consent for video and still image photography, were obtained from the parents of all participants before enrollment and randomization. Storyboards and social stories were created to review with parents, help children visualize and prepare for the study, and create the opportunity to ask questions (Figure S1, Data S2).

Randomization and masking

Twenty male subjects with ASD were screened. Sixteen met entry criteria. Ten participants could be matched by age, nonverbal IQ, and ADOS scores into five pairs. The randomization sequence was generated electronically by the biostatistical team. Subjects within each pair were allocated to receive suramin or saline according to the prospectively determined randomization sequence. The randomization sequence was concealed from the clinical team and implemented by the UCSD investigational pharmacy, which prepared drug and placebo for infusion. The design was double blind. The mask was not broken until all subjects had completed the study and all clinical data had been collected.

Diagnostic and outcome procedures

The diagnosis of each of the enrolled participants was confirmed by ADOS-235 comparison scores of ≥7. Nonverbal IQ was tested by Leiter-3 examination.36 The primary behavioral outcomes were ADOS scores and language assessed by standardized vocabulary testing. Expressive vocabulary was assessed by Expressive One-Word Picture Vocabulary Test (EOWPVT).37 Primary outcomes were measured at baseline, and 2 days and 6 weeks after infusion. Secondary outcomes were the Aberrant Behavior Checklist (ABC),38 Autism Treatment Evaluation Checklist (ATEC),39,40 Clinical Global Impression of Improvement (CGI)41 (Data S1), and Repetitive Behavior Questionnaire (RBQ).42 Secondary outcomes were measured at baseline, and 7 days and 6 weeks after infusion.

Protocol deviations

The original protocol was designed to collect electroencephalography (EEG), heart rate variability (HRV), balance, gait, fine motor, and sensory motor data as secondary outcomes. However, the wide range in ages and abilities, small subject numbers, and task compliance difficulties made collection of these data incomplete and
insufficiently powered to draw any conclusions. In addition, we found that major language advances were in the form of new speech fluency and new interest in speech and social communication, and not in new vocabulary. Peabody Picture Vocabulary Testing (PPVT) did not capture this new interest in communication. These data were incomplete and insufficiently powered for analysis.

Drug and placebo administration

Suramin was provided as the hexasodium salt (MW 1429.2 g/mol) in 1 g lyophilized vials by Bayer Pharma AG (Leverkusen, Germany), under Dr. Naviaux’s IND #118212. Lot #BXNOGW1, expiration date of 3 September 2018, was used in these studies. A 1 g vial was reconstituted in 10 mL of sterile water for infusion to prepare a 10% (100 mg/mL) solution. All infusions were conducted at the University of California, San Diego School of Medicine Clinical and Translational Research Institute (CTRI) in La Jolla, CA. Height and weight were recorded, vital signs and capillary oxygen saturation (pulse oximetry) measured, physical and neurological examinations were conducted, and urine and blood for safety monitoring, pharmacology, and metabolomics were collected before the infusion. Each child then received a 50 mg test dose (0.5 mL of a freshly reconstituted 10% solution) of suramin in 5 mL of saline, or 5 mL of saline only given by slow intravenous (IV) push over 3 min, followed by a 10-mL flush of saline. One hour after the test dose, vital signs were repeated and a single infusion of either suramin (20 mg/kg, minus the 50 mg test dose, in 50 mL, up to a maximum of 1 g) or saline (50 mL IV) was given over 30 min, followed by a 10-mL flush of saline. One hour after completion of the infusion, vital signs and the physical and neurological examinations were repeated, blood was collected for safety monitoring and pharmacology, and the family discharged to home. A typical infusion visit to the Clinical Translational Research Institute (CTRI) lasted about 4 h from start to finish.

Safety and adverse event monitoring

Blood and urine samples were collected for safety and toxicity monitoring at 5 times throughout the study: at baseline (32 ± 6 days before the infusion; mean ± SEM),
Pharmacokinetics

Plasma samples were collected for suramin pharmacokinetics (PK) before the infusion, at 1 h, 2 days, and 45 days postinfusion. Suramin concentrations were measured by high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS) as described previously.13 See Supplemental Methods for details. The small number of PK samples per subject prevented a standard, noncompartmental analysis in individual subjects. The suramin drug concentrations were analyzed using a population PK approach with post hoc empiric Bayesian estimate of PK parameters in individual subjects. The PK data were fit to a two-compartment model using the computer program NONMEM (ICON, Dublin, Ireland).43 PK parameters were scaled allometrically with volume terms scaled to linear body weight (kg1.0) and clearance terms scaled to weight (kg0.75). Scaled adult suramin parameters of compartmental volumes of distribution and clearance were used as initial parameter estimates and between subject variability only estimated for clearance (CL) and the peripheral volume of distribution (Vd).

Pharmacometabolomics

Targeted, broad-spectrum, plasma metabolomic analysis, covering 63 biochemical pathways, was performed by LC-MS/MS as described previously44 with minor modifications. In all, 431 of 610 targeted metabolites were measureable in plasma. See Supplemental Methods for details.

Table 1. Group characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Suramin group Mean ± SD (range)</th>
<th>Placebo group Mean ± SD (range)</th>
<th>P value2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (male subjects)</td>
<td>5</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Age (years)</td>
<td>8.9 ± 3.3 (5.7–13.6)</td>
<td>9.2 ± 3.8 (6.2–14.7)</td>
<td>0.88</td>
</tr>
<tr>
<td>Leiter IQ</td>
<td>82 ± 7.8 (75–92)</td>
<td>79 ± 8.8 (66–87)</td>
<td>0.69</td>
</tr>
<tr>
<td>ADOS Score</td>
<td>8.6 ± 0.9 (8–10)</td>
<td>9.4 ± 1.3 (7–10)</td>
<td>0.30</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>32 ± 14 (23–55)</td>
<td>40 ± 23 (24–80)</td>
<td>0.53</td>
</tr>
<tr>
<td>Weight percentile</td>
<td>64 ± 16 (42–84)</td>
<td>78 ± 30 (25–98)</td>
<td>0.40</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>136 ± 23 (118–174)</td>
<td>137 ± 28 (113–180)</td>
<td>0.92</td>
</tr>
<tr>
<td>BSA1 (m²)</td>
<td>1.09 ± 0.32 (0.87–1.63)</td>
<td>1.21 ± 0.46 (0.87–1.99)</td>
<td>0.64</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>16.8 ± 1.1 (15.5–18.1)</td>
<td>19.9 ± 3.1 (16.2–24.7)</td>
<td>0.07</td>
</tr>
<tr>
<td>Head circumference (cm)</td>
<td>54.3 ± 2.8 (51.5–57.5)</td>
<td>54.5 ± 2.3 (51.5–57)</td>
<td>0.90</td>
</tr>
<tr>
<td>HC percentile</td>
<td>75 ± 30 (35–99)</td>
<td>75 ± 27 (42–97)</td>
<td>0.97</td>
</tr>
<tr>
<td>Age at ASD diagnosis (yrs)</td>
<td>3.2 ± 0.5 (2.5–3.75)</td>
<td>2.7 ± 0.3 (2.5–3.0)</td>
<td>0.10</td>
</tr>
<tr>
<td>Maternal age at birth (yrs)</td>
<td>37 ± 3.2 (35–41)</td>
<td>43 ± 12 (33–64)</td>
<td>0.62</td>
</tr>
<tr>
<td>Maternal age at birth (yrs)</td>
<td>35 ± 2.8 (32–38)</td>
<td>41 ± 6 (33–47)</td>
<td>0.053</td>
</tr>
<tr>
<td>Sibling with ASD</td>
<td>0</td>
<td>1</td>
<td>0.99</td>
</tr>
<tr>
<td>History of GI issues – current</td>
<td>0</td>
<td>1</td>
<td>0.99</td>
</tr>
<tr>
<td>Maintains a gluten-free diet</td>
<td>0</td>
<td>1</td>
<td>0.99</td>
</tr>
<tr>
<td>IVF conception</td>
<td>1</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>C-section delivery</td>
<td>1</td>
<td>1</td>
<td>0.99</td>
</tr>
<tr>
<td>History of premature birth</td>
<td>0</td>
<td>1</td>
<td>0.99</td>
</tr>
<tr>
<td>History of epilepsy4 – current</td>
<td>0</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>History of developmental regression(s)</td>
<td>3</td>
<td>2</td>
<td>0.99</td>
</tr>
<tr>
<td>History of asthma – current</td>
<td>0</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>ASD symptom improvement with fever</td>
<td>2</td>
<td>1</td>
<td>0.99</td>
</tr>
</tbody>
</table>

BSA, body surface area; HC, head circumference; GI, gastrointestinal; IVF, in vitro fertilization; ASD, autism spectrum disorder.
1Mosteller method.
2Student’s t-test for continuous data; Fisher’s exact test for categorical data.
3Patients taking prescription drugs were excluded from the study. This included anticonvulsant medications.

Sample size calculation and statistical analysis

This was a pilot study designed to obtain activity data and effect size estimates upon which future sample size calculations could be based. No data on suramin in autism were available for sample size calculations prior to this study. Each child was used as his own control to examine before and after treatment effects in a paired t-test design for the analysis of the ADOS, EOWPVT, ABC, ATEC, RBQ, and blood and urine safety data. Paired, nonparametric analysis was done by Wilcoxon signed-rank sum test. Categorical data, such as the presence or absence of adverse events or historical symptoms, was analyzed by Fisher’s exact test. Two-way ANOVA (treatment × time), with Sidak post hoc correction, was used to analyze the 6-week summaries captured by the ADOS, CGI, and blood and urine safety analysis. Cohen’s d – calculated as the mean difference of the paired, within-subject scores before and after treatment, divided by the standard deviation of the differences – was used as an estimate of effect size. Metabolomic data were log-transformed, scaled by control standard deviations, and analyzed by multivariate partial least squares discriminant analysis (PLSDA), with pairwise comparisons and post hoc correction for multiple hypothesis testing using Fisher’s least significant difference method in MetaboAnalyst, or the false discovery rate (FDR) method of Benjamini and Hochberg. Metabolites with variable importance in projection (VIP) scores determined by PLSDA that were greater than 1.5 were considered significant. Methods were implemented in Stata (Stata/SE12.1, StataCorp, College Station, TX), Prism (Prism 6, GraphPad Software, La Jolla, CA), or R. Significant metabolites were grouped into pathways and their VIP scores summed to determine the rank-ordered significance of each biochemical pathway.

Results

Participant disposition and demographics

Figure 1 illustrates the CONSORT flow diagram for patient recruitment, allocation, and analysis in the SAT-1 study. The two treatment groups were well matched (Table 1). The mean age was 9.1 years (range = 5–14). The mean nonverbal Leiter IQ was 80 (range = 66–92). The mean ADOS-2 comparison score was 9.0 (range = 7–10).

Safety monitoring and adverse events

Extensive monitoring revealed no serious toxicities (CTCAE grades 3–5). Neurologic examinations showed there was no peripheral neuropathy (Table 2). Analysis of free cortisol, hemoglobin, white blood cell count (WBC), platelets, liver transaminases, creatinine, and urine protein showed no differences in children who received suramin and placebo (Fig. 2). Five children who received suramin

| Table 2. Summary of adverse or unanticipated events. |
|---|---|---|---|---|---|
| No. | Events | Suramin (N = 5) | CTCAE1 grade | Placebo (N = 5) | CTCAE1 grade | P value2 |
| 1 | Asymptomatic rash | 5 | 1 | 0 | – | 0.0079 |
| 2 | Uncomplicated URI3 | 2 | 1 | 2 | 1 | 0.99 |
| 3 | Headache | 1 | 1 | 0 | – | 0.99 |
| 4 | Emesis × 1 | 14 | 1 | 15 | 1 | 0.99 |
| 5 | Hyperactivity | 26 | 1 | 1 | 1 | 0.99 |
| 6 | Hypoglycemia7 | 1 | 2 | 1 | 2 | 0.99 |
| 7 | Leukocytosis | 0 | – | 18 | 1 | 0.99 |
| 8 | Enuresis | 19 | 1 | 0 | – | 0.99 |
| 9 | Peripheral neuropathy | 0 | – | 0 | – | 0.99 |
| Total: | 13 | – | 6 | – | 0.12 |
| Nonrash AEs: | 8 | – | 6 | – | 0.77 |

1CTCAE, common terminology criteria for adverse events v4.03. Mild to moderate = Grades 1–2; Serious = Grades 3–5.

2Fisher’s exact test.

3URI, upper respiratory tract infection, common cold. Infusions occurred October–February.

4In 7-year-old after pizza and slushee consumption after playing youth league basketball.

5In a 6-year-old after a car ride.

6In a 5- and 14-year-old intermixed with periods of calm focus in first week (the 14-year-old) or first 3 weeks (the 5-year-old).

7Six weeks after the infusion, after several days of a URI and fasting before lunch. Hypoglycemia was asymptomatic and corrected after a normal lunch.

8Leukocytosis (12.2k WBC) occurred on the day of the saline infusion and preceded a URI.

9In a 7-year-old briefly for a few days while sick with a cold. None of the events required medical intervention. No serious adverse events (SAEs) occurred in this study.
developed a self-limited, evanescent, asymptomatic, fine macular, patchy, morbilliform rash over 1–20% of their body (Fig. 2HI). This peaked 1 day after the infusion and disappeared spontaneously in 2–4 days. The mean number of AEs per participant was 1.9 (1.2 in the placebo group and 2.6 in the suramin group; 1.6 in the suramin group for a nonrash AE; RR = 1.3; 95% CI = 0.5–3.4; P = 0.77; Table 2). No serious adverse events (SAEs) occurred in this study. An independent data and safety monitoring board (DSMB) reviewed this information, as well as the clinical safety and toxicity data and IRB communications from the study, and found no safety concerns.

Pharmacokinetics

Pharmacokinetic analysis showed that at 1 h after intravenous infusion of 20 mg/kg (558 ± 41 mg/m²; mean ± SD; Table S1), the suramin concentration was 104 ± 11.6 μmol/L (Fig. 3A). The distribution phase half-life was 7.4 ± 0.55 h. The suramin levels rapidly fell below 100 μmol/L and into the target range before day 2 in all subjects, with an average plasma level of suramin of 12.0 ± 1.5 μmol/L on day 2 (Fig. 3B, Table S1). Target concentrations of 1.5–15 μmol/L were maintained between 2 days and 6 weeks following the dose (Fig. 3). The steady-state volume of distribution was 0.83 ± 0.014 L/kg (22.7 ± 2.6 L/m²). The clearance was 1.95 ± 0.21 mL/h/kg (0.056 ± 0.011 L/h/m²). The terminal elimination phase half-life (t₁/₂) was 14.7 ± 1.4 days (Fig. 3B,D). A two-compartment PK model showed excellent fit between measured and predicted plasma levels (r² = 0.998; Fig. 3C). These data are the first in the published literature on the pharmacokinetics of suramin in a pediatric population.

![Figure 2](image-url)
Figure 2. Safety monitoring. (A) Free cortisol, (B) proteinuria, (C) creatinine, (D) hemoglobin, (E) white blood cells (WBC), (F) platelets, (G) aspartate aminotransferase (AST), (H) rash – antecubital fossa, (I) chest. Data were analyzed by two-way ANOVA to test for treatment, time, and treatment × time interaction effects. P and F values reflect the treatment effect. Only the rash was significantly different between suramin and placebo groups.
Pharmacometabolomics

Targeted plasma metabolomics was performed immediately before infusion, at 2 days, and 6 weeks after the infusion. The rank order of the top 35 of 48 significant metabolites 6 weeks after suramin treatment is illustrated in Figure 4. The rank order after 2 days is illustrated in Figure S2. Consistent with our previously published work using mouse models, the metabolic effects of suramin resulted in a decrease of the cell danger response and restored more normal metabolism. Purine metabolism was the single most changed pathway (Table 3, Table S2). Suramin increased healthy purines such as AICAR, which is an activator of the master metabolic regulator AMPK. 1-Methyl-adenosine (1-MA) was also increased. 1-MA is derived from 1-methyl-adenosine, a recently recognized marker of new protein synthesis and cell growth. Suramin decreased other purines in the plasma such as cAMP and dGDP (Fig. 4, Tables S3 and S4). Improvements in 1-carbon, folate, methionine, and cysteine metabolism were also found (Table 3, and Figure S3). Figure 5 illustrates the similarities found in the pharmacometabolomic response to suramin in MIA and Fragile X mouse models and in children with ASD in this study. Twenty-one of the 28 (75%) pathways changed in ASD were also changed by suramin treatment in the mouse models of ASD (Fig. 5).

Outcomes

The primary outcome measures were ADOS-2 and Expressive One-Word Picture Vocabulary (EOWPVT) scores (Table 4). Parents reported that after suramin treatment, the rate of language, social, behavioral, and developmental improvements continued to increase for 3 weeks, then gradually decreased toward baseline over the next 3 weeks. The blood levels of suramin at 3 weeks were estimated to be 4.2 ± 0.5 μmol/L using our PK model. ADOS-2 comparison scores at 6 weeks improved by an average of 1.6 ± 0.55 points (mean ± SD; n = 5; 95% CI = −2.3 to −0.9; Cohen’s d = 2.9; P = 0.0028) in the suramin treatment group and did not change in the saline group. We calculated P values by both parametric and nonparametric methods (Table 4). The mean ADOS comparison score in the suramin-treated group was 4.2 ± 0.5 at baseline and 7.0 ± 0.3 at 6 weeks. Two-way ANOVA of ADOS scores of suramin and placebo groups measured at baseline and at 6 weeks were also significant (treatment × time interaction).
interaction $F(1, 8) = 12.0; P = 0.0085$; Figure S4A). ADOS scores were not changed in the saline-treated group (Table 4). EOVPVT scores did not change (Table 4). Several secondary outcome measures also showed improvements. These included improvements in ABC, ATEC, and CGI scores (Table 4). The Repetitive Behavior Questionnaire (RBQ) scores did not capture a change.

Discussion

The aim of the SAT-1 trial was to test the safety, pharmacokinetics, and pharmacodynamics of low-dose suramin in children with ASD. A self-limited rash was seen, but no serious adverse events occurred. Pharmacometabolomic analysis showed that the pathways changed by suramin treatment in ASD were previously known mediators of the cell danger response (CDR) and that purine metabolism was changed most. Seventy-five percent of the pathways changed by suramin in children with ASD were also changed by suramin in mouse models.

Safety

Suramin has been used safely for nearly a century to treat both children and adults with African sleeping sickness. Although side effects occurred occasionally, these could be minimized by attention to patient nutritional status, proper dose, administration procedures, and measured blood levels of suramin. The low dose of suramin used in this study produced blood levels of 1.5–15 µmol/L for 6 weeks. Previous studies have never examined the side-effect profile of suramin in this low-dose range. The side-effect profile from medium-dose suramin (50–100 µmol/L) is known from African sleeping sickness studies. However, the side-effect profile of low-dose suramin (5–15 µmol/L) used for antipurinergic therapy (APT) in autism is unknown. Low-dose suramin was found to be safe in five children with ASD, ages 5–14 years, in this study.
<table>
<thead>
<tr>
<th>No.</th>
<th>Pathway name</th>
<th>Measured metabolites in the pathway (W)</th>
<th>Expected pathway proportion (P = N/429)</th>
<th>Expected hits in sample of 48 (P × 48)</th>
<th>Observed hits in the top 48 metabolites</th>
<th>Fold enrichment (obs/exp)</th>
<th>Impact (sum VIP score)</th>
<th>Fraction of impact (VIP score) explained (% of 94.6)</th>
<th>Increased</th>
<th>Decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purine metabolism</td>
<td>26</td>
<td>0.061</td>
<td>2.9</td>
<td>5</td>
<td>1.7</td>
<td>10.2</td>
<td>11%</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SAM, SAH, methionine, cysteine, glutathione</td>
<td>15</td>
<td>0.035</td>
<td>1.7</td>
<td>5</td>
<td>3.0</td>
<td>9.5</td>
<td>10%</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Microbiome metabolism</td>
<td>18</td>
<td>0.042</td>
<td>2.0</td>
<td>4</td>
<td>2.0</td>
<td>8.4</td>
<td>9%</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Branch chain amino acid metabolism</td>
<td>12</td>
<td>0.028</td>
<td>1.3</td>
<td>4</td>
<td>3.0</td>
<td>7.4</td>
<td>8%</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Bile acid metabolism</td>
<td>6</td>
<td>0.014</td>
<td>0.7</td>
<td>3</td>
<td>4.5</td>
<td>5.7</td>
<td>6%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Fatty acid oxidation and synthesis</td>
<td>37</td>
<td>0.086</td>
<td>4.1</td>
<td>3</td>
<td>0.7</td>
<td>5.0</td>
<td>5%</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Amino acid metabolism (alanine)</td>
<td>4</td>
<td>0.009</td>
<td>0.4</td>
<td>2</td>
<td>4.5</td>
<td>4.3</td>
<td>5%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Krebs cycle</td>
<td>9</td>
<td>0.021</td>
<td>1.0</td>
<td>2</td>
<td>2.0</td>
<td>4.3</td>
<td>5%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Pyrimidine metabolism</td>
<td>9</td>
<td>0.021</td>
<td>1.0</td>
<td>2</td>
<td>2.0</td>
<td>4.2</td>
<td>4%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Sphingomyelin metabolism</td>
<td>36</td>
<td>0.084</td>
<td>4.0</td>
<td>2</td>
<td>0.5</td>
<td>4.1</td>
<td>4%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1-Carbon, folate, formate, glycine, serine</td>
<td>5</td>
<td>0.012</td>
<td>0.6</td>
<td>2</td>
<td>3.6</td>
<td>4.0</td>
<td>4%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>GABA, glutamate, arginine, ornithine, proline</td>
<td>6</td>
<td>0.014</td>
<td>0.7</td>
<td>2</td>
<td>3.0</td>
<td>3.9</td>
<td>4%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Tyrosine and phenylalanine metabolism</td>
<td>3</td>
<td>0.007</td>
<td>0.3</td>
<td>2</td>
<td>6.0</td>
<td>3.7</td>
<td>4%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Cholesterol, cortisol, nongonadal steroid</td>
<td>16</td>
<td>0.037</td>
<td>1.8</td>
<td>2</td>
<td>1.1</td>
<td>3.5</td>
<td>4%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Gamma-glutamyl and other dipeptides</td>
<td>2</td>
<td>0.005</td>
<td>0.2</td>
<td>1</td>
<td>4.5</td>
<td>2.4</td>
<td>2%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Histidine, histamine, carnosine metabolism</td>
<td>4</td>
<td>0.009</td>
<td>0.4</td>
<td>1</td>
<td>2.2</td>
<td>2.3</td>
<td>2%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Nitric oxide, superoxide, peroxide metabolism</td>
<td>2</td>
<td>0.005</td>
<td>0.2</td>
<td>1</td>
<td>4.5</td>
<td>2.2</td>
<td>2%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Tryptophan, kynurenic, serotonin, melatonin</td>
<td>6</td>
<td>0.014</td>
<td>0.7</td>
<td>1</td>
<td>1.5</td>
<td>2.1</td>
<td>2%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Glycolysis and gluconeogenesis metabolism</td>
<td>7</td>
<td>0.016</td>
<td>0.8</td>
<td>1</td>
<td>1.3</td>
<td>2.1</td>
<td>2%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Vitamin C (ascorbate) metabolism</td>
<td>2</td>
<td>0.005</td>
<td>0.2</td>
<td>1</td>
<td>4.5</td>
<td>2.0</td>
<td>2%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Amino-sugar, hexose metabolism</td>
<td>5</td>
<td>0.012</td>
<td>0.6</td>
<td>1</td>
<td>1.8</td>
<td>1.9</td>
<td>2%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Phospholipid metabolism</td>
<td>73</td>
<td>0.170</td>
<td>8.2</td>
<td>1</td>
<td>0.1</td>
<td>1.6</td>
<td>2%</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Subtotal: 42 6
Total: 48
Study limitations

Limitations of the SAT-1 study included its small size and the suboptimal timing of the outcome measurements. Parents reported that the rate of new behavioral and developmental improvements continued to increase for the first 3 weeks after the single dose of suramin, as blood levels of suramin fell from 12 to 4 μmol/L, then gradually decreased toward baseline over the next 3 weeks, as blood levels fell further from 4 to 1.5 μmol/L. This pattern of response suggested a threshold effect at about 4 μmol/L that could not have been predicted on the basis of what was known about suramin before this study, and outcomes were not measured at 3 weeks.

Another potential limitation of the trial was the self-limited rash. The rash was asymptomatic and resolved spontaneously in a few days. In theory, the rash may have biased parents in a way that caused them to either improve their scores on the ABC, ATEC, RBQ, and CGI, or to report more side-effects or adverse behaviors at both the 7-day and 6-week reports. Examiner-based ADOS scoring was more resistant to this potential bias, since the rash was not visible on exposed skin to the outcome examiners at any time. However, a design limitation of the study was that one of the two ADOS examiners was also assigned to conduct scripted phone interviews with the families, and might have been susceptible to unconscious bias even though the study remained blinded and the rash preceded any significant examiner-based outcomes by one and a half months.

Another potential weakness of this study was that ADOS scoring was not designed to be, and is not typically used as, a repeated measure of outcomes in autism treatment studies. This has occurred historically for two counterbalancing reasons: (1) because it is generally believed that ADOS scores are diagnostic and are not sensitive to change once the diagnosis is established, and (2) because training effects have the potential to produce improvements that are artifactual. With regard to the first point, under the right circumstances ADOS scores can be sensitive to change and have recently been used successfully as an outcome measure in a large autism treatment study. With regard to the second point, if training effects occurred, they were asymmetric, since improvements were only observed in the suramin treatment group and were not observed in the placebo group (Table 4).

Psychopharmacology

Suramin has objective central nervous system (CNS) effects in animal models and children with autism despite being unable to penetrate the blood–brain barrier. Suramin also has a number of peripheral effects on innate immunity, metabolism, pain, gut, autonomic, inflammatory, and other pathways regulated by purinergic signaling that may contribute to the beneficial effects observed. Previous studies have shown that suramin is taken up into the CNS at the level of the brainstem, although not appreciably into the cerebrum or cerebellum. There are eight circumventricular organs (CVOs) in the brain that contain neurons that lack a blood–brain barrier. The area postrema in the brainstem is one of these CVOs that monitors the chemistry of the blood and transduces this information to higher centers in the brain for neuroendocrine, affective, cognitive, and behavioral integration. Rather than being a disadvantage, the peripheral actions and indirect CNS effects of suramin may have certain advantages by minimizing the risk of CNS toxicity. While new antipurinergic drugs (APDs) may soon be developed that can pass the blood–brain barrier, this appears not to be required to produce the behavioral effects of suramin in ASD.

Conclusions

The SAT-1 trial examined the effects of low-dose suramin or placebo in 10 children with autism spectrum disorder. No safety concerns were found. A two-compartment pharmacokinetic model permitted accurate forecasting of plasma drug levels from 1 h to 6 weeks after the infusion. Metabolomic studies confirmed the importance of the cell danger response (CDR) and purinergic signaling. A single intravenous dose of suramin was associated with improved scores for language, social interaction, and...
Table 4. Outcomes.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Factor or behavior</th>
<th>Time after treatment (days)</th>
<th>Difference from baseline (mean ± SD)</th>
<th>95% CI</th>
<th>d<sup>1</sup></th>
<th>N</th>
<th>p<sup>2</sup></th>
<th>p<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADOS-2</td>
<td>Comparison</td>
<td>45</td>
<td>−1.6 ± 0.55</td>
<td>−2.3 to −0.9</td>
<td>2.9</td>
<td>5</td>
<td>0.0028</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>Raw</td>
<td>45</td>
<td>−4.6 ± 1.9</td>
<td>−7.0 to −2.2</td>
<td>2.4</td>
<td>5</td>
<td>0.0062</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>Social</td>
<td>45</td>
<td>−3.2 ± 1.9</td>
<td>−5.6 to −0.8</td>
<td>1.7</td>
<td>5</td>
<td>0.020</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>Restr/Rep</td>
<td>45</td>
<td>−1.4 ± 0.89</td>
<td>−2.5 to −0.29</td>
<td>1.6</td>
<td>5</td>
<td>0.025</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>EOWPVT Vocabulary</td>
<td>45</td>
<td>−4.2 ± 8.3</td>
<td>−14.5 to +6.1</td>
<td>−0.51</td>
<td>5</td>
<td>0.32</td>
<td>0.50</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>Stereotypy</td>
<td>7</td>
<td>−3.6 ± 2.1</td>
<td>−6.2 to −1.0</td>
<td>1.7</td>
<td>5</td>
<td>0.018</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>Stereotypy</td>
<td>45</td>
<td>−4.0 ± 2.3</td>
<td>−6.9 to −1.1</td>
<td>1.7</td>
<td>5</td>
<td>0.019</td>
<td>0.042</td>
</tr>
<tr>
<td>ATEC</td>
<td>Total</td>
<td>7</td>
<td>−10 ± 7.7</td>
<td>−20 to −0.46</td>
<td>1.3</td>
<td>5</td>
<td>0.044</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>Language</td>
<td>7</td>
<td>−2.2 ± 1.5</td>
<td>−4.0 to −0.36</td>
<td>1.4</td>
<td>5</td>
<td>0.021</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>Sociability</td>
<td>7</td>
<td>−3.6 ± 2.6</td>
<td>−6.8 to −0.36</td>
<td>1.4</td>
<td>5</td>
<td>0.025</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>Language</td>
<td>45</td>
<td>−2.0 ± 1.4</td>
<td>−2.7 to −0.49</td>
<td>1.4</td>
<td>5</td>
<td>0.034</td>
<td>0.059</td>
</tr>
<tr>
<td>CGI</td>
<td>Overall ASD</td>
<td>45</td>
<td>−1.8 ± 1.04</td>
<td>−3.4 to −0.15</td>
<td>1.7</td>
<td>5</td>
<td>0.05</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>E. Language</td>
<td>45</td>
<td>−2.0 ± 1.04</td>
<td>−3.6 to −0.35</td>
<td>1.9</td>
<td>5</td>
<td>0.01</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Social Inter.</td>
<td>45</td>
<td>−2.0 ± 1.04</td>
<td>−3.6 to −0.35</td>
<td>1.9</td>
<td>5</td>
<td>0.01</td>
<td>n/a</td>
</tr>
<tr>
<td>RBQ</td>
<td>Total</td>
<td>45</td>
<td>−3.2 ± 5.8</td>
<td>−10.4 to +4.0</td>
<td>0.55</td>
<td>5</td>
<td>0.28</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suramin</td>
<td>Difference from baseline (mean ± SD)</td>
<td>95% CI</td>
<td>d<sup>1</sup></td>
<td>N</td>
<td>p<sup>2</sup></td>
<td>p<sup>3</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.4 ± 0.55</td>
<td>−1.1 to +0.28</td>
<td>0.7</td>
<td>5</td>
<td>0.18</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.4 ± 1.8</td>
<td>−2.7 to +1.9</td>
<td>0.22</td>
<td>5</td>
<td>0.65</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 ± 1.7</td>
<td>−2.2 to +2.2</td>
<td>0.0</td>
<td>5</td>
<td>0.99</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.4 ± 2.1</td>
<td>−3.0 to +2.2</td>
<td>0.19</td>
<td>5</td>
<td>0.69</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+2.0 ± 4.6</td>
<td>−3.8 to +7.8</td>
<td>0.43</td>
<td>5</td>
<td>0.39</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>Difference from baseline (mean ± SD)</td>
<td>95% CI</td>
<td>d<sup>1</sup></td>
<td>N</td>
<td>p<sup>2</sup></td>
<td>p<sup>3</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.4 ± 0.55</td>
<td>−1.1 to +0.28</td>
<td>0.7</td>
<td>5</td>
<td>0.18</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.4 ± 1.8</td>
<td>−2.7 to +1.9</td>
<td>0.22</td>
<td>5</td>
<td>0.65</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 ± 1.7</td>
<td>−2.2 to +2.2</td>
<td>0.0</td>
<td>5</td>
<td>0.99</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.4 ± 2.1</td>
<td>−3.0 to +2.2</td>
<td>0.19</td>
<td>5</td>
<td>0.69</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+2.0 ± 4.6</td>
<td>−3.8 to +7.8</td>
<td>0.43</td>
<td>5</td>
<td>0.39</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADOS-2, autism diagnostic observation schedule, 2nd edition; EOWPVT, Expressive One-Word Picture Vocabulary Test; ABC, aberrant behavior checklist; ATEC, autism treatment evaluation checklist; CGI, clinical global impression survey; RBQ, repetitive behavior questionnaire; Restr/Rep, restricted or repetitive behaviors; Overall ASD Sx, overall ASD symptoms; E. Language, expressive language; Social Inter., social interaction. Analysis: ADOS, EOWPVT, ABC, ATEC, and RBQ scores were analyzed by paired analysis before and after treatment using each subject as their own control. CGI was analyzed by two-way ANOVA (symptom x time before and after treatment) with post hoc correction. Nonparametric P values were not calculated (n/a). Interpretation: ADOS, ABC, ATEC, CGI, and RBQ are severity scores; negative differences from baseline reflect decreased severity, that is, improvement. EOWPVT is a performance score; negative differences reflect a decrease.

1 Positive Cohen’s d reflects improvement, and a negative d reflects a decrease by convention. Cohen’s d is likely an overestimate of the actual treatment effect based on the large mean differences and small standard deviations found before and after treatment in this small study.

2 P value from parametric paired t-test analysis.

3 P value from nonparametric paired Wilcoxon signed-rank sum analysis.
decreased restricted or repetitive behaviors measured by ADOS, ABC, ATEC, and CGI scores. None of these improvements occurred in the five children who received placebo. The generalizability of these findings is unknown. Future studies will be needed to confirm these findings in larger numbers of children with ASD, and to evaluate whether a few doses of suramin given over a few months are safe and might facilitate continued improvements.

Special note from the authors

Suramin is not approved for the treatment of autism. Like many intravenous drugs, when administered improperly by untrained personnel, at the wrong dose and schedule, without careful measurement of drug levels and monitoring for toxicity, suramin can cause harm. Careful clinical trials will be needed over several years at several sites to learn how to use low-dose suramin safely in autism, and to identify drug-drug interactions and rare side effects that cannot currently be predicted. We strongly caution against the unauthorized use of suramin.

Acknowledgments

RKN thanks the patients and families who gave their time and effort in helping to make this study possible. We thank Dr. Richard Haas, Dr. Doris Trauner, and Dr. Stephen Edelson for their advice in planning the study. We thank Dr. Judy S. Reilly for critical reading of the manuscript and suggestions for improvements. RKN also thanks Jonathan Monk for assistance with the Cytoscape visualizations, Marlene Samano and Nicole Suarez, and Maeve Taaffe, Lee Vowinkel, Dennis Perpetua, Jessica Nasca, Peezee Buquing, and Patricia Moraes for their expert clinical assistance at the UCSD Clinical Translational Research Institute and the Open Medicine Foundation. Dr. Reiner helped design the study, provided clinical coordination, and edited the manuscript. Ms. Arellano provided clinical coordination and edited the manuscript. Dr. Chukoskie helped design the study, analyzed the data, critically reviewed and edited the manuscript. Dr. Goh helped design the study, provided independent biostatistical analysis, and edited the manuscript. Dr. Sun and Ms. Adams provided investigational pharmacy support, implemented the clinical mask, and edited the manuscript. Ms. Arellano provided clinical coordination and edited the manuscript. Dr. Chukoskie helped design the study, analyzed the data, critically reviewed and edited the manuscript. Dr. Lincoln and Dr. Townsend helped design the study, directed the neurodevelopmental studies, wrote and edited the manuscript.

Conflict of Interest

RKN has filed a provisional patent application related to antipurinergic therapy of autism and related disorders and is a scientific advisory board member for the Autism Research Institute and the Open Medicine Foundation. EVC is a DSMB member for Cempra Pharmaceuticals and The Medicines Company, and a consultant for Alexion. SG is co-owner of MitoMedical. The other authors declare no conflicts of interest.

References

Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Table S1. Single-dose suramin pharmacokinetics.

Table S2. Suramin pharmacometabolomics. Pathways changed at 2 days.

Table S3. Suramin pharmacometabolomics. Metabolites changed at 2 days.

Table S4. Suramin pharmacometabolomics. Metabolites changed at 6 weeks.

Figure S1. Storyboard illustration of each step of the infusion day visit.

Figure S2. Suramin pharmacometabolomics. Rank order of metabolites and pathways that were changed by suramin at 2 days after treatment.

Figure S3. Suramin pharmacometabolomics pathway visualization. (A) After 2 days. (B) After 6 weeks. Metabolites indicated in red were increased, and those in green were decreased compared to controls (see z-score scale in upper right).

Figure S4. Outcomes. (A) 6 Weeks ADOS comparison scores by two-way ANOVA. (B) 6 Weeks ADOS comparison score improvement after suramin. (C) 6 Weeks ADOS social affect score improvement after suramin. (D) 6 Weeks ADOS restricted and repetitive behavior score improvement after suramin. (E) 2 days ADOS comparison scores were not changed. (F) no change in 6 weeks ADOS scores in subjects receiving saline placebo. (G) no change in 6 weeks ADOS social affect scores in subjects receiving placebo. (H) no change in 6 weeks ADOS restricted and repetitive behavior scores in subjects receiving placebo. (I) no change in 6 weeks Expressive One-Word Picture Vocabulary scores. (J) 7-day improvement in ABC stereotypy scores after suramin. (K) 6-week Improvement in ABC stereotypy scores after suramin. (L) 7-day Improvement in ATEC stereotypy scores after suramin. (M) no change in 6 weeks EOWPVT scores after saline. (N) no change in 7 days ABC stereotypy scores after saline. (O) no change in 6 weeks ABC stereotypy scores after saline. (P) no change in 7 days ATEC total scores after saline. (Q) improved ATEC speech, language, and communication scores 7 days after suramin. (R) improved ATEC sociability scores 7 days after suramin. (S) improved ATEC speech, language, and communication scores 6 weeks after suramin. (T) improved ADOS comparison scores after dropping a subject who missed the 6-week visit (N = 4). (U) no change in 7 days ATEC speech, language, and communication after saline. (V) no change in 7 days ATEC sociability after saline. (W) no change in 6 weeks ATEC speech, language, and communication scores 6 weeks after saline (X) no change in EOWPVT scores after dropping subject who missed the 6-week visit (N = 4). (Y) no change in 2 days ADOS scores after suramin. (Z) no change in 6 weeks RBQ total scores after suramin. (aa) improved core symptoms of ASD and other behaviors by CGI at 6 weeks after suramin. P values: *0.05, **0.01, ***0.001. (bb) Top 3, most changed symptoms named by parents in the 6-week CGI. (cc) no change in 2 days ADOS scores after saline. (dd) no change in 6 weeks RBQ total scores after saline.

Data S1. Clinical Global Impression (CGI) questionnaire.

Data S2. Social Stories to Accompany the Storyboard Panels Describing Each Step of the Infusion Day Visit.
Supporting Information

Contents

1. Supplemental Materials and Methods
2. Supplemental Results
3. Supplemental References
4. Supplemental Figures Legends
5. Supplemental Tables
6. Supplemental Figures
7. Supplemental Data

 S1. Clinical Global Impression (CGI) questionnaire

 S2. Social stories to accompany the storyboard
Supplemental Materials and Methods

Diagnostic and Outcome Procedures

Examiner-based outcomes (ADOS and EOWPVT) were assessed at 2-days and 6-weeks after the infusion. Parent-based outcomes (ABC, ATEC, CGI, and RBQ) were assessed at 7-days and 6-weeks after the infusion. To minimize the effects of natural behavioral variability, the parents were instructed to mark a behavior as changed only if it was persistently changed for at least 1 week. Storyboards and accompanying social stories were created to illustrate each step of the study for parents to review with each child before the study (Figure S1, and Supplemental Data S2).

Safety and Adverse Event Monitoring

Blood and urine for safety and toxicity monitoring were collected immediately before the infusion, 1 hour after the infusion, 2 days after, and 45 days after the infusion. Vital signs and anthropomorphic measurements were also collected. Safety surveillance included 18 vital sign and anthropometric features, 19 complete blood count (CBC) parameters, 20 blood chemistry measures, 3 thyroid and cortisol measures, and 5 lipid measures at the 5 time points. 24 urinalysis features were measured at 4 times: baseline, pre-infusion, 2-days post-infusion, and 45-days post-infusion.

Verification of Data Completeness and Transcription Accuracy

Standardized questionnaire responses and the ADOS-2 and EOWPVT scores (5,490 cells of data) were compiled in spreadsheets from the original hard copy forms and from the electronic medical records. A total of 87 cells (1.6%) of the 5,490 outcome scores were either left blank,
asked about a symptom that did not apply, or were missing. One participant missed the 6-week ADOS and EOWPVT evaluations because of scheduling difficulties. His 2-day results were used as an estimate of his 6-week scores. ADOS scores remained significant when this subject was dropped from the analysis (Figure S4T). EOWPVT results were also unchanged (Figure S4X). The 4,210 cells of laboratory and vital sign data were also collected and reviewed. When specific cells of data were found to be missing, they were manually confirmed by inspection of the original questionnaire, laboratory results, and clinical data sheets. A random generator program was written that randomly selected 5% of the data. These randomly selected cells of data that were then manually checked for transcription accuracy by reviewing the hard copy responses and Red Cap electronic medical records.

Standardized Testing and Questionnaires

Two observational examinations were performed by a clinician at 3 time points: baseline (56 ± 8 days; mean ± SEM; before the infusion), 2-days post-infusion, and 6-weeks post-infusion. The two examiner-based metrics were the Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2)\(^1,2\), with video and audio files recorded on 3 cameras, and the Expressive One Word Picture Vocabulary Testing (EOWPVT)\(^3\). Both of these observational metrics were administered by a trained and certified examiner using approved test materials. Three standardized questionnaires were completed by parents at 3 time points: baseline, 7-days post-infusion, and 6-weeks post-infusion. The three standardized questionnaires completed by parents were the 58-question Aberrant Behavior Checklist (ABC)\(^4\), the 75-item Autism Treatment Evaluation Checklist (ATEC)\(^5,6\), and the 33-item repetitive behavior questionnaire (RBQ)\(^7\). Parents were asked to complete these three instruments with reference to how their child behaved in the
previous 7 days. At the end of the six weeks, we included a 24-question Clinical Global Impression (CGI)8 questionnaire (Supplementary Data S1). In addition, parents were asked to list the 3 top behaviors or symptoms that they observed to be most changed over the previous 6-weeks. To minimize the misinterpretation of natural day-to-day variations in symptoms, parents were asked to mark a symptom as changed in the 6-week CGI only if it had lasted for at least 1 week.

Storyboards and Social Stories

We commissioned a graphic artist to prepare a storyboard of each step of the procedure (Figure S1). The panel contents and color schemes were reviewed, and revisions recommended, by a 16-year old artist with Asperger syndrome to optimize the informational value and minimize any sensory issues. Next, our developmental neuropsychologist created social stories to accompany each panel of the storyboard. The social stories are shown in Supplementary Data S2.

Phone Interviews, Parent Reports, and Clinical Observations

Scripted phone interviews were conducted daily for the first week, then weekly until the completion of the study for each child 6-weeks after the infusion. Parents also kept study journals throughout the six weeks to document their observations. These scripted and narrative observations were used to permit discovery of any changes in ASD, behavior, or constitutional symptoms such as sleep and appetite, or any adverse or unanticipated events. The parent reports also provided insight regarding the timing and pattern of the responses after the infusion that were not predicted prior to the study, and were not adequately captured by the scheduled observations.
Daily Calls. Parents were contacted by phone on days 1-7 after the infusion to ensure close follow-up and to provide the opportunity for parents to report any positive or negative observations. These calls followed the script below:

“Hi. This is _________ (state your name) at UCSD. This is our daily follow-up call to see how you and your son are doing as part of the autism study.”

1. How have things been going since the infusion? Any changes since yesterday?
2. Have there been any improvements? What things are most improved?
3. Have there been any setbacks, or negative things you’ve noticed? What are these?
4. How is he eating?
5. How is he sleeping?
6. Are there any problems, suggestions, or concerns that I can pass on to the doctors or a nurse?

Weekly Calls. Parents were called weekly on days 14, 21, 28, and 35 after the infusion to ensure close follow-up and to provide the opportunity for parents to report any positive or negative observations. These calls followed the script below:

“Hi. This is _________ (state your name) at UCSD. This is our weekly follow-up call to see how you and your son are doing as part of the autism study.”

1. How have things been going since the infusion? Any changes since last week?
2. Have there been any improvements? What things are most improved?
3. Have there been any setbacks, or negative things you’ve noticed? What are these?
4. How is he eating?
5. How is he sleeping?
6. Are there any problems, suggestions, or concerns that I can pass on to the doctors or a nurse?

Clinical Global Impression (CGI)

We developed a 24-question Clinical Global Impression (CGI) instrument designed to assess the core symptoms of autism spectrum disorders and some of the most common comorbid features (Supplementary Material A1). The CGI instrument scoring system was the traditional 7-point,
CGI-Improvement scale8. In this scale, the historian gives a score of 0 if the symptom “was never a problem”, a 1 for “very much improved”, a 4 for “no change”, and a 7 for “very much worse”. In addition to the 24 structured questions, we asked the parents to write in the top 3 symptoms or behaviors that were most changed over the 6 weeks since the suramin infusion (Supplementary Material A1). This hybrid design of structured and open-ended responses permitted us to capture a large number of clinical outcomes associated with single-dose suramin treatment.

Metabolomics

Targeted, broad-spectrum, plasma metabolomic analysis of 610 metabolites from 63 biochemical pathways was performed by high performance liquid chromatography and tandem mass spectrometry (LC-MS/MS) as described9 with minor modifications. 431 metabolites were above the lower limit of quantitation (LLOQ) in this study. Venous blood was collected between the hours of 8 am and 5 pm, at least 3 hours after the last meal, into lithium-heparin vacutainer tubes (BD #367884). Plasma was separated by centrifugation at 900g x 10 minutes at room temperature within one hour of collection. The resulting fresh lithium-heparin plasma was transferred to labeled 1.2 ml or 2.0 ml externally threaded, cryotubes with a minimum headspace air gap for storage at -80°C for analysis. Samples were analyzed on an AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer equipped with a Turbo V electrospray ionization (ESI) source, Shimadzu LC-20A UHPLC system, and a PAL CTC autosampler. Typically, 90 µl of plasma was thawed on ice and transferred to a 1.7 ml Eppendorf tube. Five (5.0) µl of a cocktail containing 25-35 commercial stable isotope internal standards, and 5.0 µl of 57 stable isotope internal standards that were custom-synthesized in *E. coli NCM3722, Caenorhabditis elegans N2,*
and *Komagataella phaffii* (ATCC 76273; formerly known as *Pichia pastoris*) by metabolic labeling with \(^{13}\text{C}\)-glucose and \(^{13}\text{C}\)-bicarbonate, were added, mixed, and incubated for 10 min at 20°C to permit small molecules and vitamins in the internal standards to associate with plasma binding proteins. Macromolecules (protein, DNA, RNA, glycans, etc.) were precipitated by extraction with 4 volumes (400 µl) of cold (-20°C), acetonitrile:methanol (50:50) (LCMS grade, Cat# LC015-2.5 and GC230-4, Burdick & Jackson, Honeywell), vortexed vigorously, and incubated on crushed ice for 10 min, then removed by centrifugation at 16,000g x 10 min at 4°C. The supernatants containing the extracted metabolites and internal standards in the resulting 40:40:20 solvent mix of acetonitrile:methanol:water were transferred to labeled cryotubes and stored at -80°C for LC-MS/MS analysis.

LC-MS/MS analysis was performed by scheduled multiple reaction monitoring (sMRM) under Analyst v1.6.2 software control in both negative and positive mode with rapid polarity switching (50 ms). Nitrogen was used for curtain gas (set to 30), collision gas (set to high), ion source gas 1 and 2 (set to 35). The source temperature was 500°C. Spray voltage was set to -4500 V in negative mode and 5500 V in positive mode. The values for Q1 and Q3 mass-to-charge ratios (m/z), declustering potential (DP), entrance potential (EP), collision energy (CE), and collision cell exit potential (CXP) were determined and optimized for each MRM for each metabolite. Ten microliters of extract was injected by PAL CTC autosampler via a 10 µl stainless steel loop into a 250 mm x 2.0 mm, 4µm polymer based NH2 HPLC column (Asahipak NH2P-40 2E, Showa Denko America, Inc., NY) held at 25°C for chromatographic separation. The mobile phase was solvent A: 95% water with 20 mM (NH₄)₂CO₃ (Sigma, Fluka Cat# 74415-250G-F), 5% acetonitrile, and 38 mM NH₄OH (Sigma, Fluka Cat# 17837-100ML), final pH 9.75; solvent B:
100% acetonitrile. Separation was achieved using the following gradient: 0-3.5 min: 95%B, 3.6-8 min: 85% B, 8.1-13 min: 75% B, 13.5–35 min: 0% B, 36–46 min: 95% B, 46.1 min: end. The flow rate was 200 µl/min. Pump pressures ranged from 920-2600 psi over the course of the gradient. All the samples were kept at 4°C during analysis. The chromatographic peaks were identified using MultiQuant (v3.0, Sciex), confirmed by manual inspection, and the peak areas integrated.

Suramin Quantitation

Suramin concentrations were measured by LC-MS/MS as previously described with modifications10. Plasma suramin samples were collected at 1 hour, 2 days and 42 days post-infusion. Heparinized plasma, 90 µl was used. Ten (10) µl of 50 µM stock of trypan blue was added to achieve an internal standard concentration of 5 µM. This was incubated at room temperature for 10 min to permit metabolite interaction with binding proteins, then extracted with 4 volumes (400 µl) of pre-chilled methanol-acetonitrile (50:50) to produce a final concentration of 40:40:20 (methanol:acetonitrile:H₂O), and precipitated on ice for 10 minutes. The samples were deproteinated and macromolecules removed by precipitation on crushed ice for 10 min. The mixture was centrifuged at 16,000g for 10 min at 4°C and the supernatant was transferred to a new tube and kept at -80°C for further LC-MS/MS analysis.

Suramin was analyzed on an AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer equipped with a Turbo V electrospray ionization (ESI) source, Shimadzu LC-20A UHPLC system, and a PAL CTC autosampler. Ten microliters of extract were injected onto a Kinetix F5 column (100 × 2.1 mm, 2.6 µm; Phenomenex, CA) held at 30°C for chromatographic separation.
The mobile phase A was water with 20 mM ammonium acetate (NH₄OAC) (pH 7) and mobile phase B was methanol with 20 mM NH₄OAC (pH 7). Elution was performed using the following gradient: 0-1.5 min-0% B, 1.6-3 min-15% B, 3.1-7 min-60% B, 7.1-13 min-100% B, 14 min-0% B, 18 min-0% B, 18.1 minute-end. The flow rate was 400 µl/min. All the samples were kept at 4°C during analysis. Suramin and trypan blue were detected using MRM scanning mode with the dwell time of 180 ms. MRM transitions for the doubly-charged form of suramin were 647.0 m/z for the (Q1) precursor and 382.0 m/z for the (Q3) product. MRM transitions for trypan blue were 435.2 (Q1) and 185.0 (Q3). Absolute concentrations of suramin were determined using a standard curve prepared in plasma to account for matrix effects, and the peak area ratio of suramin to the internal standard trypan blue. The declustering potential (DP), collision energy (CE), entrance potential (EP) and collision exit potential (CXP) were -104, -9.5, -32 and -16.9, and -144.58, -7, -57.8 and -20.94, for suramin and trypan blue, respectively. The ESI source parameters were set as follows: source temperature 500 °C; curtain gas 30; ion source gas 1, 35; ion source gas 2 35; spray voltage -4500 V. Analyst v1.6 was used for data acquisition and analysis.

Supplemental Results

Safety Monitoring and Adverse Events

The rash caused by suramin in this study was not raised and did not itch. It was not urticarial. The children did not appear to notice it. Any residual rash was covered by clothing and not visible on exposed skin at the 2-day evaluation. Parents were instructed not to discuss it with the neuropsychology team to decrease the chance of examiner bias. Video camera records of the
ADOS testing confirmed the absence of any visible rash. The rash was a known risk of suramin treatment that was described in the informed consent documents.

Pharmacokinetics

Additional pharmacokinetic results are illustrated in Table S1. Although no behavioral outcomes were significant at 2 days after infusion, we found that 28 biochemical pathways were changed by suramin 2-days after the infusion (Table S2). Twenty-two of these (79%) remained changed at the 6-week time point (see Table 3). The rank order of metabolites most changed at day 2, and their associated metabolic pathway is illustrated in Figure S2. The full list of 61 metabolites on day 2 and 48 metabolites at 6-weeks that were significantly changed by suramin appears in Tables S3-S4. A wallchart-style biochemical pathway map was created in Cytoscape to illustrate the organization of metabolites that were increased and decreased by suramin treatment (Figure S3).

Pharmacometabolomics

The small number of subjects in this trial precluded conventional treatment group analysis because of high false discovery rates associated with measuring 431 metabolites in groups with just 5 subjects. However, by using each child as their own control in a paired analysis of pre-infusion and post-infusion results, the pharmacometabolomic effects of suramin could be characterized (see Table 3 and Figures 4-5, Table S2 and Figure S2).

Treatment Outcomes
ADOS comparison scores were improved in the suramin treatment group at 6-weeks (Figure S4AB) but were unchanged in the saline group (Supplemental Figure S4AF). ADOS scores at 2-days after treatment were not changed (Figure S4E). EOWPVT scores were not changed (Figure S4I). Secondary outcomes included Aberrant Behavior Checklist (ABC), Autism Treatment Evaluation Checklist (ATEC), the Clinical Global Impression (CGI), and the Repetitive Behavior Questionnaire (RBQ). Suramin treatment was associated with improvements in the ABC, ATEC, and CGI, but not in the RBQ (Figure S4). Three of 24 symptoms covered in the CGI were significant (Figure S4aa). Parents were also asked to specify the three top, most-changed behaviors as an unstructured component of the CGI at 6-weeks after the infusion. Five symptoms were named that achieved statistically significant results. The most-changed behaviors were social communication and play, speech and language, calm and focus, stims or stereotypies, and coping skills (Figure S4bb).
Supplemental References

Supplemental Figure Legends

1. **Figure S1.** Storyboard illustration of each step of the infusion day visit.

2. **Figure S2.** Suramin pharmacometabolomics. Rank order of metabolites and pathways that were changed by suramin at 2-days after treatment.

3. **Figure S3.** Suramin pharmacometabolomics pathway visualization. (A) After 2 days. (B) After 6 weeks. Metabolites indicated in red are increased, and those in green are decreased compared to controls (see z-score scale in upper right).

4. **Figure S4.** Outcomes. (A) 6-week ADOS Comparison Scores by 2-Way ANOVA. (B) 6-Week ADOS Comparison Score Improvement after Suramin. (C) 6-Week ADOS Social Affect Score Improvement after Suramin. (D) 6-Week ADOS Restricted and Repetitive Behavior Score Improvement after Suramin. (E) 2-Day ADOS Comparison Scores were not changed. (F) No change in 6-Week ADOS Scores in subjects receiving saline placebo. (G) No change in 6-Week ADOS Social Affect Scores in subjects receiving placebo. (H) No change in 6-Week ADOS Restricted and Repetitive Behavior Scores in subjects receiving placebo. (I) No change in 6-week Expressive One Word Picture Vocabulary scores. (J) 7-Day improvement in ABC stereotypy scores after suramin. (K) 6-week Improvement in ABC stereotypy scores after suramin. (L) 7-Day Improvement in ATEC total scores after suramin. (M) No change in 6-week EOWPVT scores after saline. (N) No change in 7-day ABC stereotypy scores after saline. (O) No change in 6-week ABC stereotypy scores after saline. (P) No change in 7-day ATEC total scores after saline. (Q) Improved ATEC speech, language, and communication scores 7-days after suramin. (R) Improved ATEC sociability scores 7-days after suramin. (S) Improved ATEC speech, language, and communication scores 6-weeks after suramin. (T) Improved ADOS comparison scores after dropping a
subject who missed the 6-week visit (N = 4). (U) No change in 7-day ATEC speech, language, and communication after saline. (V) No change in 7-day ATEC sociability after saline. (W) No change in 6-week ATEC speech, language, and communication scores 6-weeks after saline (X) No change in EOWPVT scores after dropping subject who missed the 6-week visit (N = 4). (Y) No change in 2-day ADOS scores after suramin. (Z) No change in 6-week RBQ total scores after suramin. (aa) Improved core symptoms of ASD and other behaviors by CGI at 6-weeks after suramin. P values: * = 0.05; ** = 0.01; *** = 0.001. (bb) Top 3, most-changed symptoms named by parents in the 6-week CGI. (cc) No change in 2-day ADOS scores after saline. (dd) No change in 6-week RBQ total scores after saline.
Supplemental Tables

1. **Table S1.** Single-dose suramin pharmacokinetics.

2. **Table S2.** Suramin pharmacometabolomics. Pathways changed at 2-days.

3. **Table S3.** Suramin pharmacometabolomics. Metabolites changed at 2-days.

4. **Table S4.** Suramin pharmacometabolomics. Metabolites changed at 6-weeks.
Supplemental Data

1. **S1.** Clinical Global Impression (CGI) questionnaire.

2. **S2.** Social Stories to Accompany the Storyboard Panels Describing Each Step of the Infusion Day Visit.
Table S1. Single-dose suramin pharmacokinetics.

<table>
<thead>
<tr>
<th>Pair Block</th>
<th>ID</th>
<th>Age (yrs)</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
<th>BSA* (m²)</th>
<th>20 mg/kg Dose (mg)</th>
<th>Dose (mg/m²)</th>
<th>1-Hour Plasma Conc (µM)</th>
<th>2-Day Plasma Conc (µM)</th>
<th>45-Day Plasma Conc (µM)</th>
<th>Plasma Half-Life (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
<td>11</td>
<td>1.395</td>
<td>34.4</td>
<td>1.15</td>
<td>680</td>
<td>591</td>
<td>101.2</td>
<td>13.2</td>
<td>0.96</td>
<td>12.6</td>
</tr>
<tr>
<td>2</td>
<td>007</td>
<td>5</td>
<td>1.189</td>
<td>22.9</td>
<td>0.87</td>
<td>460</td>
<td>529</td>
<td>87.9</td>
<td>11.9</td>
<td>1.67</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>014</td>
<td>14</td>
<td>1.74</td>
<td>54.7</td>
<td>1.63</td>
<td>1000</td>
<td>613</td>
<td>110.9</td>
<td>10.6</td>
<td>1.04</td>
<td>14.9</td>
</tr>
<tr>
<td>4</td>
<td>012</td>
<td>6</td>
<td>1.18</td>
<td>23.1</td>
<td>0.87</td>
<td>460</td>
<td>529</td>
<td>118.6</td>
<td>13.8</td>
<td>2.28</td>
<td>16.5</td>
</tr>
<tr>
<td>5</td>
<td>005</td>
<td>7</td>
<td>1.271</td>
<td>25.1</td>
<td>0.95</td>
<td>500</td>
<td>526</td>
<td>101.8</td>
<td>10.6</td>
<td>1.76</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Mean: 558 104.1 12.0 1.54 14.7
sd: 41 11.6 1.5 0.5 1.4

*Mosteller method. BSA: body surface area.
Table S2. Suramin pharmacometabolomics. Pathways changed at 2-days.

<table>
<thead>
<tr>
<th>No.</th>
<th>Pathway Name</th>
<th>Measured Metabolites in the Pathway (N)</th>
<th>Expected Pathway Proportion (P = N/431)</th>
<th>Expected Hits in Sample of 61 (P * 61)</th>
<th>Observed Hits in the Top 61 Metabolites</th>
<th>Fold Enrichment (Obs/Exp)</th>
<th>Impact (Sum VIP Score) Explained (% of 119.7)</th>
<th>Fraction of Impact (VIP Score) Increased Decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purine Metabolism</td>
<td>26</td>
<td>0.060</td>
<td>3.7</td>
<td>9</td>
<td>2.4</td>
<td>17.6</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>Bile Salt Metabolism</td>
<td>6</td>
<td>0.014</td>
<td>0.8</td>
<td>4</td>
<td>4.7</td>
<td>11.9</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>Microbiome Metabolism</td>
<td>18</td>
<td>0.042</td>
<td>2.5</td>
<td>4</td>
<td>1.6</td>
<td>9.3</td>
<td>8%</td>
</tr>
<tr>
<td>4</td>
<td>Branch Chain Amino Acid Metabolism</td>
<td>12</td>
<td>0.028</td>
<td>1.7</td>
<td>4</td>
<td>2.4</td>
<td>7.3</td>
<td>6%</td>
</tr>
<tr>
<td>5</td>
<td>Eicosanoid and Resolvin Metabolism</td>
<td>13</td>
<td>0.030</td>
<td>1.8</td>
<td>4</td>
<td>2.2</td>
<td>7.1</td>
<td>6%</td>
</tr>
<tr>
<td>6</td>
<td>Phospholipid Metabolism</td>
<td>74</td>
<td>0.172</td>
<td>10.5</td>
<td>3</td>
<td>0.3</td>
<td>5.7</td>
<td>5%</td>
</tr>
<tr>
<td>7</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione</td>
<td>15</td>
<td>0.035</td>
<td>2.1</td>
<td>3</td>
<td>1.4</td>
<td>5.6</td>
<td>5%</td>
</tr>
<tr>
<td>8</td>
<td>GABA, Glutamate, Arginine, Ornithine</td>
<td>6</td>
<td>0.014</td>
<td>0.8</td>
<td>3</td>
<td>3.5</td>
<td>4.7</td>
<td>4%</td>
</tr>
<tr>
<td>9</td>
<td>Pyrimidine Metabolism</td>
<td>9</td>
<td>0.021</td>
<td>1.3</td>
<td>2</td>
<td>1.6</td>
<td>4.3</td>
<td>4%</td>
</tr>
<tr>
<td>10</td>
<td>Glycolysis and Gluconeogenesis Metabolism</td>
<td>7</td>
<td>0.016</td>
<td>1.0</td>
<td>2</td>
<td>2.0</td>
<td>4.3</td>
<td>4%</td>
</tr>
<tr>
<td>11</td>
<td>Gamma-Glutamyl and other Dipeptides</td>
<td>2</td>
<td>0.005</td>
<td>0.3</td>
<td>2</td>
<td>7.1</td>
<td>3.8</td>
<td>3%</td>
</tr>
<tr>
<td>12</td>
<td>Sphingomyelin Metabolism</td>
<td>36</td>
<td>0.084</td>
<td>5.1</td>
<td>2</td>
<td>0.4</td>
<td>3.6</td>
<td>3%</td>
</tr>
<tr>
<td>13</td>
<td>Bloamines and Neurotransmitter Metabolism</td>
<td>9</td>
<td>0.021</td>
<td>1.3</td>
<td>2</td>
<td>1.6</td>
<td>3.3</td>
<td>3%</td>
</tr>
<tr>
<td>14</td>
<td>Krebs Cycle</td>
<td>9</td>
<td>0.021</td>
<td>1.3</td>
<td>2</td>
<td>1.6</td>
<td>3.3</td>
<td>3%</td>
</tr>
<tr>
<td>15</td>
<td>Vitamin D (Calciferol) Metabolism</td>
<td>3</td>
<td>0.007</td>
<td>0.4</td>
<td>1</td>
<td>2.4</td>
<td>3.1</td>
<td>3%</td>
</tr>
<tr>
<td>16</td>
<td>Cardiolipin Metabolism</td>
<td>7</td>
<td>0.016</td>
<td>1.0</td>
<td>2</td>
<td>2.0</td>
<td>3.1</td>
<td>3%</td>
</tr>
<tr>
<td>17</td>
<td>Glycosphingolipid Metabolism</td>
<td>12</td>
<td>0.028</td>
<td>1.7</td>
<td>1</td>
<td>0.6</td>
<td>2.1</td>
<td>2%</td>
</tr>
<tr>
<td>18</td>
<td>Taurine, Hypotaurine Metabolism</td>
<td>2</td>
<td>0.005</td>
<td>0.3</td>
<td>1</td>
<td>3.5</td>
<td>2.0</td>
<td>2%</td>
</tr>
<tr>
<td>19</td>
<td>Nitric Oxide, Superoxide, Peroxide</td>
<td>2</td>
<td>0.005</td>
<td>0.3</td>
<td>1</td>
<td>3.5</td>
<td>1.9</td>
<td>2%</td>
</tr>
<tr>
<td>20</td>
<td>Histidine, Histamine, Carnosine Metabolism</td>
<td>4</td>
<td>0.009</td>
<td>0.6</td>
<td>1</td>
<td>1.8</td>
<td>1.8</td>
<td>2%</td>
</tr>
<tr>
<td>21</td>
<td>Tyrosine and Phenylalanine Metabolism</td>
<td>3</td>
<td>0.007</td>
<td>0.4</td>
<td>1</td>
<td>2.4</td>
<td>1.8</td>
<td>2%</td>
</tr>
<tr>
<td>22</td>
<td>Fatty Acid Oxidation and Synthesis</td>
<td>37</td>
<td>0.086</td>
<td>5.2</td>
<td>1</td>
<td>0.2</td>
<td>1.5</td>
<td>1%</td>
</tr>
<tr>
<td>23</td>
<td>Cholesterol, Cortisol, Non-Gonadal Steroid</td>
<td>16</td>
<td>0.037</td>
<td>2.3</td>
<td>1</td>
<td>0.4</td>
<td>1.8</td>
<td>2%</td>
</tr>
<tr>
<td>24</td>
<td>Amino Acid Metabolism</td>
<td>4</td>
<td>0.009</td>
<td>0.6</td>
<td>1</td>
<td>1.8</td>
<td>1.8</td>
<td>1%</td>
</tr>
<tr>
<td>25</td>
<td>Endocannabinoid Metabolism</td>
<td>4</td>
<td>0.009</td>
<td>0.6</td>
<td>1</td>
<td>1.8</td>
<td>1.7</td>
<td>1%</td>
</tr>
<tr>
<td>26</td>
<td>Amino-Sugar, Galactose, & Non-Glucose</td>
<td>5</td>
<td>0.012</td>
<td>0.7</td>
<td>1</td>
<td>1.4</td>
<td>1.6</td>
<td>1%</td>
</tr>
<tr>
<td>27</td>
<td>Tryptophan, Kynurenine, Serotonin</td>
<td>6</td>
<td>0.014</td>
<td>0.8</td>
<td>1</td>
<td>1.2</td>
<td>1.6</td>
<td>1%</td>
</tr>
<tr>
<td>28</td>
<td>Ceramide Metabolism</td>
<td>34</td>
<td>0.079</td>
<td>4.8</td>
<td>1</td>
<td>0.2</td>
<td>1.5</td>
<td>1%</td>
</tr>
</tbody>
</table>

Subtotals 38 23

Totals 61
Table S3. Suramin pharmacometabolomics. Metabolites changed at 2-days.
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Metabolite
Chenodeoxyglycocholic acid
1,25-Dihydroxyvitamin D3
Glycocholic acid
Taurodeoxycholic acid Pool
2-Keto-L-gluconate
Taurocholic acid
2,3-Diphosphoglyceric acid
Cytosine
p-Hydroxyphenylacetic acid
11(R)-HETE
Hypoxanthine
Deoxyguanosine diphosphate
Glycylproline
Allantoin
L-Isoleucine
GC(18:1/22:0)
Cysteamine
LysoPC(16:0)
Taurine
1-Methyladenine
SM(d18:1/20:1)
PA(16:0/16:1)
Cyclic adenosine monophosphate
Azelaic acid
Shikimate-3-phosphate
Indoxyl sulfate
1-Methylhistidine
Purine
L-Phenylalanine
Malonic acid
Methionine sulfoxide
L-Valine
24,25-Epoxycholesterol
Orotic acid
AICAR
Isovalerylglycine
Alanine
Xanthosine
Anandamide
Citramalic acid
Cysteine-S-sulfate
PG(16:0/16:0)
Dopamine
Glycerol 3-phosphate
5-HETE
Myoinositol
L-Glutamic acid
Gamma-Aminobutyric acid
L-Kynurenine
Citric acid
SM(d18:1/20:0)
Gamma-glutamyl-Alanine
Tiglylglycine
L-Proline
CL(18:2/18:2/18:2/18:2)
CL(18:2/18:2/18:2/18:1)
11,12-Epoxyeicosatrienoic acid
Ceramide(d18:1/18:2)
Guanosine
Prostaglandin J2
N-Acetylglutamic acid

Pathway Name
Bile Salt Metabolism
Vitamin D (Calciferol) Metabolism
Bile Salt Metabolism
Bile Salt Metabolism
Microbiome Metabolism
Bile Salt Metabolism
Glycolysis and Gluconeogenesis Metabolism
Pyrimidine Metabolism
Microbiome Metabolism
Eicosanoid and Resolvin Metabolism
Purine Metabolism
Purine Metabolism
Gamma-Glutamyl and other Dipeptides
Purine Metabolism
Branch Chain Amino Acid Metabolism
Glycosphingolipid Metabolism
SAM, SAH, Methionine, Cysteine, Glutathione Metabolism
Phospholipid Metabolism
Taurine, Hypotaurine Metabolism
Purine Metabolism
Sphingomyelin Metabolism
Phospholipid Metabolism
Purine Metabolism
Nitric Oxide, Superoxide, Peroxide Metabolism
Microbiome Metabolism
Microbiome Metabolism
Histidine, Histamine, Carnosine Metabolism
Purine Metabolism
Tyrosine and Phenylalanine Metabolism
Fatty Acid Oxidation and Synthesis
SAM, SAH, Methionine, Cysteine, Glutathione Metabolism
Branch Chain Amino Acid Metabolism
Cholesterol, Cortisol, Non-Gonadal Steroid Metabolism
Pyrimidine Metabolism
Purine Metabolism
Branch Chain Amino Acid Metabolism
Amino Acid Metabolism (not otherwise covered)
Purine Metabolism
Endocannabinoid Metabolism
Krebs Cycle
SAM, SAH, Methionine, Cysteine, Glutathione Metabolism
Phospholipid Metabolism
Bioamines and Neurotransmitter Metabolism
Glycolysis and Gluconeogenesis Metabolism
Eicosanoid and Resolvin Metabolism
Amino-Sugar, Galactose, & Non-Glucose Metabolism
Bioamines and Neurotransmitter Metabolism
GABA, Glutamate, Arginine, Ornithine, Proline Metabolism
Tryptophan, Kynurenine, Serotonin, Melatonin Metabolism
Krebs Cycle
Sphingomyelin Metabolism
Gamma-Glutamyl and other Dipeptides
Branch Chain Amino Acid Metabolism
GABA, Glutamate, Arginine, Ornithine, Proline Metabolism
Cardiolipin Metabolism
Cardiolipin Metabolism
Eicosanoid and Resolvin Metabolism
Ceramide Metabolism
Purine Metabolism
Eicosanoid and Resolvin Metabolism
GABA, Glutamate, Arginine, Ornithine, Proline Metabolism

Page 19 of 23

VIP Score
3.171
3.134
3.090
3.048
2.994
2.615
2.600
2.556
2.546
2.400
2.267
2.264
2.205
2.195
2.136
2.123
2.075
2.067
2.042
2.033
2.033
1.998
1.949
1.929
1.886
1.858
1.848
1.847
1.839
1.833
1.817
1.808
1.807
1.787
1.787
1.783
1.776
1.764
1.713
1.704
1.682
1.664
1.653
1.651
1.646
1.645
1.641
1.626
1.617
1.590
1.576
1.575
1.562
1.548
1.538
1.535
1.535
1.521
1.519
1.509
1.505

Z Score
1.610
-1.447
2.020
1.326
2.586
1.102
0.990
2.055
1.464
-0.875
-1.000
-1.276
1.212
0.926
0.815
1.057
1.398
-0.908
-0.942
1.337
-1.250
-0.813
-0.681
-2.024
1.033
0.702
0.899
1.137
0.957
-0.825
1.738
0.749
1.014
-0.612
1.310
0.852
1.066
-1.316
-0.709
1.229
-0.644
-0.667
-0.642
1.151
-0.671
0.785
-0.619
1.101
0.625
0.759
-0.770
0.896
0.657
0.603
0.506
0.474
-0.634
0.530
-0.766
-0.601
0.613

AUC Ratio
(Post/Pre)
2.787
0.273
2.344
2.614
1.264
2.183
1.198
1.689
1.192
0.748
0.745
0.889
1.773
1.663
1.094
1.399
1.107
0.777
0.786
1.631
0.745
0.793
0.855
0.914
1.047
1.280
1.145
1.203
1.164
0.904
1.331
1.165
1.362
0.670
1.309
1.951
1.193
0.821
0.684
1.121
0.869
0.549
0.877
1.187
0.866
1.286
0.797
1.068
1.099
1.142
0.712
1.294
1.141
1.155
1.181
1.102
0.828
1.337
0.702
0.649
1.120


Table S4. Suramin pharmacometabolomics. Metabolites changed at 6-weeks.

<table>
<thead>
<tr>
<th>No.</th>
<th>Metabolite</th>
<th>Pathway Name</th>
<th>VIP Score</th>
<th>Z Score</th>
<th>AUC Ratio (Post/Pre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-Keto-L-gluconate</td>
<td>Microbiome Metabolism</td>
<td>2.686</td>
<td>2.365</td>
<td>1.239</td>
</tr>
<tr>
<td>2</td>
<td>SM(d18:1/26:0 OH)</td>
<td>Sphingomyelin Metabolism</td>
<td>2.622</td>
<td>2.002</td>
<td>1.671</td>
</tr>
<tr>
<td>3</td>
<td>Glycine</td>
<td>1-Carbon, Folate, Formate, Glycine, Serine Metabolism</td>
<td>2.523</td>
<td>1.891</td>
<td>1.392</td>
</tr>
<tr>
<td>4</td>
<td>1-Methyladenine</td>
<td>Purine Metabolism</td>
<td>2.459</td>
<td>2.259</td>
<td>2.287</td>
</tr>
<tr>
<td>5</td>
<td>Alanine</td>
<td>Amino Acid Metabolism (not otherwise covered)</td>
<td>2.456</td>
<td>1.687</td>
<td>1.322</td>
</tr>
<tr>
<td>6</td>
<td>Cytosine</td>
<td>Pyrimidine Metabolism</td>
<td>2.442</td>
<td>1.891</td>
<td>1.392</td>
</tr>
<tr>
<td>7</td>
<td>Citric acid</td>
<td>Krebs Cycle</td>
<td>2.410</td>
<td>1.772</td>
<td>1.363</td>
</tr>
<tr>
<td>8</td>
<td>1-Pyruvate-S-carboxylic acid</td>
<td>GABA, Glutamate, Arginine, Ornithine, Proline Metabolism</td>
<td>2.358</td>
<td>1.922</td>
<td>1.299</td>
</tr>
<tr>
<td>9</td>
<td>Gamma-glutamyl-Alanine</td>
<td>Gamma-Glutamyl and other Dipeptides</td>
<td>2.353</td>
<td>1.725</td>
<td>1.392</td>
</tr>
<tr>
<td>10</td>
<td>Histamine</td>
<td>Histidine, Histamine, Carnosine Metabolism</td>
<td>2.279</td>
<td>1.312</td>
<td>1.219</td>
</tr>
<tr>
<td>11</td>
<td>p-Hydroxyphenylacetic acid</td>
<td>Microbiome Metabolism</td>
<td>2.203</td>
<td>2.226</td>
<td>1.306</td>
</tr>
<tr>
<td>12</td>
<td>Azelaic acid</td>
<td>Nitric Oxide, Superoxide, Peroxide Metabolism</td>
<td>2.151</td>
<td>2.558</td>
<td>1.120</td>
</tr>
<tr>
<td>13</td>
<td>Methionine sulfoxide</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>2.104</td>
<td>2.083</td>
<td>1.409</td>
</tr>
<tr>
<td>14</td>
<td>L-Kynurenine</td>
<td>Tryptophan, Kynurenine, Serotonin, Melatonin Metabolism</td>
<td>2.096</td>
<td>1.751</td>
<td>1.303</td>
</tr>
<tr>
<td>15</td>
<td>Glycolerol 3-phosphate</td>
<td>Glycolysis and Gluconeogenesis Metabolism</td>
<td>2.081</td>
<td>1.731</td>
<td>1.294</td>
</tr>
<tr>
<td>16</td>
<td>Cysteamine</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>2.060</td>
<td>2.007</td>
<td>1.157</td>
</tr>
<tr>
<td>17</td>
<td>Cholenoxyglycylocholic acid</td>
<td>Bile Salt Metabolism</td>
<td>2.052</td>
<td>1.650</td>
<td>2.858</td>
</tr>
<tr>
<td>18</td>
<td>Hydroxyproline</td>
<td>Vitamin C (Ascorbate) Metabolism</td>
<td>2.039</td>
<td>3.005</td>
<td>1.210</td>
</tr>
<tr>
<td>19</td>
<td>2-Hydroxyisovaleric acid</td>
<td>Branch Chain Amino Acid Metabolism</td>
<td>1.988</td>
<td>1.146</td>
<td>1.234</td>
</tr>
<tr>
<td>20</td>
<td>Purine</td>
<td>Purine Metabolism</td>
<td>1.980</td>
<td>1.650</td>
<td>1.307</td>
</tr>
<tr>
<td>21</td>
<td>Cyclic adenosine monophosphate</td>
<td>Purine Metabolism</td>
<td>1.962</td>
<td>-1.544</td>
<td>0.701</td>
</tr>
<tr>
<td>22</td>
<td>Glycocholic acid</td>
<td>Bile Salt Metabolism</td>
<td>1.956</td>
<td>1.945</td>
<td>2.270</td>
</tr>
<tr>
<td>23</td>
<td>4-Hydroxyphenyllactic acid</td>
<td>Microbiome Metabolism</td>
<td>1.945</td>
<td>1.172</td>
<td>1.294</td>
</tr>
<tr>
<td>24</td>
<td>Deoxyguanosine diphosphate</td>
<td>Purine Metabolism</td>
<td>1.915</td>
<td>-1.583</td>
<td>0.864</td>
</tr>
<tr>
<td>25</td>
<td>Hexose Disaccharide Pool</td>
<td>Amino-Sugar, Galactose, & Non-Glucose Metabolism</td>
<td>1.911</td>
<td>1.220</td>
<td>2.121</td>
</tr>
<tr>
<td>26</td>
<td>S-Adenosylhomocysteine</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>1.894</td>
<td>0.971</td>
<td>1.417</td>
</tr>
<tr>
<td>27</td>
<td>Isovalerylglycine</td>
<td>Branch Chain Amino Acid Metabolism</td>
<td>1.888</td>
<td>0.901</td>
<td>2.027</td>
</tr>
<tr>
<td>28</td>
<td>Allantoin</td>
<td>Purine Metabolism</td>
<td>1.882</td>
<td>1.068</td>
<td>1.798</td>
</tr>
<tr>
<td>29</td>
<td>Tiglylglycine</td>
<td>Branch Chain Amino Acid Metabolism</td>
<td>1.878</td>
<td>1.310</td>
<td>1.302</td>
</tr>
<tr>
<td>30</td>
<td>L-Phenylalanine</td>
<td>Tyrosine and Phenylalanine Metabolism</td>
<td>1.875</td>
<td>1.381</td>
<td>1.245</td>
</tr>
<tr>
<td>31</td>
<td>cis-aconitic acid</td>
<td>Krebs Cycle</td>
<td>1.852</td>
<td>0.928</td>
<td>1.278</td>
</tr>
<tr>
<td>32</td>
<td>Lathosterol</td>
<td>Cholesterol, Cortisol, Non-Gonadal Steroid Metabolism</td>
<td>1.844</td>
<td>1.079</td>
<td>1.284</td>
</tr>
<tr>
<td>33</td>
<td>L-Asparagine</td>
<td>Amino Acid Metabolism (not otherwise covered)</td>
<td>1.824</td>
<td>1.581</td>
<td>1.360</td>
</tr>
<tr>
<td>34</td>
<td>Cinnamoylglycine</td>
<td>Tyrosine and Phenylalanine Metabolism</td>
<td>1.790</td>
<td>2.218</td>
<td>1.190</td>
</tr>
<tr>
<td>35</td>
<td>Octanoylcarnitine</td>
<td>Fatty Acid Oxidation and Synthesis</td>
<td>1.780</td>
<td>-1.451</td>
<td>0.703</td>
</tr>
<tr>
<td>36</td>
<td>L-Cystine</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>1.774</td>
<td>1.060</td>
<td>1.190</td>
</tr>
<tr>
<td>37</td>
<td>Uridine</td>
<td>Pyrimidine Metabolism</td>
<td>1.764</td>
<td>0.928</td>
<td>1.244</td>
</tr>
<tr>
<td>38</td>
<td>Mevalonic acid</td>
<td>Cholesterol, Cortisol, Non-Gonadal Steroid Metabolism</td>
<td>1.673</td>
<td>1.036</td>
<td>1.386</td>
</tr>
<tr>
<td>39</td>
<td>Chenodeoxycholic acid</td>
<td>Bile Salt Metabolism</td>
<td>1.670</td>
<td>1.575</td>
<td>2.080</td>
</tr>
<tr>
<td>40</td>
<td>Guanidinoacetic acid</td>
<td>SAM, SAH, Methionine, Cysteine, Glutathione Metabolism</td>
<td>1.644</td>
<td>1.254</td>
<td>1.217</td>
</tr>
<tr>
<td>41</td>
<td>2-Hydroxyisocaproic acid</td>
<td>Branch Chain Amino Acid Metabolism</td>
<td>1.622</td>
<td>0.997</td>
<td>1.306</td>
</tr>
<tr>
<td>42</td>
<td>Decanoylcarnitine</td>
<td>Fatty Acid Oxidation and Synthesis</td>
<td>1.617</td>
<td>-1.157</td>
<td>0.644</td>
</tr>
<tr>
<td>43</td>
<td>3-Hydroxy-cis-5-tetradecenoylcarbinite</td>
<td>Fatty Acid Oxidation and Synthesis</td>
<td>1.612</td>
<td>-1.056</td>
<td>0.734</td>
</tr>
<tr>
<td>44</td>
<td>Hippuric acid</td>
<td>Microbiome Metabolism</td>
<td>1.559</td>
<td>0.881</td>
<td>1.602</td>
</tr>
<tr>
<td>45</td>
<td>PE (18:0/18:0)</td>
<td>Phospholipid Metabolism</td>
<td>1.555</td>
<td>-1.331</td>
<td>0.644</td>
</tr>
<tr>
<td>46</td>
<td>L-Proline</td>
<td>GABA, Glutamate, Arginine, Ornithine, Proline Metabolism</td>
<td>1.546</td>
<td>0.749</td>
<td>1.196</td>
</tr>
<tr>
<td>47</td>
<td>SM(d18:1/18:2)</td>
<td>Sphingomyelin Metabolism</td>
<td>1.508</td>
<td>0.750</td>
<td>1.424</td>
</tr>
<tr>
<td>48</td>
<td>L-Serine</td>
<td>1-Carbon, Folate, Formate, Glycine, Serine Metabolism</td>
<td>1.505</td>
<td>0.954</td>
<td>1.152</td>
</tr>
</tbody>
</table>
Clinical Global Impression
UCSD Suramin Autism Treatment Study

Child’s Name: __

Your Name: __ (please print)

Date: __

INSTRUCTIONS
Please answer the following by assessing the full 6-week period after the infusion, compared to your child’s behavior before the infusion. If a symptom changed over the 6 weeks, please write in the time after the infusion for maximum change in weeks (wks) or days (d). Please note "wks" for weeks and "days" or "d" for days. For example, if a symptom started to change after 1 week, but didn’t reach maximum for 2 weeks, you would write in: "2 wks". If a symptom didn’t change check box "4". If it was never a problem check box “0”.

24-Point Autism Symptom Assessment

<table>
<thead>
<tr>
<th>No.</th>
<th>Over the 6 weeks, how would you assess each of the following?</th>
<th>Never a Problem</th>
<th>Very Much Improved</th>
<th>Minimally Improved</th>
<th>No Change</th>
<th>Minimally Worse</th>
<th>Much Worse</th>
<th>Very Much Worse</th>
<th>Time after Infusion for maximum change (wks or days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overall symptoms of autism severity or delayed development?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Receptive language?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Expressive language?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Difficulty following verbal commands?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Flapping or self-stimulation?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sensory issues like problems with touch, texture, taste, smell, sound, light, etc.?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Insistence on sameness or difficulty with transitions?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Anxiety or panic attacks?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tantrums or Meltdowns?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Obsessive and/or compulsive behaviors?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Self-injurious behavior?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Outbursts of anger or aggression?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Lack of imaginative, make-believe, or age-appropriate play?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Lack of desire for social interaction?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Hyperactivity?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Lethargy or fatigue?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Inattention?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Lack of eye contact or gaze avoidance?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Problems sleeping?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sound sensitivity or ear covering?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Feeding problems?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Gross motor problems like trouble with abnormal walking or running?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Fine motor problems like trouble with buttons, zippers, snaps, or tripod grasp?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Problems with bowel movements?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments and recommendations:
INSTRUCTIONS
Write down the 3 symptoms that changed the most during the 6 weeks after infusion

Child's Name: ________________________________
Date: ________________________________

<table>
<thead>
<tr>
<th>No.</th>
<th>Over the 6 weeks, what 3 symptoms changed the most?</th>
<th>Very Much Improved</th>
<th>Much Improved</th>
<th>Minimally Improved</th>
<th>No Change</th>
<th>Minimally Worse</th>
<th>Much Worse</th>
<th>Very Much Worse</th>
<th>Time after Infusion for maximum change (wks or days)</th>
<th>Write-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Data S2. Social Stories to Accompany the Storyboard Panels Describing Each Step of the Infusion Day Visit.

Check-in. “Hello again! You and your mom or dad are at our clinic today! We will do lots of different things, and meet different people. Everybody here is really nice. First, you will check in at the front desk, to let the doctor and nurses know that you are here. You might have to wait a few minutes before the nurse gets you. That’s okay. You can sit in a chair and play with any toys that you brought with your today.”

Numbing Medicine. “Then you will meet the nurse. She is really nice and friendly. You will sit in a chair or on the bed, and the nurse will put a special medicine on your arms, on the inside of your elbows (right where it bends.) The medicine will make your arms tingly and numb, and might tickle a little. That’s okay, that’s how we know that the medicine is working.”

Height and Weight. “The nurse will take you to another room. You will stand on a scale and measure your weight, and you will stand tall to measure how tall you are. The nurse will also measure your blood pressure with a special bracelet that goes around your arm. She will take your temperature by touching your forehead with a fast thermometer.”

Urine Sample. “If you didn’t pee in a cup at home before you came to the clinic today, you will pee in a cup at the doctor’s office in the bathroom. Mom or Dad will go with you if you need help.”

Blood Sample. “After the bathroom, you will see the nurse again. Your arm will be nice and numb. The nurse will put a special needle in your arm, take some blood, then take out the needle and leave in a little plastic tube called an IV. Great job! That didn’t hurt too much, and you sat so nice and still! The nurse will take some blood out of the tube, put some medicine in the tube, then wrap up your arm so you can go and play! We have lots of toys to play with. Or you can plan with the toys that you brought with you.”

IV. “After some play time, you will sit down or lay down quietly, with no walking or jumping. A long tube called and IV will put medicine into the little tube in your arm. You can watch TV or play with your iPad, or even some Legos. Mom or Dad will sit with you the whole time.”

Post-Infusion Free Time. “Next, the big tube gets put away, your arm gets wrapped up again, and you get to play some more! Or watch more TV. Have fun with your mom or dad.”

Thank You Gift. “The nurse will then take the little tube out of your arm. Then you are done! Great job! You get to pick a present or have a treat, then go home with Mom or Dad. Thank you for being such a good helper today, and sitting so nicely and quietly. You had a good quiet mouth and gentle hands, and that makes Mom and Dad so happy. You did great!”
FIGURE S1
Storyboard illustration of each step of the infusion day visit
FIGURE S2
Suramin pharmacometabolomics. Metabolites and pathways changed at 2 days
FIGURE S4 Outcomes, A-P
FIGURE S4 Outcomes, Q-dd
I. Introduction

Suramin was introduced by the Bayer workers in 1920 after more than 8 years of research on ureas of the aminonaphthalene-sulfonic type, starting from the trypanocidal activity of trypan red (discovered by Ehrlich and Shiga, 1904), of trypan blue (Mesnil and Nicolle, 1906), and of Afridol violet discovered in 1906 (for details, see Findlay, 1930, p. 259). It was tested on a few patients in Europe (1921–1922), and then extensive therapeutic trials were carried out in Africa by Kleine and Fischer (1923). The compound was found to be very valuable for the treatment of human trypanosomiasis, especially of the East African
type, which could be cured by no other drug. During recent years it has been supplanted to some extent by melarsoprol, and in the future it may be further supplanted by Berenil for human trypanosomiasis. During experiments on trypanosomiasis in volunteers in 1945, Van Hoof et al. (1947) discovered that it also acted upon onchocerciasis (see also Wanson, 1950) and since then it has been widely used for the treatment of this filarial infection.

Trypanosomes and onchocercal worms are very different organisms, yet the action of suramin on each of them is so remarkable that it seems that it must depend on the same active part of the suramin molecule. For experimental and historical reasons, much more is known about the action of suramin on trypanosomes than on *Onchocerca*. Accordingly, knowledge about the action on trypanosomes is cited in the following so that it may be used to illuminate the action on *Onchocerca*.

II. Chemistry

Suramin* is a trisodium salt of 8,8'-(3",3"'-ureylenebis(3"'-benzamido-4"'-methylbenzamido))bis-1,3,5-naphthalenetrisulfonic acid:

\[
\text{Na}_3\text{S}\text{H}_2\text{H}_2\text{H}_2\text{Na}\text{SO}_3\text{O}_3\text{H}_2\text{H}_2\text{N}_2\text{C}\text{H}_2\text{O} - \text{CO}_2\text{H} \quad \text{Na}_3\text{S}\text{O}_3\text{N}_2\text{H}_2\text{H}_2\text{N}_2\text{C}\text{H}_2\text{O} - \text{CO}_2\text{H} \\
\text{Na}_3\text{S}\text{O}_3\text{N}_2\text{H}_2\text{H}_2\text{N}_2\text{C}\text{H}_2\text{O} - \text{CO}_2\text{H} \\
\text{Na}_3\text{S}\text{O}_3\text{N}_2\text{H}_2\text{H}_2\text{N}_2\text{C}\text{H}_2\text{O} - \text{CO}_2\text{H}
\]

A. Physical Characteristics

Suramin is a pinkish white flocculent powder, with high solubility in water (more than 10% w/v); its solutions are stable to boiling. Suramin is hygroscopic and absorbs moisture from the atmosphere unless kept in a desiccator; the presence of this unsuspected water may cause error in quantitative experiments. It should be stored in the dark and under dry conditions.

* Synonyms: Antrypol, Germanin, Bayer 205, Fourneau 309, belganyl. Naphuride, and Naganol
B. METHODS OF ESTIMATION

It can be estimated in body fluid by various methods. Following the method of Dangerfield et al. (1938), the suramin is hydrolyzed by boiling with hydrochloric acid for 6 hours, and the products are diazotized and coupled with methyl-α-naphthylamine to produce a purple color. This method detects concentrations down to about 5 mg/liter, which is the level where serum itself gives a blank value. A later method that depends on the action of suramin in bleaching 2-p-dimethylaminostyryl-6-acetamidoquinolinemethochloride was described by Gage et al. (1948); it is effective in the range 0.5–150 mg/liter. Another method was described by Vierthaler and Boselli (1939). More recently, a method for pharmaceutical estimation was reported by Thoma et al. (1967); it is based on precipitation with 2-ethoxy-6,9 diaminoacridin lactate and back titration of the excess precipitate by flocculation analysis.

C. RELATION OF STRUCTURE AND ACTIVITY

The slightest deviation from the formula given in the preceding is accompanied by diminution of trypanocidal activity; even change of position of the sulfonic acid groups has this effect (Fourneau et al., 1924; Findlay, 1930, p. 261; Findlay, 1950, p. 406). The capacity of suramin to combine with the plasma proteins depends on the naphthylamine-trisulfonic groups (Spinks, 1948). Many of the pharmacological properties of suramin, e.g., its binding to serum proteins are due to its general structure as a large molecule with many sulfonic acid groups. Many other large molecules with sulfonic acid groups have similar pharmacological properties, which need not necessarily be related to the specific action of suramin on Onchocerca and on trypanosomes.

III. ABSORPTION AND DISTRIBUTION

When given by mouth, suramin is absorbed from the intestine only to a limited extent. When given by subcutaneous or intramuscular injection it causes intense local irritation. Consequently, it is practically always administered by intravenous injection.

After intravenous injection suramin combines with the serum proteins and much of it circulates in the blood. Some of it (probably combined with protein) is taken up by the cells of the reticuloendothelial system. In the bloodstream it persists for long periods (up to 6 months in man) and its excretion in the urine is very slow; both the persistence and the
slow excretion are due to a combination of suramin with the blood proteins. In the plasma of treated rabbits, 70–90% of the suramin is bound to plasma proteins and this serves to protect the enzymes against it. The combination is usually about 0.6 mole suramin to 1 mole protein, but it may be 2 moles suramin to 1 mole protein. Suramin combines with proteins of all kinds: serum globulins (including euglobulin and pseudoglobulin) egg albumin, casein, fibrinogen, gelatin, histones, etc. This combination with protein takes place very quickly (within a few minutes). It depends on different structures from those of the trypanocidal action, and many other large molecules with terminal naphthylaminesulfonic acid groups and chondroitin sulfate combine in the same way (Spinks, 1948). The combination presumably takes place with basic groups on the protein, probably by electrostatic forces, but blockage of free amino groups by di-2-chloroethyl sulfone does not prevent combination with suramin (Wilson and Wormall, 1949). The thiol groups of proteins are not involved. Suramin does not diffuse into red blood corpuscles or into the cerebrospinal fluid except in small amounts.

The extent of the accumulation in the blood varies considerably in different subjects, with corresponding variation in the toxic and therapeutic effects (Hawking, 1940). Four days after an intravenous injection of 4.5 mg/kg into rabbits, the plasma concentration was 14 mg/liter, i.e., 11% of the dose in the plasma and 89% in tissues or elsewhere (Vierthaler and Boselli, 1939). In other rabbits, 4 days after 28 mg/kg, 36 mg/liter or 4.6% of the dose was reported in the plasma and 95% elsewhere (Dangerfield et al., 1938).

Man retains the compound in the plasma less well than rabbits. In man, 1 day after 1 gm per patient intravenously the plasma concentration was 25–60 (mean 40) mg/liter, i.e., only 10% of the dose was still in the plasma (Hawking, 1940). After 5 days the plasma concentration was 8–20 mg/liter and after 10 days, 8 mg/liter. After four doses of 1 gm given over a period of a few days, the plasma concentration 1 day after the last dose is often 150 mg/liter and in 1 patient it was as high as 340 mg/liter. After three to four doses, a level of about 5 mg/liter may still be detected 150–200 days later.

According to chemical estimations (Boursnell et al., 1939), no depot of suramin is formed in any tissue; but, by histological methods, suramin can be shown to be taken up as granules by cells of the reticuloendothelial system and by the epithelium of the proximal convoluted tubules of the kidney where it can be demonstrated by staining with neutral red or with Giemsa's stain (von Jancso and Jancso-Gabor, 1952). The cells of the reticuloendothelial system include those of the liver spleen and bone marrow and also the histiocytes of connective tissue all over the body.
The suramin is first bound to serum protein and then it is taken up by the phago... cells. It can be found as granules in the connective tissue... histiocytes more than 12 days after its injection. More recent work has shown that these granules are really lysosomes in which suramin has accumulated (see Section III,C,3).

A. Excretion

Small amounts are excreted in the urine during the first few days after administration but most of the compound administered cannot be recovered. Traces have been demonstrated by biological tests in the milk of goats treated with suramin (Mayer and Zeiss, 1922).

B. Metabolism

Apparently suramin is relatively resistant to catabolism in the body, as is shown by its long persistence in the blood. Spinks (1948) could not obtain any evidence that suramin is hydrolyzed in vivo; and products of suramin produced by acid hydrolysis are rapidly eliminated (Dewey and Wormall, 1946). Apparently, suramin is not hydrolyzed in vivo or, if so, only very slowly. There is no evidence for conversion into an active metabolite, and it seems almost certain that the chemotherapeutic activity of suramin is due to the intact molecule.

(A more detailed review of suramin distribution, etc., is given by Findlay, 1950, p. 404.)

IV. Biochemistry and Pharmacology

A. Combination with Proteins and Other Large Molecules

Suramin combines well with serum proteins and with other proteins (see Section III). The combination of suramin with serum proteins may displace other drugs, e.g., chlorpromazine or sulfonamides, or anticoagulants such as phenprocoumon (Huethwohl and Jahnchen, 1971).

The toxic action of crystal violet on various organisms (e.g., paramecia, miracidia, perfused toad's heart) is antagonized by suramin and by other large molecules such as Chlorazol fast pink; this action is probably another example of nonspecific combination (Riedel and El-Dakhakhny, 1964). Suramin also forms complexes with large molecules such as terephthalanilides, e.g., HSC 57133 (a compound developed to treat leukemia), and this complex formation has been used to delay the toxicity and to enhance the excretion of such anticancer agents (Yesaiv et al., 1968). Suramin further forms complexes with basic trypanocidal...
compounds such as pentamidine and homidium (see the following and Section VII, A, 3).

B. ACTION ON ENZYMES

Suramin may destroy or inhibit many different enzymes. The most sensitive enzymes examined seem to be hyaluronidase (inhibited at \(10^{-5} - 10^{-6} \ M\), fumarase (at \(10^{-7} \ M\), urease at pH 5 (at \(10^{-4} \ M\), hexokinase (at \(10^{-4} - 10^{-5} \ M\) and RNA polymerase \(10^{-5} \ M\)). In general, the strong affinity of suramin for protein suggests that it inhibits enzymes by binding to free cationic amino acid residues in the area of the active center (Williamson, 1970). This action on enzymes seems to be of two kinds: (1) specific action on enzymes concerned with DNA and RNA metabolism, which may be the basis of its antiparasitic action (discussed in Section VI); and (2) nonspecific action on enzymes of all types, probably due to its tendency to combine with proteins and large molecules. Typical examples are given by the enzymes trypsin and fumarase. Similar action is shown by many polysulfuric acid compounds, e.g., on succinic dehydrogenase (Stoppani and Brignone, 1957; Hill and Hutner, 1968). Suramin and similar compounds inhibit the calcification of rats' epiphyses in vitro (Harris et al., 1969) and the transport of calcium in sarcoplastic reticulum, together with the ATPase enzyme related to calcium transport (Layton and Azzi, 1974).

Suramin inhibits various other ATPases (especially in membrane preparations) and enzymes requiring ATP (Fortes et al., 1973). It also inhibits various enzymes concerned with phosphorylation and dephosphorylation (Rodnight, 1970). Smeesters and Jaques (1968) found that, in rat liver cells, suramin treatment markedly decreased the activities of the lysosomal enzymes \(\beta\)-glycerophosphatase, \(\beta\)-N-acetyldihydroxylase, and \(\beta\)-glucuronidase but not of \(\beta\)-galactosidase, acid maltase, or the protease cathepsin D.

Suramin inhibits mitochondrial oxidative enzymes obtained from Crithidia fasciculata (Bacchi et al., 1968), but it is not clear that this action is a specific one.

Jaffe et al. (1972) extracted reductases from various filarial adult worms and from schistosomes and found them to be somewhat more sensitive to the inhibitory action of suramin than mammalian reductases; on the other hand, other compounds, such as methotrexate and a related diaminquinazoline, were more active in inhibition, and the reaction probably has little to do with the antifilarial action.

Although suramin combines with many enzymes, it is not a general enzyme poison. In the body, most enzymes are protected against
suramin by the strong combination that it forms with plasma proteins. Wills and Wormall (1949) distinguish two classes of enzymes affected probably in different ways: Group A is not inhibited by suramin at pH 7.0 but is inhibited at acid pH, e.g., urease (suramin probably does not combine with the active center of these enzymes but bridges over it); Group B is strongly inhibited by suramin at pH 7.0 and not so dependent on pH, e.g., hexokinase and succinic dehydrogenase (suramin probably combines with the active center of these enzymes).

C. LYSOSOMES

Suramin forms complexes with serum proteins and is then taken up into lysosomes where it accumulates, just as acidic vital dyes do. This accumulation occurs in the reticuloendothelial cells all over the body but particularly in the Kupffer cells of the liver and in the cells of the convoluted tubules of the kidney.

1. Liver

In the liver, suramin has been studied recently by Buys et al. (1973). With rats, about 2% of the dose injected could be found in the Kupffer cells. It stabilizes the membranes of the lysosomes. Suramin and the other compounds act on the enzymes of the lysosomes, inhibiting the acid phosphatase of the hepatocytes and the cathepsin D of the Kupffer cells. Probably this action on the enzymes involves irreversible denaturation (Davies et al., 1971).

2. Kidneys

Suramin is filtered (in small amounts) through the capillary walls of the glomeruli and is reabsorbed by the cells of the proximal convoluted tubules where it accumulates as granules. These granules can be demonstrated by staining with neutral red or Giemsa (von Jancso and Jancso-Gabor, 1952). The effects of suramin have been studied in detail with histochemical methods by Wesolowski et al. (1972). They treated mice with 400 mg/kg—a high dose but one that does not cause necrosis of the tubules—and they examined the kidney 24 and 72 hours later. They found (a) a fall in acid phosphatase activity in the cytoplasm of the convoluted tubules and an appearance of this enzyme in the brush border; (b) an increase in alkaline phosphatase, ATPase, and 5-nucleotidase in the brush border of the convoluted tubules and in the endothelium of the capillaries of the glomeruli; (c) an increase in granules of succinic dehydrogenase and cytochrome oxidase in cells of the proximal
convoluted tubules and in the thick segments of Henle's loop. They interpret these changes as follows.

Suramin behaves like many other electronegative large molecules, such as trypan blue or horseradish peroxidase, i.e., it joins in a complex with the serum proteins, it is filtered through the renal glomeruli, and it is reabsorbed in the proximal convoluted tubules by the process of endocytosis. In the first phase of endocytosis, these substances are adsorbed to the surface of the tubule cells in conjunction with mucopolysaccharides. In the second stage of endocytosis, the proteins behave as activators; and the cell membrane (plus the accumulated substance) is invaginated to form phagosomes in the cell cytoplasm. Energy for this reaction is supplied by the enzymes of the cell membrane (alkaline phosphatase, ATPase, and 5-nucleotidase) all of which are increased after suramin treatment. Because these enzymes are also increased in the glomerulus, it may be that passage of suramin through the glomerulus is an active rather than a passive process. As succinic dehydrogenase and cytochrome oxidase become more abundant after suramin in the cells of the proximal convoluted tubules and of the thick segment of Henle's loop, it appears that the metabolism of these cells is increased during endocytosis. Later the phagosomes fuse with the primary lysosomes (rich in hydrolytic enzymes) producing secondary lysosomes. As already stated, acid vital dyes and similar compounds such as suramin stabilize lysosomal membranes and inhibit the proteolytic enzymes in them, especially acid phosphatase (thus contributing to the long persistence of suramin). In all this suramin behaves like acidic vital dyes, independent of its specific antitrypanosomal or antifilarial action.

If the accumulation of suramin in the kidney cells is too great, then they degenerate producing albuminuria and all the lesions seen by conventional histological methods. After toxic doses of suramin in animals, histological examination shows profound degeneration of the convoluted tubules with hydropic changes and sloughing of the epithelium; later, in animals that do not die, there is regenerative hyperplasia (Humphreys and Donaldson, 1941). Hyaline casts are found in the tubules; throughout the cortex there may be a few necrotic foci, minute hemorrhages, and perivascular round cell infiltration (Duncan and Manson-Bahr, 1923).

3. **Placenta**

In the same way, when suramin or trypan blue are injected into pregnant rats they are concentrated in the lysosomes of the phagocytic epithelial cells of the yolk sac but they do not penetrate into the embryo.
itself. In the yolk sac they probably interfere with metabolites required by the embryo and this may well explain the teratogenic action of both these compounds (see Section V,A,1) (Lloyd and Beck, 1969).

4. Intracellular Bacilli

The concentration of suramin in lysosomes probably explains its action in increasing the growth of tubercle bacilli or of Mycobacterium lepraemurium in phagocytes, since these bacilli grow in lysosomes (Hart, 1968; Wong and Ma, 1963). This action is nonspecific since it is also shown by dextrans and by macromolecules, such as polyvinylpyrrolidone. In peritoneal macrophages cultured in vitro, suramin prevents phagosomes (which contain digestive enzymes) from fusing with lysosomes (which may contain foreign bodies, such as tubercle bacilli) and, thus, the digestion of the tubercle bacilli is inhibited (Hart and Young, 1975).

D. Blood Clotting and Complement

As already stated, suramin inhibits numerous enzymes including proteases, chymotrypsin, and papain. As a result of this enzyme inhibition, it interferes with the formation and hemolytic action of complement and with blood clotting. The findings vary somewhat according to the method of experimentation. In particular, at 70 μg/ml it inhibits the activation of component C1 to C1 esterase and also the activity of the C1 esterase (Eisen and Loveday, 1973). Suramin inhibits the reactions of sheep RBC with C1, C1 and 4, C14 and C2, C14 and C3–9 (Fong and Good, 1972). In connection with blood clotting, at 0.2–1.0 mg/ml (much above therapeutic concentrations), it inhibits the action of thrombin on fibrinogen, and in fibrinolysis, it inhibits the action of plasminogen. It also interferes with the formation of kinin (Eisen and Loveday, 1973). All these actions may be nonspecific due to its general tendency to bind to proteins.

1. Hereditary Angioneurotic Edema (Quinke’s Disease)

This is a rare disease due to hereditary lack of C1-esterase inhibitors, so that in these patients the complement system is too active, leading to the release of substances that increase the permeability of capillaries. Because suramin is an inhibitor of complement and C1-esterase, it has been used, often with success, in the treatment of this condition (Brackertz, 1974; Schultz, 1974) (see Section VII,C,1).
E. Other Nonspecific Actions of Suramin

Suramin and other anionic substances, such as trypan blue, sulfo-bromophthalein, and lithium carmine, suppress the accumulation of iodine in the thyroid gland of rats; cationic substances do not act in this way (D'Addabbo et al., 1961; Kallee and Hartenstein, 1960).

Naphthalene sulfonic acids (including suramin) dissolve fibrin clots at low concentration; this effect depends on the presence of several acidic sulfonic groups (Kaulla, 1963).

When dilute solutions of suramin (acidic) and pentamidine (basic) are mixed, a precipitate that removes part of the pentamidine from the system develops. This probably explains the observations of Guimaraes and Lourie (1951) that a previous dose of suramin inhibited some of the toxic actions of pentamidine, especially the dangerous fall in blood pressure; it also inhibited some of the actions of histamine. (It would be valuable to investigate a combination of suramin and Berenil, given simultaneously or successively for the treatment of trypanosomiasis, ultimately in man. Would the suramin diminish the dangerous action of Berenil on the blood pressure while potentiating its trypanocidal action? Or would it neutralize the trypanocidal effect?).

In summary, it is probable that most of these reactions of suramin (except those on RNA/DNA or cell division) have nothing to do with the antitrypanosomal or antifilarial actions of suramin, but they may explain some of the toxic results or nonspecific treatments such as of angioneurotic edema.

V. Toxicity

A. In Animals

The acute toxic dose (LD$_{50}$) for mice by intravenous injection is about 620 mg/kg. The chief toxic effect in animals is on the kidney where it causes degeneration of the convoluted tubules; there may be minute hemorrhages and degenerative changes also in the liver, lungs, and central nervous system. In some of the animals (Mastomys natalensis) that were treated by Lämmler et al. (1975) with suramin, 40 mg/kg, s.c., for 5 days, i.e., one-third of the maximum tolerated dose, edema of the nose and front feet developed 3 weeks later. These parts may have a lower temperature than the rest of the body. This happened both in uninfected animals and in those infected with Litomosoides carinii, and presumably it was due to a direct toxic action of the drug. It is curious that there was a delay of 16 days after the last dose of drug before these ill effects became apparent.
1. Toxicity in a Chimpanzee

The toxic effects of suramin have recently been studied by Gibson et al. (1977) in a chimpanzee which was given the excessive total dosage of 152 mg/kg during 36 days. The animal became emaciated and developed hemorrhages, chronic diarrhea, anemia, lymphocytopenia, and albuminuria. At autopsy the primary lesions were found in the intestine, kidney, spleen, and peripheral blood. The intestines were hyperemic and swollen with petechiae and ecchymoses; in the colon there was extensive ulceration and atrophy of the mucosa, and in the jejunum there was acute suppurative enteritis. The kidney tubules were degenerating. The spleen and the femoral and mesenteric lymph nodes were atrophic with few lymphocytes. There was no degeneration of the adrenal cortex. It is possible that the ulceration in the colon and the atrophy of the spleen and lymph nodes were due to the susceptibility of tissues with a high rate of cell division to an inhibitory action of suramin on DNA replication.

2. Suramin during Pregnancy

Suramin does not pass through the placenta into the embryo (at least in rats and mice), but it accumulates in the lysosomes of the phagocytic epithelial cells of the umbilical vesicle (which develops from the yolk sac), interfering with the nutrition of the embryo and, thus, producing ill effects (see also Section IV,C,3). Trypan blue has the same action. Rat embryos are susceptible to suramin and trypan blue only at a very restricted period before the embryo is surrounded by the yolk sac (Lloyd and Beck, 1969). The ill effects on the embryos of mice and rats have been studied by Tuchman-Duplessis and Mercier-Parot (1973) and by Mercier-Parot and Tuchman-Duplessis (1973). The action is different in mice from that in rats. Furthermore, the results obtained in these rodents cannot be assumed to occur in other animals or in humans.

a. Rats. Suramin is very toxic for pregnant rats, and 30 mg/kg (little more than the human therapeutic dose) daily from day 1 to day 12 killed 8% of the mother rats, and 75 mg/kg daily killed 14%. On the other hand, the fetuses were not affected by doses of 30 to 75 mg/kg, but they were killed and absorbed after large doses of 100 to 170 mg/kg. In rats, suramin is essentially an abortive drug and does not cause malformation.

b. Mice. Fetuses are most susceptible to suramin given during the middle third of pregnancy, especially on days 9–11. At this time, 25 mg/kg is tolerated, but 40–65 mg causes a 64% mortality among the fetuses; many of those which are born, die within 3 days; after that the survivors live and develop well, although some of them suffer from necroses and
amputations of limbs. In fetuses that are affected but not killed, there are developmental abnormalities, namely, cleft palate, harelip, cataracts, and abnormalities of the limbs. Those fetuses which are born may suffer from necroses of the limbs, nose, and tail which necroses later proceed to amputations.

It is fortunate that the human therapeutic use of suramin had become well-established before the thalidomide disaster, otherwise it would probably never have been permitted to proceed as far as clinical trial. Actually, suramin has now been given to many women for over 45 years and no case of infant malformation has been reported and no abortifacient action has been described. Anderson et al. (1976) mention a woman who must have conceived 1-2 weeks before the first of four weekly injections of 1 gm suramin and who later gave birth to a normal child. The development of the placenta in humans is different from that of rodents and the experimental results in the latter are not directly applicable to humans. Nevertheless, it is probably wise to regard pregnancy as a counterindication to suramin treatment for a chronic nonfatal condition such as onchocerciasis but not for a potentially fatal infection such as trypanosomiasis.

B. In Man

In man the toxic reactions due to suramin have been studied mostly in patients treated for trypanosomiasis. Reactions are more common in poorly nourished patients. The toxicity is cumulative owing to accumulation of the compound in the blood following repeated doses.

1. Immediate Reactions

1. Nausea and sometimes vomiting. This is much reduced if the intravenous injection is given very slowly; with this precaution, vomiting is rare and of little importance.

2. Collapse with nausea, vomiting, shock, sweating, and loss of consciousness. The collapse may be preceded by a short period of motor excitement and congestion of the face and body. [Fain (1942) found this occurred in 12 out of 4500 patients treated. Apted (1970) estimated it might occur in 1 in 2000-4500 cases.] It is best avoided by giving only 0.1-0.2 gm as the first dose. It is probably nonspecific, being due to the injection of a large polyanionic molecule.

3. Colic occurs rarely. There may be slight rise of temperature within half an hour, and various urticarial skin eruptions have been seen in 0.2% of patients (Harding and Hutchinson, 1948).
2. Late Reactions (after 3 to 24 Hours)

1. Fever may appear 2–3 hours after injection and may reach 40°C. This might be nonspecific and due to pyrogens, etc. It is probably not due to death of trypanosomes, since trypanosomes do not die until after 12 to 36 hours.

2. Intense photophobia and lachrymation, sometimes with palpebral edema have been noted after 24 hours (this must be rare).

3. Abdominal distension and constipation.

4. Cutaneous hyperesthesia of the soles or palms. The pain begins 24–48 hours after injection and may persist for a week or much longer and the skin may desquamate. In some groups of patients, this has been common (10%), e.g., Kissi people of Sierra Leone and in Venezuela, whereas in Tanzania it has been rare. Its explanation is unclear.

3. Delayed Late Reactions (after Some Days)

1. Irritation of the kidney is the commonest toxic reaction after suramin. Before each dose of suramin, the urine should be tested for albumin. A slight cloud can be disregarded. If it is assumed that some protein is normally filtered through the glomerulus and reabsorbed in the tubules, a slight albuminuria might be due to inhibition by suramin of reabsorption in the tubules, rather than to irritation and destruction of kidney cells. If, however, there is a heavy deposit and casts or red blood cells, further treatment with suramin should be postponed or abandoned. (For detailed description of the action on the kidney, see Section IV,C,2). Polyuria and thirst may also occur (? due to action in the kidney). It has been reported by Kennedy and Terry (1972) that 3 patients who were treated with suramin for onchocerciasis developed generalized aminoaciduria; 8 months later 1 patient still had persistent aminoaciduria, but in all 3 patients the urinary protein was normal. Apparently, the state of their urines before suramin is not known, and the significance of this report is difficult to evaluate.

2. Exfoliative dermatitis is usually a late manifestation. It is rare, but dangerous. In Venezuela, Gonzalez-Guerra et al. (1964) saw 2 nonfatal cases in 2037 patients; in North Cameroon, Fuglsang and Anderson (1974) saw 1 nonfatal case among 100 heavily infected patients.

3. Stomatitis may be an early complication; it may be severe and extend to the bronchi. Fuglsang and Anderson (1974) saw 1 case in 100 patients.

4. Jaundice is rare but dangerous. Jaundice may also be due to syringe transmission of virus hepatitis.
5. A certain amount of debility and weakness is common during suramin treatment. Sometimes this develops to severe prostration, which may be accompanied by chronic diarrhea and which occasionally terminates fatally after some weeks or months (Fuglsang and Anderson, 1974). The exact pathogenesis of this important and distressing syndrome is unknown. Possibly suramin interferes with the multiplication of cells with a naturally high rate of division, e.g., the epithelium of the intestine and lymphocytes. Compare the chimpanzee above (see Section VA1.I).

Late toxic reactions to suramin seem to be more common among people who have lived on a starvation diet. In addition to those systemic reactions, there may be aggravation of ocular lesions, especially anterior uveitis, which is probably caused by the slow death of the microfilariae within the eye. In their series of 100 heavily infected patients, Fuglsang and Anderson (1974) saw posterior synechiae in 3, heavy flare or fresh keratic precipitates in 13, and fine flare or cells in 25.

4. Allergic Reactions

In the treatment of onchocerciasis, there may be additional reactions due to the death of adult worms and microfilariae. These come on usually after the fourth or fifth dose. They include the following:

Mild manifestations: (1) urticaria and swelling of the affected limb; (2) tenderness and swelling around nodules or impalpable worms; and (3) itching, swelling, and inflammation of the skin with papular or vesicular eruptions and desquamation (due to death of microfilariae).

More severe reactions: (1) deep abscesses around worms dying deep between muscles; and (2) painful immobilization of the hip joint due to death of worms near the hip joint capsule (Duke and Anderson, 1972).

Such severe reactions following the administration of suramin for onchocerciasis can usually be controlled by stopping the drug and giving betamethasone, 1 mg, 3 times a day, for a few days.

5. Clinical Experiences

Satti and Kirk (1957), working in the early days of suramin treatment for onchocerciasis, gave much too high doses, e.g., 10 gm in 19 days, and observed 4 deaths among 20 patients. The toxic reactions were those just listed as well as gingivitis leading to ulceration of the gums and mouth and persistent severe headache. These reactions were undoubtedly due to the excessively high dosage. Gonzalez-Guerra et al. (1964) in Venezuela gave 6.5 gm during 7 weeks to 2037 persons infected
with *Onchocerca*; 1253 (66%) had no reactions. The others (in descending order of frequency) had edema, pruritus, albuminuria, fever, headache, urticaria, and conjunctivitis. Many of those with edema and pruritus had burning pains on the soles and the feet. There was 1 death (a woman aged 40) from cerebral vascular accident probably not related to treatment, and 2 nonfatal cases of exfoliative dermatitis who recovered after some months. One man had severe prostration and great pain in the hips (? due to death of worms). These authors considered that the side effects, although rarely grave, were undoubtedly a nuisance. In a later report, Convit (1974) states that 26,963 patients had been treated in the field in Venezuela with doses of 5 to 6 gm during 5 to 6 weeks and there had been no deaths due to suramin.

Apted (1970), who has had great experience with the treatment of trypanosomiasis, concludes that, although there is a formidable list of possible reactions, none of these reactions is common except kidney damage, usually mild, and that suramin is really one of the safest drugs in use (for trypanosomiasis). It is important that the compound should be stored dry and in the dark and that the solution should be made (with pyrogen-free water) immediately before the injection and that the intravenous injection should be given slowly. The first dose should not be more than 0.2 gm for an adult to test for possible idiosyncrasy. Suramin should not be given to patients in poor general condition, or with evidence of allergy or of kidney or liver disease, or to pregnant women (especially those in early pregnancy).

Severe reactions due to onchocerciasis, as described in the foregoing, and chronic diarrhea are indications for stopping treatment and so are ulceration of the mouth and tongue. There are suggestions (Rodger, 1958; Nnochiri, 1964) that some batches of drug may cause more reactions than others. Reactions are also more severe in some countries than in others, especially in areas of intense onchocerciasis in the West African savanna. (See also Section VII,B,2.)

6. **Toxicity of Suramin for Adrenal Glands**

It was reported by Wells *et al.* (1937) and by Tomlinson and Cameron (1938) that 2 patients treated for pemphigus with large doses of suramin (16 gm in 10 months) had died and had shown degenerative changes in the cortex of the adrenal glands. Also Mahoney and Barrie (1950) described a woman who was treated for pemphigus with suramin in doses of 1 gm every 2 days for 10 doses. Five weeks later she died with acute adrenal necrosis, but it was not clear whether the necrosis was due to the suramin or to the pemphigus. In view of the earlier deaths, investigations were made in animals by Humphreys and Donaldson
They treated 100 guinea pigs and some other animals with 1–30 subtoxic doses of suramin so that 23 of the guinea pigs died and 64 out of the total had lesions in the adrenals. Histologically degenerative changes were found in the cortex, often as bands; with repeated doses there was also general atrophy of the cortex caused by disappearance of cells. On the other hand, Frisch and Gardner (1958) could find no harmful effects of suramin on the adrenals of rats given 40 mg/kg every other day for 21 days, even though 6 out of 18 died during this treatment. Moreover, Talbott et al. (1940) question the importance of suramin in the aforementioned human cases, since they found changes of the blood suggesting adrenal insufficiency even in untreated cases of pemphigus. Also Goldzieher (1945) reported 6 cases of death from pemphigus with histological signs of severe organic damage in the adrenal cortex, but none of these patients had received suramin.

It will be noticed that all the workers just cited were concerned with pemphigus treated with high doses of suramin and that the much more numerous workers with trypanosomiasis and onchocerciasis have not reported adrenal lesions. Consequently, it seems unlikely that toxic damage to the adrenals is a serious risk during properly conducted suramin treatment. However, Anderson et al. (1976) mention that 4 out of 76 patients treated with four doses of 1 gm suramin for savanna onchocerciasis died 1–2 months later with nonspecific symptoms, especially pain on swallowing. If postmortem examinations could be obtained in such cases, it might be well to pay special attention to the adrenal glands.

VI. Antiparasitic Action

The lethal effect of suramin on filariae and on trypanosomes probably depends fundamentally on a similar intracellular reaction, but for historical and experimental reasons almost all of the investigations have been made on the antitrypanosomal action.

A. Action on Trypanosomes

The mode of action of suramin on trypanosomes is still obscure. It has been reviewed by Hawking (1963a), Williamson (1970), and Williamson et al. (1975). Briefly, suramin is not trypanocidal in vitro except in unbiological concentrations of 1 mg/ml at 37°C for 24 hours (Hawking, 1939). The growth in vitro of Crithidia or Trypanosoma rhodesiense at 26°C was prevented by concentrations greater than 0.1 mg/ml (Hawking, 1963b). On the other hand, a minute dose of 0.03 mg/100 gm is very
effective in mice after a delay of more than 24 hours. The action is probably due to the unchanged suramin itself and not to any active metabolite. When trypanosomes are exposed to suramin in vitro or in vivo, only small (but significant) amounts of drug can subsequently be extracted from them; nevertheless, some fixation of drug must occur, because exposure of trypanosomes to suramin greatly reduces their power to infect other mice, i.e., further multiplication of the trypanosomes is diminished or abolished. Probably, suramin is initially bound to a primary site on the trypanosome from which it can be washed off up to 1 hour (reversing the loss of infectivity) and then, later, it is more firmly bound to a secondary site from which it cannot be washed and where it produced its main action (Hawking, 1939). If mice infected with Trypanosoma evansi are given a minimal effective dose of suramin i.p. (0.03 mg/100 mg), the trypanosomes may continue to divide 7 times during the next 35 hours; then their number remains stationary for perhaps 30 hours, after which their number rapidly diminishes to zero (Hawking and Sen, 1960). During the stationary phase, the chief morphological changes are (a) the percentage of dividing forms is diminished, (b) there are many large multinuclear forms suggesting that division of the cytoplasm has been inhibited more than that of the nucleus, and (c) the cytoplasm contains many basophilic inclusion bodies (which presumably are the same as the vacuolated lysosomes seen with the electron microscope, as described in Section VI,A,3).

This delayed action of suramin might be explained in general terms by an hypothesis that somehow suramin interferes slightly with the RNA–DNA replication mechanism and that each replication becomes more imperfect until the mechanism is brought to a halt by the accumulation of errors. The same delayed inhibition of cell multiplication is produced by homidium and by quinapyramine, but the site of interference with the RNA–DNA system might well be different.

It has been suggested by von Jancsó and von Jancsó (1934) that, besides its direct action, suramin also acts like an opsonin so that slightly damaged trypanosomes are removed from the circulation by the phagocytes of the reticuloendothelial system. This may well occur to some extent, but there is still a latent period of over 24 hours before phagocytosis begins; this latent period would not occur with an opsonin for bacteria.

1. Biochemistry of RNA and DNA

If it is explained in simple terms, the genetics of cells are determined by DNA that stores the codified information, and this information is
transferred to the rest of the cell (to make enzymes, proteins, etc.) via RNA of which these are various forms (soluble RNA, ribosome RNA, transfer RNA, messenger RNA, etc.). Ribonucleic acid is synthesized from nucleotide triphosphates, such as AMP and ATP, by enzymes (RNA polymerase) that are dependent on DNA as a template to organize the sequence in which the different nucleotides are built into the chain. The DNA can come either from the nucleus or from the kinetoplast of the trypanosome. These enzymes, polymerases, are specifically inhibited by certain trypanocidal compounds, such as homidium, suramin, and quinapyramine, that act by preventing multiplication of trypanosomes rather than by directly killing them as arsenicals do. Suramin and homidium are particularly powerful against RNA polymerases. Homidium, which has a small basic molecule, probably acts by combining with the DNA template and thus destroying its pattern for synthesis of RNA. Suramin with a large acidic molecule probably acts on the enzyme itself, perhaps combining with or covering over the "active center" (Hill and Bonilla, 1974).

2. Experimental Evidence

In support of the foregoing hypothesis, various pieces of experimental evidence can be quoted.

A simple biochemical system in the ribosomes of *Crithidia fasciculata* has been described by Kahan *et al.* (1968) and Lantz *et al.* (1968) who studied the incorporation of leucine-14C into protein. The system required a soluble enzyme (leucyl-sRNA synthetase, M.W. 105,000) together with ATP, a regenerating system, and guanosine triphosphate. This system was inhibited by suramin, quinapyramine, and pentamidine in concentrations of 0.25 to 0.5 mM. (All these drugs inhibit the multiplication of trypanosomes.) They inhibited both leucyl-sRNA synthetase (pentamidine most active) and the incorporation of leucyl-14C-sRNA into protein (suramin most active), i.e., they inhibited both the charging system and the transfer system. Kahan *et al.* concluded that the loss of functional activity produced by the drugs resulted from alterations in the secondary structure of the transfer RNAs.

3. Morphology by Electron Microscope

The early morphological changes in trypanosomes produced within 5 to 6 hours by suramin and other trypanocidal drugs have been studied with the electron microscope by Macadam and Williamson (1974). (This period may have been too short for the delayed action of suramin to
manifest itself.) During the first 6 hours, suramin produced no visible change in the nucleus, nucleolus, or kinetoplast. The main changes were in the ribosomes and the lysosomes.

a. Ribosomes. The ribosomes (which consist mostly of RNA) were reduced in number both generally and focally; in some parts they were aggregated together; and their normal aspect and normal polysomal configuration were lost. The same changes were also produced by arsenicals.

Suramin is known to inhibit RNA polymerase in high dilution, \(10^{-5} M\) (Waring, 1965; Hill and Bonilla, 1974). The disruption of ribosomes (seen by electron microscopy) suggests that (a) ribosomal synthesis of protein must be inactivated and (b) this inactivation may be due to impaired synthesis of ribosomal RNA by inhibition of RNA polymerase.

Because there is no alteration of the nucleolus (which is composed largely of RNA) and no microgranules are produced during the 6-hour observation period, the ribosomal lesions may be due to suramin blocking the site on ribosomes that combines with messenger RNA.

[This site for mRNA is blocked in cell-free preparations of \textit{Escherichia coli} by large polyanionic molecules such as polyvinyl sulfate, which is analogous in many ways to the polysulfonic acid structure of suramin (Shinozawa et al., 1968).] Trypanosomes made resistant to suramin become hypersensitive to puromycin, which acts on the anabolism of nucleotides, and this also suggests that a prime action of suramin is on ribosomes (Williamson, 1965).

The biochemical evidence about suramin seems to be more plentiful for RNA enzymes than for DNA ones, but this may partly be due to RNA enzymes being easier to investigate than DNA ones. The biological evidence (namely, slowing down of cell division after a latent period of up to seven divisions) points rather to DNA as the fundamental site of lesion. In any case, suramin may well interfere with the DNA–RNA system at many different places, and the demonstration of interference at one particular place does not prove that there may not be interference at other, even more important places.

b. Lysosomes. Suramin also produced large numbers of vacuolated lysosomes. Suramin is known to bind strongly to protein, and thus pinocytosis and localization in lysosomes would be facilitated. Suramin is also known to inactivate the enzymes of lysosomes, and this inactivation would explain the vacuolated lysosomes seen by electron microscopy. On the other hand, most of the compounds studied by Macadam and Williamson (1974) produced vacuolated lysosomes in trypanosomes, so this lysosome phenomenon may well be a general one with little specific significance for suramin.
4. Note about Cell Division

Because light microscopy shows many multinucleated trypanosomes, the inhibition by suramin of cell multiplication may act more powerfully or earlier on the cytoplasm than on the nucleus. If streptococci or clostridia are cultivated in the presence of suramin, they grow in long chains instead of breaking up into separate organisms. This happens because the subdivision of the chains into separate organisms depends on an enzyme resembling lysozyme and this enzyme (like many others) is inhibited by suramin (Lominski et al., 1958; Shaikh and Lominski, 1975). It may be that division of the cytoplasm of trypanosomes is also partially dependent on a similar enzyme (liable to be inhibited by suramin). In that case, failure of cell division after suramin would be a side effect, not closely related to the specific action on the RNA and DNA metabolism leading to the death of the parasite.

5. Other Evidence

Further examples of suramin interfering with cell division are provided by seedlings of Vicia faba and by sea urchin eggs. If young roots of V. faba are exposed for 6 hours to 0.5% suramin they cease to show cell division, but they recover if the suramin is washed out of them. The chromosome patterns are distorted showing chromosome bridges and fragmentation, and the cells show multiple nuclei and abnormal mitotic figures (Milovidov, 1961). If sea urchin eggs, Paracentrotus lividus or Sphaerechinus granularis, are exposed to suramin at a concentration of 1/1000 just before or just after fertilization with sperms, many multipolar mitoses develop so that the eggs contain many nuclei but there is no division into single blastomeres; later the eggs die (Jirovec, 1943a,b). (If ripe eggs are mixed with sperms in seawater containing suramin 1/50–1/5000, the sperms cluster round the eggs but no fertilization occurs; this may be due to suramin stabilizing the outer cell membranes.) In both these examples, the concentrations of suramin is very high; nevertheless, they are interesting as further illustrations of suramin interfering with cell division.

By contrast, another action of suramin on Paracentrotus eggs is probably nonspecific, as it is stronger with dyes containing sulfonic acid groups. If fertilized eggs are soaked in suramin 1/100–1/1000, the development of ectoderm is favored against that of mesoentoderm and hatching is delayed. But this action is shown 10–100 times more strongly by Chlorazol sky blue and by Evans blue, respectively (and also by zinc). It is probably due to the polysulfonic acid structure and not to the specifically trypanocidal one (Lallier, 1958).
B. Action on Filariae

1. Adult Worms

a. *Litomosoides carinii*. It has usually been reported that suramin had no action upon *L. carinii* in cotton rats, but this conclusion was due to the period of observation being only 2 weeks, which is too short. Lämmler *et al.* (1971b) showed that, if 40 mg/kg, s.c., was given on five successive days to infected *Mastomys natalensis*, all the adult worms were killed, provided the animals were observed for 6 weeks. (The same result was achieved with double this dose in cotton rats; Lämmler and Herzog, 1974.) The worms started to die after 5 weeks, and they were all dead by 6 weeks from the beginning of treatment. In the first 28 days, squash preparations showed no change in the embryos or microfilariae of the uterus, but after this time the production of microfilariae ceased and the embryos were deformed and degenerated. After 42 days the dead worms were embedded in masses of fibrin. The antifilarial reaction of suramin is remarkable in that, although the treatment ceased after 5 days, the worms did not begin to die until 4 to 5 weeks later.

b. *Onchocerca volvulus*. Suramin kills the adult worms, as was first discovered by Van Hoof *et al.* (1947), this being the first indication of the antifilarial activity of the compound. When suramin is given in the usual dosage of 1 gm per week, the worms begin to die after the fourth or fifth dose at which time allergic reactions begin to appear, as described in the following. This delay of death until 5 weeks after the beginning of treatment is similar to what happens with *L. carinii*. The lethal action is exerted first on the female worms, whereas the male worms stay alive and motile much longer. This sex difference is not specific for suramin, but occurs with most antifilarial drugs, probably because male worms have a less active metabolism than females. Apparently, a plasma concentration of suramin greater than 10 mg/100 ml should be maintained for about 2 weeks in order to ensure the death of all the adult female worms (Duke, 1968a). The death of the worms is accompanied by general and local inflammatory reactions, which is discussed in detail in the following. Ashburn *et al.* (1949) made histological examinations of 34 nodules from 21 patients who had been treated with suramin in a total dose of 0.14 gm/kg or more. In nodules that were removed 60 days after treatment, the contents of the uteri had undergone necrosis or there were only normal or degenerating ova with no microfilariae. In nodules excised after longer periods, the degeneration was more complete.

c. *Wuchereria bancrofti*. In Tahiti, Thooris (1956) treated 20 patients and found that 1 year later the number of microfilariae was
reduced to 5% of its original number; so apparently suramin kills the adult worms and the microfilariae gradually die out (see Section VII,B,3).

d. Other Filariae. The action of suramin on *Loa loa*, *Dipetalonema perstans*, or *Dirofilaria immitis* is not known. It would be valuable to make observations when opportunity occurred. In particular observations should be made on patients treated with suramin for onchocerciasis who may also be infected with *Dipetalonema perstans*. *Dipetalonema viteae* is usually supposed to be insensitive, but I have found no actual references, and the period of observation might have been too short.

2. Microfilariae

Suramin seems to have little action on microfilariae of *Onchocerca* or other filariae, and, after 6 weeks of treatment, when the adult worms have been killed, great numbers of microfilariae remain. The natural life of *Onchocerca* is probably well over 10 months, so that even when their replenishment is cut off, it takes up to 18 months for them to dwindle and disappear. On the other hand, there is considerable evidence that, after suramin treatment, many of the microfilariae are killed much earlier than this, especially round about the sixth week after the beginning of treatment. The pronounced dermatological reactions (pruritus, urticaria, etc.) suggest that many of the microfilariae in the skin have died as a result of treatment. Duke (1968a) calculated that 2 weeks after a total dose of 9.5 gm given during 10 weeks, 92% of the microfilariae in the skin had been removed. According to the hypothesis developed in Section VI,B,5 that suramin acts by interference with cell division, such death of microfilariae would be difficult to explain, since microfilariae have no dividing cells. It may be that when suramin kills the adult worms, it provokes such a strong antifilarial immunological reaction that many of the microfilariae are also attacked by antibodies, etc., even though they have not been directly affected by the compound.

3. Immature Worms

a. *Litomosoides carinii*. Suramin has a pronounced action upon all immature stages of *L. carinii* in *M. natalensis* (Lämmler and Hertzog, 1974; Lämmler and Wolf, 1977). When given subcutaneously at 40 mg/kg/day for 5 days, beginning on the seventh, fourteenth, or twenty-eighth day after infection, it completely prevented the development of infection. A good but incomplete prophylactic action was exerted if the treatment was given for 5 days directly after the infection. Lower doses were not effective. These findings were confirmed by Wolf (1976); as
often happens, female worms were more susceptible than males. The least susceptible period was 2–6 days after infection, i.e., the third stage of the larvae.

b. *Onchocerca volvulus.* In 2 human volunteers, studied earlier by Duke (1968c), the results were less encouraging. The men were given 1 gm weekly for 7 or 5 weeks prior to inoculation and the suramin blood concentration at the time of inoculating infective larvae would be more than 15 mg/100 ml. Thirty-five or 50 infective larvae were inoculated intradermally, and 4–5 days later biopsies were taken at the site of inoculation. In one man, 2 live and 1 dead parasites were found (? slight prophylaxis) and in the other man, no larvae were found; apparently all the larvae had moved away and it was assumed that no prophylaxis had occurred. It may be noted that Wolf (1976) has found that after inoculation of *L. carinii* larvae the first 2–6 days are the times of least susceptibility; furthermore, since suramin acts so slowly on adult worms (6 weeks), the observation period of 4 to 5 days was too short to be significant.

In chimpanzees, however, which could be studied more exhaustively, suramin prevented the development of infection. Duke (1974) inoculated 2 chimpanzees with 750–860 infective larvae during a 12-month period. Treatment was started 2 weeks after the last inoculation and was given as 17 or 21 mg/kg, respectively, weekly for 8 weeks. In one chimpanzee, no microfilariae could be found in the skin during a 30-month period; the other chimpanzee was autopsied 4 weeks after the last treatment, and contained only two bundles of dead worms.

4. *Microfilariae Developing in Vectors*

The action of suramin on *L. carinii* developing in mites has apparently not been investigated. With *O. volvulus*, Duke (1968b) found that when *Simulium* was fed on patients with serum concentrations of 10 to 14 mg suramin per 100 ml, development of the microfilariae was not prevented. Later after the fifth to seventh dose of suramin, although some microfilariae were ingested by the vectors, they did not develop in them. Apparently, the action of suramin was exerted on the microfilariae in the man rather than in the *Simulium.*

5. *Mode of Action on Filariae*

Our knowledge of the action of suramin is incomplete, and experimentation with *Onchocerca* is difficult. Its effect is exerted only on the adult worms or on the immature forms developing in the vertebrate host. The most remarkable feature of its action is its extreme slowness. During a
course of treatment for onchocerciasis, the worms do not begin to die until after 4 to 5 weeks; and when L. carinii is exposed to suramin for 5 days in vivo, the worms do not die until 5 weeks after the end of treatment. This long delay before the death of filarial worms forms a remarkable analogy with the long delay (of seven cell divisions) before the death of trypanosomes takes place. With such a complicated chemical structure as suramin, it seems most likely that the antitrypanosomal and the antifilarial actions both depend on the same chemical configuration and, ultimately, on interference with the same biochemical processes in the parasites. Accordingly the following hypothetical account of the probable mode of antifilarial action is put forward.

1. Suramin combines with the filarial worm. Some combination is essential for any drug action. In view of the large molecular size, suramin probably penetrates by mouth and intestine rather than through the cuticle. The amount of drug fixed in this way is probably limited. It should be investigated using radioactive suramin and L. carinii in Mastomys. Estimations should be made of the concentration of drug inside the female and male worms compared with that in the plasma of the host; and radioautography should be employed to determine which part of the worm contains the most drug. It is anticipated that it will be located in the gonads.

2. By analogy with trypanosomes, suramin probably acts by interference with cell multiplication. In adult nematodes, most of the body cells do not multiply—it is only the gonad cells that continue active multiplication. Therefore special morphological study should be made of the developing oocytes and of the corresponding male cells at weekly intervals after the first day of treatment (L. carinii in Mastomys). For this purpose the technique of examination of flattened living cells by phase contrast, as described by Taylor and Terry (1960), would be advantageous. It is postulated that suramin progressively deranges the multiplication of these cells (by inhibition of RNA or DNA polymerase) so that after a delay the cells of the gonads are killed.

3. It would be interesting to investigate whether the action of suramin on L. carinii in Mastomys is potentiated by puromycin (see action of puromycin on drug-resistant trypanosomes, Section VI,A,3,a). If this were so, a combination of suramin plus puromycin might be valuable for human onchocerciasis.

6. Possible Antifilarial Action of Homidium and Similar Compounds

As described above, suramin is a very effective compound for killing the adult worms of Onchocerca and of Litomosoides, but its lethal
action is not manifested until 5 weeks after the beginning of treatment. Further, suramin is also effective in killing trypanosomes but again its lethal action is not manifested until after a latent period of seven trypanosome divisions. It seems to act not by directly killing the trypanosomes but by disrupting and ultimately preventing cell division. It may, therefore, be pointed out that certain other trypanocidal compounds, namely, phenanthridinium compounds (e.g., homidium) and quinapyramine, also have the same type of action on trypanosomes, that is, inhibition of cell division. Homidium is also known to be as active as suramin in inhibiting enzymes concerned with RNA and DNA metabolism (see Section VI,A,1). In view of all this, it is strongly recommended that further investigations should be actively undertaken on the antifilarial action of phenanthridiums (especially homidium), of quinapyramine, and of similar compounds. For the properties of these substances, see Hawking (1963a) and Williamson (1970). Two phenanthridinium compounds, namely dimidium and 7-amino-9-p-aminophenyl-10-methylphenanthridinium were found by Sewell and Hawking (1950) to be active on Litomosoides; in fact, they were much more active than suramin according to the technique used by these workers, which involved only 2 weeks of observation. Recently, preliminary experiments (not yet published) have been carried out by Dr. M. J. Worms and the author on Litomosoides in cotton rats: the compound is given by injection on 5 consecutive days and the rats are killed for examination after 40 to 60 days. In these circumstances, homidium, 5 mg/kg, killed all or many of the female worms but not the male ones; 10 mg/kg killed practically all the female worms but, in 1 of the 2 rats at this dose, the male worms survived. These results on the female worms are almost as good as those obtained with suramin at 40 mg/kg. Preliminary results with isometamidium (2 mg/kg, i.m.) and Berenil (20 mg/kg, s.c.) were disappointing: no antifilarial action was found. Quinapyramine, 5 mg/kg s.c., had no action in one rat but, in another, it killed 20 out of 22 female worms. Further investigation of homidium (and possibly of quinapyramine) is urgently needed.

VII. Therapeutic Use

A. AGAINST TRYPANOSOMES

1. Clinical and Veterinary Use

Clinically, suramin was long (1925–1950) the only effective treatment for Rhodesian sleeping sickness, and it is still the standard remedy
although it has been supplemented by the arsenical, melarsoprol. It is very effective in curing patients before the nervous system is involved; but after this has happened it cannot produce a permanent cure because it does not penetrate into the brain. It is used extensively for the early stages of gambiense sleeping sickness (in combination with arsenicals and other compounds). The course of treatment recommended by Apter (1970) for Rhodesian sleeping sickness in Tanzania is 0.2 gm, i.v., as an initial test dose and then 1 gm, i.v., on days 1, 3, 6, 14, and 21. This course quickly builds up a high concentration in the blood and enables the treatment to be completed in 3 weeks. About 10% of patients fail to maintain a high concentration in the blood, with resultant poor therapeutic results. It is desirable to check the blood concentrations by chemical estimation, when this is possible.

In veterinary practice, suramin has been used extensively for Trypanosoma brucei infections in horses and other animals and for T. evansi in camels (Sudan) or cattle.

2. Suramin Drug Resistance of Trypanosomes

In clinical practice, drug resistance to suramin is unknown. In the laboratory, trypanosomes can be made suramin-resistant, but the process takes much longer than with arsenicals. On repeated passage through mice, the resistance is gradually lost in about 6 months. Trypanosomes made resistant to suramin may become hypersensitive to puromycin and to the aminonucleoside of puromycin (Williamson, 1965) that interfere with nucleic acids or nucleoprotein synthesis.

3. Suramin Complexes

Suramin (which has six acidic groups) combines with basic compounds such as pentamidine and homidium to give insoluble complexes that are less toxic than the parent compound. They are deposited at the site of injection and are slowly absorbed, producing prophylaxis against trypanosomes over long periods. These complexes were introduced by Williamson and Desowitz (1956) and Desowitz (1957) for the prevention of infection with Trypanosoma congolense and Trypanosoma vivax in cattle. Thus, when 10 mg/kg homidium content was injected, intramuscularly, homidium suraminate gave protection for 13 months. In principle, these compounds were promising, but in actual practice they proved to have disadvantages because they caused irritation and local toxicity at the site of intramuscular injection; if sloughing occurred, the depot of drug and its protective action were lost.
B. AGAINST ONCHOCECRIASIS

Accounts of the use of suramin for the treatment of onchocerciasis have been given by Ashburn et al. (1949), Burch (1949), Wanson (1950), Burch and Ashburn (1951), Sarkies (1952), Nelson (1955), Satti and Kirk (1957), and many other authors quoted below.

The problem differs according to whether it concerns individual patients under close medical supervision or whether it concerns large numbers of subjects under field conditions.

The clinical results in each case may be considered from three aspects: (1) the effect on the worms (it usually kills the adult worms but leaves many microfilariae alive); (2) the direct toxic effects of suramin on the host (these have been considered in Section V); and (3) the inflammatory reactions provoked the death of the filariae (these may be pronounced, especially in North Cameroon).

The reactions to suramin are similar to those provoked by diethylcarbamazine, but they are much later in appearing (usually about the sixth week) and they are more prolonged and less severe (in keeping with the more gradual liberation of filarial protein). After the fifth weekly dose or sometimes after the fourth dose, there may be erythematous and pruritic eruptions; there may be violent prurigo of parts of the skin that harbor microfilariae; there may be conjunctivitis and photophobia. There may be fever for a few days to 2 weeks, during which the temperature may rise to 39°-40°C. There may be pains in the joints; violent pain and stiffness sometimes develop in the hip joints, suggesting death of worms localized there (see also Sections V,B,4 and 5 and VII,B,2). One of the earliest complications is iritis, which sometimes appears after the second or third dose.

1. Treatment of Individual Patients

Duke and Anderson (1972) recommend an initial dose of 0.1 to 0.2 gm to test for a rare idiosyncrasy which may produce sudden collapse; then 1 gm intravenously weekly per adult of 60 kg weight to a total dose of 6 gm. Before each dose the urine should be tested for albuminuria. Light albuminuria can be disregarded, but heavy albuminuria with many casts and/or an ill-looking patient indicate postponement or cessation of treatment. Severe reactions can usually be controlled by stopping the drug and giving betamethasone, 1 mg 3 times a day, for several days and then tailing off.

At the end of this suramin treatment the adult female worms should be moribund, but there will still be microfilariae in the skin. Three weeks
after the last dose of suramin, a 3-day course of diethylcarbamazine (200 mg twice daily) should be given to destroy them. Usually this produces a mild onchocercal reaction, in which case, it should be repeated every 3 weeks until no reaction occurs.

Relation of Dosage to Effect and Toxicity. Duke (1968a) investigated the relations among the dosage schedule, the therapeutic effect, and the toxicity. Briefly, a dose of 1 gm/week, totalling 5–6 gm suramin, was sufficient to kill all the adult worms, and total doses of 7.5, 8.5, or 9.5 gm offered no therapeutic advantages, and might be more toxic. Doses totalling 4.1 gm were on the border line of effectiveness, but in some patients they did not kill all the worms. Doses of 0.5 gm/week for 7 to 8 weeks were less effective in killing all the worms, and the clinical complications were not reduced in proportion to the dose, so that this course was not recommended. Doses of 0.5 gm given daily to a total of 2.7 gm during 5 days were effective but were very poorly tolerated and could not be recommended for general use. Doses of 0.25 gm weekly for 8 weeks had very little action on the worms. Apparently, it is necessary to maintain a plasma concentration of at least 10 mg/100 ml for 1 to 2 weeks in order to kill all the adult worms.

These findings are very valuable, but it would be desirable to make further investigations to determine more closely the dosage schedule that gives the optimum ratio between therapeutic response and toxicity. For a fatal infection such as trypanosomiasis, the therapeutic response must be complete (i.e., every trypanosome must be killed); and to achieve this result, the risk of a few deaths from toxicity can be tolerated. For a nonfatal infection, such as onchocerciasis, the toxicity must be low with no risk of death but an incomplete therapeutic response (i.e. the survival of a few worms) can be tolerated. Because patients vary in the extent to which they retain suramin in their plasma, it would be desirable to supplement such investigations by estimations of the plasma concentrations. The optimum dosage schedule might well differ from one geographical area to another, according to the intensity of infection and the severity of the reactions.

Further, investigations should also be made on the optimum ratio between the intensity of treatment and its duration. The lower the intensity the less would be the toxicity. On the other hand, Duke (1968a) showed that a total dosage of 2.7 gm suramin, given in daily doses over 5 days, to patients infected with Onchocerca produced a more marked effect on the parasite than when the same total dose was given at weekly intervals over 5 weeks. Likewise 8 weekly doses of 0.25 gm in adult males produced little or no detectable effect on the worms.
2. Large-Scale Treatment

The employment of suramin on a wide scale in heavily infected areas is controversial. In Mexico it is considered too dangerous and it is not used at all. On the other hand, in Venezuela (Rivas et al., 1965), Ghana (Conran and Waddy, 1959), and Uganda (Cherry, 1960), it has been used widely and successfully without significant numbers of dangerous ill effects. A pilot trial by Picq et al. (1974, p. 192) also gave good results with no ill effects.

In Venezuela, where onchocercal infection may be relatively light, Gonzalez Guerra et al. (1964) and Rivas et al. (1965) treated 3719 patients, mostly with a total dose of 4.5 gm (given as 0.5 gm and then 1 gm weekly per 50 kg body weight). They excluded patients with persistent albuminuria, hypertension, general bad condition, or marked anemia. Twelve to twenty-four months later, no microfilariae could be found in the skin of 96 to 100% of those patients who had received over 4.5 gm suramin. There were three grave nonfatal accidents (2 exfoliative dermatitis and 1 generalized long-lasting prostration) and one death due to cerebrovascular accident and not due to suramin. On the other hand, 34% of the patients experienced minor reactions (especially pruritus, urticaria, palmar-plantar edema, fever, headache, and pains in the joints) which were most numerous after the third and fourth injections; these reactions were not dangerous but they were troublesome and caused many patients to stop treatment. They were relieved by dexamethasone and antihistamines. In a later report, Convit (1974) states that 26,963 cases have now been treated in the field without any deaths due to treatment. The total dose was 5–6 gm during 5 to 6 weeks. Since the beginning of 1974, patients who still have microfilariae in the skin 4 weeks after finishing suramin treatment, have been given diethylcarbamazine, 200 mg daily for 3 days.

In the West Nile province of Uganda, Nelson (1955) treated 56 patients. After treatment, 8 out of 41 patients were free from microfilariae. There were many minor toxic effects especially skin eruptions after the fourth or fifth dose, and he considered that suramin treatment was not practical or acceptable unless under close medical supervision. By contrast, in the Jinja region of Uganda, Cherry (1960) treated 276 patients with apparently no ill effects. He recommended that further treatment with diethylcarbamazine should be given.

In North Cameroon, in patients heavily affected with savanna onchocerciasis, suramin (or any other effective antifilarial treatment) seems to cause many severe reactions (Anderson et al., 1976). On the other hand,
from their experience in Ghana, Conran and Waddy (1956) describe the partial return of sight in many blind patients (due to improvement of corneal opacities and cataracts) and the great relief from cessation of general pruritus.

Probably suramin should be given to all heavily infected patients with considerable pruritus or with danger of ocular complications, e.g., microfilariae in the skin of the head. Marked albuminuria, pregnancy, hypertension, anemia, or poor general condition would all be contraindications. The safety and acceptability would depend largely on how well the field staff were trained to select patients and to administer the injections.

3. *Wuchereria bancrofti*

It is often stated that suramin has no action on *W. bancrofti*, but this is incorrect. Thooris (1956) in Tahiti treated 20 patients who suffered from recurrent lymphangitis (average 2.9 attacks per month). At the end of treatment, the frequency of lymphangitis was reduced by 87% and 1 year later, by 74%. By the end of the year the microfilariae were gradually reduced to 5% of their original number. Because *W. bancrofti* respond so well to diethylcarbamazine, the action of suramin is not of practical importance, but these results show that suramin does act on the adult worms of other filariae besides *Onchocerca*.

C. **IN TREATMENT OF NONPARASITIC DISEASES**

In the past, suramin has been used to treat a variety of nonparasitic diseases. In these cases the action of suramin (if any) was probably due to its large polyacidic molecule rather than to its specific antiparasitic grouping.

1. **Angioneurotic Edema (Quinke's Disease)**

This is a hereditary condition due to lack of C1-esterase inhibitors that normally inhibit the first component of complement (C1). Accordingly, the complement system is too active, and pharmacologically potent substances, such as anaphylatoxin and kinin-like C2 fragments, tend to be set free, increasing the permeability of capillaries and producing the edema. Suramin is a powerful inhibitor of C1 activators and of many other components of complement so that the use of suramin is well justified scientifically (see Section IV,D). In actual practice, some patients appear to respond well; others give a poor response to suramin but respond better to other agents such as ε-aminocaproic acid or
traxenic acid (Brackertz and Kueppers, 1973; Brackertz, 1974; Schulz, 1974; Eisen and Loveday, 1973; Fong and Good, 1972).

2. Pemphigus and Other Conditions

During the 1930s, suramin was used for treating pemphigus, frequently in very high doses, e.g., 10 gm in 19 days. According to Bolgert (1970), pemphigus can also be treated with quinacrine, Aureomycin, corticosteroids, or mercuric chloride. Mizonova (1969) treated 28 patients with suramin and corticosteroids and most of them improved. Senear Usher's syndrome is a special form of pemphigus (pemphigus foliaceus), and it has been treated with suramin in large doses (Samtsov, 1966; Terao, 1969). There seems, however, to be little scientific basis for the administration of suramin to pemphigus patients, and the multiplicity of other therapeutic agents suggests that it was not very effective and not specific. A modern "Textbook of Dermatology" (Rook et al., 1968) recommends treatment with corticosteroids but does not mention suramin. Similarly, Moschella et al. (1975), in "Dermatology" do not mention suramin. It may be concluded that treatment of pemphigus with suramin is no longer justified. Dermatitis herpetiformis similarly has been treated with suramin in the past but the two recent textbooks of dermatology just cited do not mention it.

During the nineteen-thirties, even multiple sclerosis was treated with suramin—a treatment for which there was no justification except desperation because of the absence of any effective therapy.

Acknowledgements

This review of suramin, with special reference to its use for the treatment of onchocerciasis, was prepared in 1976 while I was holding a World Health Organization consultantship. Grateful acknowledgments are due many members of WHO for assistance, criticism, and advice; the WHO library staff for search of the literature and many other facilities; and Professor G. Lämmler for helpful comments. The opinions expressed here are the responsibility of the writer and do not involve WHO.

References

Nontoxic Suramin as a Chemosensitizer in Patients: Dosing Nomogram Development

Danny Chen, Sae Heum Song, M. Guillaume Wientjes, Teng Kuang Yeh, Liang Zhao, Miguel Villalona-Calero, Gregory A. Otterson, Rhonda Jensen, Michael Grever, Anthony J. Murgo, and Jessie L-S. Au

Received December 13, 2005; accepted January 31, 2006

Purpose. We reported that suramin produced chemosensitization at nontoxic doses. This benefit was lost at the ~10-fold higher, maximally tolerated doses (MTD). The aim of the current study was to identify in patients the chemosensitizing suramin dose that delivers 10-Y_m_50 plasma concentrations over 48 h.

Methods. Nonsmall cell lung cancer patients were given suramin, paclitaxel, and carboplatin, every 3 weeks. The starting chemosensitizing suramin dose was estimated based on previous results on MTD suramin in patients, and adjusted by using real-time pharmacokinetic monitoring. A dosing nomogram was developed by using population-based pharmacokinetic analysis of phase I results (15 patients, 85 treatment cycles), and evaluated in phase II patients (19 females, 28 males, 196 treatment cycles).

Results. The chemosensitizing suramin dose showed a terminal half-life of 202 h and a total body clearance of 0.029 L h^-1 m^-2 (higher than the 0.013 L h^-1 m^-2 value for MTD of suramin). The dosing nomogram, incorporating body surface area as the major covariate of intersubject variability and the time elapsed since the previous dose (to account for the residual concentrations due to the slow elimination), delivered the target concentrations in >95% of treatments.

Conclusions. The present study identified and validated a dosing nomogram and schedule to deliver low and nontoxic suramin concentrations that produce chemosensitization in preclinical models.

KEY WORDS: chemosensitization; dosing nomogram; neoplasms; suramin.

INTRODUCTION

Our laboratory has shown acidic and basic fibroblast growth factors (aFGF and bFGF), expressed in solid tumors, as a cause of chemoresistance. The combined presence of these two proteins, at clinically relevant concentrations, induces an up to 10-fold resistance to drugs with diverse structures and action mechanisms, without altering drug accumulation. Inhibitors of aFGF and bFGF, including the respective monoclonal antibodies and suramin, reverse the FGF-induced resistance (1–3).

Suramin, an aromatic polysulfonated compound, has multiple, concentration-dependent effects. Targets inhibited by <50 μM suramin include reverse transcriptase, protein kinase C, transforming growth factor β, bFGF, and RNA polymerase, and targets affected by >50 μM suramin include interleukin-2, insulin-like growth factor I, topoisomerase II, epidermal growth factor, and tumor necrosis factor α (4–7). Suramin induces cell cycle arrest at the G1 phase at >50 μM (8–11), and shows appreciable cytotoxicity at >100 μM.

Suramin has been evaluated as an anticancer agent since the 1980s, and has shown activities in several malignancies, most notably in prostatic carcinoma (12,13). These earlier studies used maximally tolerated doses (MTD) yielding 100–200 μM suramin in plasma (equivalent to approximately 150–300 μg mL^-1) (13–15). The half-life of MTD suramin is unusually long (30–50 days), and results in significant drug accumulation upon repeated dosing. This pharmacokinetic property, together with its significant host toxicities, mandated the use of real-time pharmacokinetic analysis and adaptive control to calculate the suramin dose for individual patients. Subsequent findings of low interpatient variability in the suramin clearance and further population-based pharmacokinetic (PPK) analysis have led to the recommendation of using fixed dose schedules, consisting of series of infusions with sequentially decreasing doses or increasing intervals, to maintain plasma concentrations in the 70–200 μM range (16,17).

We reported that suramin, at a dose that delivers plasma concentration between 10 and 50 μM, significantly enhances the therapeutic efficacy of chemotherapy (doxorubicin, paclifi-
and 50 \(\mu M \) identify the chemosensitizing suramin dose that delivers 10 cell lung cancer (NSCLC), was to develop a method to conducted in conjunction with the phase I/II trials in non small cell lung cancer (NSCLC), was to develop a method to identify the chemosensitizing suramin dose that delivers 10 and 50 \(\mu M \) plasma concentrations over the duration when the chemotherapy agents (paclitaxel and carboplatin) are present at therapeutically significant levels (i.e., 48 h). To accommodate the residual drug due to the unusually long half-life and the need to maintain the drug concentrations within the range that produces chemosensitization, we first used real-time pharmacokinetic studies to identify the suramin dose in the second or later cycles in the phase I study. This method was successful in maintaining desired suramin concentrations, but was labor-intensive and cannot be readily implemented in the community settings. Hence, we used population pharmacokinetic (PPK) analysis of the results in the first two cohorts of phase I patients to develop a dosing nomogram, which was then evaluated in an additional phase I cohort and subsequently in phase II patients.

MATERIALS AND METHODS

Patient Protocols and Treatments

Details on patient treatments had been described in a previous publication (24). The following provides the information pertinent to the present study. Briefly, a patient with pathologically or cytologically confirmed advanced (IIIB or IV) NSCLC received a 30-min infusion of suramin, followed immediately by a 3-h infusion of paclitaxel (starting at 175 mg m\(^{-2}\) and escalating to 200 mg m\(^{-2}\) after the suramin dose was established), and then a 1-h infusion of carboplatin [area under the plasma concentration–time curve (AUC) of 6 mg min mL\(^{-1}\)]. The phase I trial was open to all comers, whereas the phase II trial included two groups of patients (chemotherapy-naive or chemotherapy-refractory). For the present study, all patients with adequate samples for pharmacokinetic evaluation were included. The target suramin plasma concentration was initially set between 10 and 50 \(\mu M \) for 72 h and the initial dose, calculated based on the published clinical data for MTD suramin (24,25), was 240 mg m\(^{-2}\) given as a single dose. Based on the results in the first cohort of six patients, the target concentrations were amended to between 10 and 50 \(\mu M \) over 48 h, and suramin was administered as two split doses (two-thirds on the first day and one-third on the second day). The suramin dose for subsequent cycles (i.e., second and later cycles) was reduced to compensate for the residual plasma concentration at 72 h pretreatment. A total of 62 patients (15 in phase I and 47 in phase II) were studied for pharmacokinetics. Phase I patients received a total of 85 treatment cycles, with a median of 6 cycles. Phase II patients received a total of 198 treatment cycles, with a median of 4 cycles. All patients showed renal and hepatic function tests within the normal limits, before and after treatments.

Pharmacokinetic Studies and Data Analysis

Suramin or paclitaxel was extracted from plasma or urine, and analyzed with previously published high-performance liquid chromatography methods (26). The detection limit was 0.5 \(\mu g \) mL\(^{-1}\) for suramin and 15 ng mL\(^{-1}\) for paclitaxel. For carboplatin, plasma ultrafiltrates containing the free drug (not bound to plasma proteins) were obtained, diluted with deionized water, and analyzed for platinum content by using inductively coupled plasma mass spectrometry, as previously described (27).

To determine whether suramin affected the plasma protein binding of paclitaxel and vice versa, 2 mL human plasma containing nonradiolabeled paclitaxel and tritium-labeled suramin, or nonradiolabeled with tritium-labeled paclitaxel, was placed in the upper chamber of an ultrafiltration unit that was separated from the lower chamber by a cellulose membrane (molecular weight cutoff at 10,000; Amicon, Beverly, MA, USA). The unit was maintained in room temperature for 45 min, followed by centrifugation at 2,000 \(\times \) g for 30 min. Aliquots (25 \(\mu l \) each) were removed from the top chamber prior to ultrafiltration (containing free plus bound drug), and from the bottom chamber after ultrafiltration (containing only the free drug), and analyzed for paclitaxel or suramin by using liquid scintillation counting. The extent of protein binding was calculated as (Total concentration – Free concentration) / (Total concentration).

Pharmacokinetic analysis was performed with WinNonlin. Phase I suramin plasma data were analyzed by using open two- and three-compartment linear models with a constant infusion input. For paclitaxel and carboplatin data and phase II suramin data, we used noncompartmental analysis. Renal clearance was calculated as the amount of suramin excreted in 24-h urine divided by the plasma AUC over the same 24-h period.

Overview of Development and Validation of Dosing Equations/Nomogram

Figure 1 outlines the schema. First, we used the pharmacokinetic results in the first cohort of six phase I patients to determine the duration that covered \(\geq 90\% \) of the paclitaxel/carboplatin AUC, with the goal of maintaining the plasma suramin concentrations at between 10 and 50 \(\mu M \) over this duration. This led to adjustments in the suramin regimen; administering suramin in two split doses yielded the target concentrations over 48 h in the second cohort of six patients. The pharmacokinetic results of these 12 patients were then used with PPK analysis to derive suramin dosing equations, which were then used to predict the dose in three additional phase I patients. Through retrospective and prospective analyses of the precision and accuracy of the PPK-based dosing equations, a correction factor was identified and used
to derive a dosing nomogram. The predictive power of the nomogram was evaluated in 47 phase II patients.

Population-Based Pharmacokinetic Analysis

Suramin data were analyzed with the nonlinear mixed-effects modeling approach (NONMEM Version V; UCSF, San Francisco, CA, USA). PPK analysis identifies the sources of interindividual variability in pharmacokinetic parameters and is performed in a stepwise manner (28,29), as follows.

The first step is to define the appropriate structural model for the pharmacokinetic parameters of interest. Because ~90% of the area under the suramin plasma concentration–time curve was accounted for by the area under one phase (i.e., terminal phase), we used a one-compartment model for PPK analysis due to its relative ease. Equation (1) describes the population-based plasma concentrations (C) as a function of clearance (CL) and volume of distribution (V), in a one-compartment model.

\[
C_{ij} = \frac{\text{Dose}}{V_j} e^{-\left(\frac{CL_j}{V_j}\right) \times \text{time}_i} \quad (1)
\]

where subscript i represents time and subscript j denotes a patient. For example, \(C_{ij}\) is the predicted plasma concentration at a particular time i for a patient j. The NONMEM subroutines describing this model are supplied as prewritten programming codes ADVAN1, TRAN2 in the PREDPP library of the NONMEM software.

In NONMEM analysis, error functions are used to describe the random deviations between model-predicted data and observed data, for individual pharmacokinetic parameters. Our objective was to identify the dose that can be calculated based on CL and V. Hence, the analysis focused on these two parameters. Equations (2) and (3) describe the deviation of CL (CL\(_j\)) and V (V\(_j\)) in an individual patient from the population or typical values (CL\(_\text{typ}\) and V\(_\text{typ}\)).

\[
CL_j = CL_{\text{typ}} \times (1 + \eta_{CL}) \quad (2)
\]

\[
V_j = V_{\text{typ}} \times (1 + \eta_V) \quad (3)
\]

where \(\eta_{CL}\) and \(\eta_V\) representing the interindividual variation in CL and V are random values normally distributed around a mean of zero with a variance of \(\omega^2\).

Fig. 1. Development and validation of dosing nomogram: Experimental Design.

Phase I

- First cohort of 6 patients
- Single suramin dose
- Observed >10 μM at 48 hr, but >50 μM at 4.5 hr
- Second cohort of 6 patients
- Split suramin doses
- Achieved target concentrations
- Used data of all 12 patients to develop separate dosing equations for females and males
- Verified predictive power of dosing equations in 3 additional phase I patients
- A total of 58 patients enrolled. Forty-seven patients provided sufficient pharmacokinetic data to evaluate the predictive power of the dosing equations

Phase II
Equation (4) describes the residual error between the predicted vs. the observed concentration; \(Y_{ij} \) is the observed plasma concentration of the \(j \)th individual at the \(i \)th sampling time, \(C_{ij} \) is the PPK Model-predicted values, and \(\epsilon_{ij} \) are the proportional and additive errors, respectively, with a mean of zero and a variance of \(\sigma^2 \).

\[
Y_{ij} = C_{ij} \times (1 + \epsilon_{ij}) + \epsilon_{2ij}
\]

(4)

Next, the physiological or pathological parameters of patients (referred to as covariates) that significantly contributed to the interindividual variability in CL and \(V \) were incorporated into the model (referred to as the Full Model). This was accomplished by examining the relationships between covariates and pharmacokinetic parameters in individual patients by using linear regression; covariates that showed a coefficient of determination (\(r^2 \)) of greater than 0.4 with a 5% significance (\(p < 0.05 \)) were selected as candidate covariates. A candidate covariate was incorporated into the model if its inclusion reduced the objective function value of the model by at least 3.9 (i.e., \(\chi^2 \) value associated with \(p < 0.05 \) for 1 degree of freedom). To ascertain that the selected covariates played an important role in the model performance, the final model (referred to as PPK Model) was obtained by removing insignificant covariates from the Full Model in a more restrictive backward elimination process. In this process, a covariate was retained if its removal resulted in an increase in the objective function by at least 7.9 (\(\chi^2 \) value associated with \(p < 0.005 \) and 1 degree of freedom).

Evaluation of Dosing Equations

The PPK Model (further described in Results), combined with individual patient parameters, yield PPK Model-based doses for each treatment cycle. The performance of the PPK Model-based dosing equations was evaluated as follows. First, we calculated the target dose (referred to as Ideal Dose) that would yield a plasma concentration of 15 \(\mu M \) suramin at 48 h (\(C_{48h,target} \)), using Eq. (5).

\[
\text{Ideal Dose} = \frac{\text{administered dose} \times (C_{48h,target} - C_{pre} \times e^{-k_{48}})}{(C_{48h,observed} - C_{pre} \times e^{-k_{48}})}
\]

(5)

where \(C_{pre} \) is observed predose suramin concentration and \(C_{48h,observed} \) is the observed or fitted concentration at 48 h. The deviation of PPK Model-predicted dose from Ideal Dose for each cycle (Deviation) was calculated by using Eq. (6). The mean and standard deviation of Deviations of all cycles represent the accuracy and precision, respectively, of the PPK Model-predicted doses.

\[
\text{Deviation from Ideal Dose} = \left(\frac{\text{Ideal Dose} - \text{Predicted dose}}{\text{Ideal Dose}} \times 100\% \right)
\]

(6)

Simultaneously, the % deviations of the PPK Model-predicted plasma concentrations of each cycle was calculated by using Eq. (7), and the accuracy and precision of the PPK Model-predicted concentrations were calculated as described for the PPK Model-predicted doses.

\[
\text{Deviation from target concentrations} = \left(\frac{C_{predicted} - C_{observed}}{C_{predicted}} \times 100\% \right)
\]

(7)

Validation of PPK Model-Based Dosing Method in Phase II Study

The final dosing equations and the resulting nomogram were adopted for the Phase II study. A total of 58 patients were accrued to the Phase II trial. The first 11 Phase II patients provided only 0- and 24-h samples. We later amended the protocol and obtained additional samples (predose, 0.5, 3.5, 4.5, 6, 24, and 26 h) that enabled the determination of the 48-h concentration through pharmacokinetic data fitting (actual samples were not available). The performance of the dosing nomogram was evaluated by comparing the observed/fitted concentrations to the target range of 10–50 \(\mu M \) over 48 h.

Statistical Analysis

Statistical significance of the differences in pharmacokinetic parameters between groups was analyzed by using Student’s \(t \) test. The Akaike Information Criterion and the Schwartz Criterion were used to compare the fitting of two- and three compartment pharmacokinetic models to the suramin plasma concentration–time data (30).

RESULTS

Pharmacokinetics of Paclitaxel and Carboplatin

The results show similar clearance and terminal half-lives for the two paclitaxel doses used (initially 175 mg kg\(^{-1}\), escalating to 200 mg kg\(^{-1}\)). For carboplatin, the average dose was 679 ± 115 mg (range, 514–894; median, 654). The average AUC from time 0 to 48 h was 1.27 ± 0.24 mg min mL\(^{-1}\) for paclitaxel (200 mg kg\(^{-1}\) dose) and 6.3 ± 1.4 mg min mL\(^{-1}\) for carboplatin, and the respective AUC from time 0 to time infinity were 1.33 ± 0.27 and 6.4 ± 1.4 mg min mL\(^{-1}\), indicating the attainment of >92% and >99% of the total AUC during the first 48 h. A comparison of the paclitaxel and carboplatin pharmacokinetics in the present trial with literature data (31–34) showed no significant changes due to the addition of suramin (not shown).

Pharmacokinetics of Chemosensitizing Suramin

The target suramin concentration range was initially set at 10–50 \(\mu M \) over 72 h. Results in the first six patients indicated the attainment of the target concentration of 10–20 \(\mu M \) at 72 h in five patients, but showed peak levels exceeding 50 \(\mu M \) in all patients. As >90% of the AUCs of paclitaxel and carboplatin were attained in the first 48 h, the target suramin concentrations were amended to between 10
and 50 μM over 48 h. We calculated that these concentrations could be achieved by giving suramin in two split doses, with two-thirds given on the first day and the remaining one-third could be achieved by giving suramin in two split doses, with significantly, albeit only slightly, decreased the paclitaxel binding at 10 μg mL$^{-1}$, from 88.9% to 88.3 ± 0.2%. This corresponded to a 5% increase in the free fraction of paclitaxel at 10 μg mL$^{-1}$ (i.e., from 11.1% to 11.7%). This relative small interaction between the two drugs did not affect the disposition of paclitaxel, as in the present study its pharmacokinetics is not significantly different from previous studies where it was given only with carboplatin (35–37).

PPK-Based Pharmacokinetic Analysis

Plasma concentration–time profiles of 53 cycles obtained in the first 12 patients were analyzed by using PPK, to develop easy-to-use dosing equations. We reasoned that this task could be accomplished by using the simplest pharmacokinetic model, capable of reliably described plasma concentrations between 48 h (needed to assess maintenance of target concentrations) and the start of the next treatment cycle (determinant of the next dose). The dominance of the terminal phase (β phase half-life was 40 times the α-phase half-life, and ~90% of the total AUC was accounted for by the area under the terminal phase, calculated as B/β) led to the selection of a monoexponential model for PPK.

Table I. Pharmacokinetic Parameters of Suramin

<table>
<thead>
<tr>
<th>Pharmacokinetic parameters</th>
<th>Literature (33)</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (mg m$^{-2}$)</td>
<td>>2,000</td>
<td>240</td>
</tr>
<tr>
<td>AUC (μg h mL$^{-1}$)</td>
<td>NA</td>
<td>8.37 ± 1.89</td>
</tr>
<tr>
<td>Alpha half-life (h)</td>
<td>14.8 ± 7.5</td>
<td>5.12 ± 1.54b</td>
</tr>
<tr>
<td>Beta half-life (day)</td>
<td>41 ± 23</td>
<td>8.61 ± 2.28b</td>
</tr>
<tr>
<td>V1 (L m$^{-2}$)</td>
<td>3.0 ± 0.6</td>
<td>1.94 ± 0.26b</td>
</tr>
<tr>
<td>V2 (L m$^{-2}$)</td>
<td>10.6 ± 3.1</td>
<td>6.50 ± 1.82b</td>
</tr>
<tr>
<td>V$_{dec}$ (L m$^{-2}$)</td>
<td>13.6 ± 3.2a</td>
<td>8.45 ± 1.88b</td>
</tr>
<tr>
<td>CL (L h$^{-1}$ m$^{-2}$)</td>
<td>0.013 ± 0.006</td>
<td>0.029 ± 0.006b</td>
</tr>
</tbody>
</table>

Results of suramin used as a chemosensitizer at low dose in 15 patients are compared to literature data obtained during Near-MTD application as a cytotoxic agent (33). As the pharmacokinetics of low dose suramin (cycle 1) was best described by a two-compartment model, data is presented, and compared to a two-compartment analysis of high dose suramin. High dose suramin is adequately described by either a two- or a three-compartment model (33). Because the current study administered suramin every 3 weeks, whereas earlier studies administered suramin at more frequent intervals, the dose and AUC were normalized per 3-week interval. Mean ± standard deviation. NA, not available.

aV$_{dec}$ was estimated as the sum of V1 and V2; standard deviation was calculated according to the error propagation rule (SD12 + SD22)$^{1/2}$.

bp < 0.05; unpaired two-tailed Student’s t test compared to literature.

In Vitro Protein Binding of Paclitaxel and Suramin

The plasma protein binding of suramin at clinically achievable concentrations (i.e., 10 and 100 μg mL$^{-1}$) remained constant at 99.6 ± 0.02% (n = 3), and was not altered by the addition of 10 μg mL$^{-1}$ paclitaxel. The plasma protein binding of paclitaxel was 90.8 ± 0.5%, 90.8 ± 0.2%, and 88.9 ± 0.3% (n = 3 each) at clinically achievable concentrations of 0.1, 1, and 10 μg mL$^{-1}$, respectively. Addition of 100 μg mL$^{-1}$ suramin did not affect the binding of paclitaxel at 0.1 and 1 μg mL$^{-1}$ concentration, but significantly, albeit only slightly, decreased the paclitaxel binding at 10 μg mL$^{-1}$, from 88.9% to 88.3 ± 0.2%. This corresponded to a 5% increase in the free fraction of paclitaxel at 10 μg mL$^{-1}$ (i.e., from 11.1% to 11.7%). This relative small interaction between the two drugs did not affect the disposition of paclitaxel, as in the present study its pharmacokinetics is not significantly different from previous studies where it was given only with carboplatin (35–37).

Fig. 2. Suramin plasma concentration–time profiles. Suramin was given by single doses (panel A, total of 19 treatments) or by split doses (panel B, total of 66 treatments). Arrows indicate times for the initiation of 30-min suramin infusion. Data are mean ± 1 SD. Data points are connected by straight lines.
Nine potential covariates [i.e., age, body weight, ideal body weight, height, body surface area (BSA) age, gender, creatinine CL, creatinine concentration, and albumin concentration] were examined. Their values and correlation coefficients with CL and V are shown in Table II. The covariates that showed statistically significant correlations with CL were body weight and BSA. In these 12 patients, the CL was significantly higher in nine male than in the three female patients. Accordingly, gender was included as a covariate. Creatinine CL showed a significant correlation by the nonparametric Spearman correlation (\(r = 0.636, p = 0.048 \)). The remaining covariates did not show significant correlations in the linear regression analysis, and were not further evaluated. As body weight and BSA are strongly correlated \((r = 0.97, p < 0.001) \), and as BSA is more widely used in dose determinations for oncology patients, only BSA (but not body weight) was used in the Full Model for CL\(_{\text{typ}}\) [Eq. (8)]. V showed a significant correlation with BSA. Further testing showed improved model performance when BSA\(^2\) was used as covariate instead of BSA. No other covariates reached statistical significance. The Full Model for V\(_{\text{typ}}\) is described by Eq. (9).

\[
CL_{\text{typ}} = (\theta_1 \times BSA + \theta_2 \times CrCL + \theta_3) \times (1 - \theta_4) \tag{8}
\]

\[
V_{\text{typ}} = \theta_5 \times BSA^2 + \theta_6 \tag{9}
\]

where \(\theta_1 \) and \(\theta_2 \) describe the effects of BSA and CrCL on CL\(_{\text{typ}}\), respectively. For males, \(\theta_4 \) was set to zero. For females, \(\theta_3 \) represents the difference between the clearance values for males and females. \(\theta_5 \) is the proportionality constant that describes the effect of (BSA\(^2\)) on V\(_{\text{typ}}\). \(\theta_6 \) and \(\theta_8 \) reflect the intercept values for CL and V, with the effects of the covariates removed.

Full Model was subsequently simplified by eliminating the covariates that did not significantly affect the model performance. Results are summarized in Table III. Removal of the fixed-effect parameters, \(\theta_2, \theta_3, \) and \(\theta_6 \), from the Full Model altered the objective function value by less than 7.9,

Table II. Relationship Between Suramin Clearance and Volume of Distribution and Clinical Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CL (L h(^{-1}))</th>
<th>V (L)</th>
<th>Weight (kg)</th>
<th>IBW(^a) (kg)</th>
<th>Height (in.)</th>
<th>BSA (m(^2))</th>
<th>Age (years)</th>
<th>Gender</th>
<th>CrCL (mL min(^{-1}))</th>
<th>Serum creatinine (mg dL(^{-1}))</th>
<th>Serum albumin (g dL(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>50.4</td>
<td>18.2</td>
<td>79.3</td>
<td>68.5</td>
<td>68.5</td>
<td>1.94</td>
<td>60.1</td>
<td>8 male</td>
<td>88.2</td>
<td>0.94</td>
<td>4.22</td>
</tr>
<tr>
<td>SD</td>
<td>±11.7</td>
<td>±3.2</td>
<td>±11.1</td>
<td>±9.1</td>
<td>±3.3</td>
<td>±0.17</td>
<td>±9.2</td>
<td>2 female</td>
<td>±18.8</td>
<td>±0.13</td>
<td>±0.37</td>
</tr>
</tbody>
</table>

Data were taken from all cycles of 10 of the first 12 phase I patients. Two patients with samples collected for <1 terminal suramin half-life were not included. Ideal body weight (IBW) was calculated as the sum of (50 for males and 45.5 for females) and (2.3 \(\times \) height in inches \(-\) 60). Creatinine CL was calculated using the Cockroft-Gault equation. The correlation coefficients \((r) \) of CL and V with gender were obtained by assigning arbitrary values of 1 for male and 2 for female patients. The \(p \) values for the correlations are also indicated.

Table III. Estimates for Population Model Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Full model</th>
<th>95% Confidence interval</th>
<th>Population model</th>
<th>95% Confidence interval</th>
<th>Difference in minimum values of objective function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1) (L h(^{-1}) m(^{-2}))</td>
<td>9.40</td>
<td>190 -1.97 -20.8</td>
<td>26.2</td>
<td>2.70</td>
<td>24.6 -27.4 -15.47</td>
</tr>
<tr>
<td>(\theta_2)</td>
<td>0.10</td>
<td>137 0.04 0.19</td>
<td>NA</td>
<td>NA</td>
<td>NA -6.03</td>
</tr>
<tr>
<td>(\theta_3) (L h(^{-1}))</td>
<td>24.8</td>
<td>106 8.09 41.5</td>
<td>NA</td>
<td>NA</td>
<td>NA -2.59</td>
</tr>
<tr>
<td>(\theta_4)</td>
<td>0.39</td>
<td>20 0.34 0.44</td>
<td>0.31</td>
<td>13.1</td>
<td>0.28 -41.57</td>
</tr>
<tr>
<td>(\theta_5) (L m(^{-1}))</td>
<td>4.30</td>
<td>24 3.62 4.92</td>
<td>5.13</td>
<td>4.40</td>
<td>4.49 -29.47</td>
</tr>
<tr>
<td>(\theta_6) (L)</td>
<td>1.50</td>
<td>229 -0.72 3.90</td>
<td>0.31</td>
<td>13.1</td>
<td>0.28 -41.57</td>
</tr>
<tr>
<td>(k_{\text{typ}}) (h(^{-1}), male)</td>
<td>NA</td>
<td>NA NA NA</td>
<td>0.0026</td>
<td>7.3</td>
<td>0.0023 -0.0030</td>
</tr>
<tr>
<td>(k_{\text{typ}}) (h(^{-1}), female)</td>
<td>NA</td>
<td>NA NA NA</td>
<td>0.0022</td>
<td>4.7</td>
<td>0.0020 -0.0024</td>
</tr>
</tbody>
</table>

The population pharmacokinetic parameters were obtained using data from the first 12 patients (54 treatment cycles) in the phase I study. Fitted values for different fixed effect parameters \([\theta_1-\theta_6 \text{ of Eqs. (8) and (9)}] \) and estimates of variability of the estimates are presented. \(\theta_2, \theta_3, \) and \(\theta_6 \) were removed from the final population model since their removal increased the objective function value by less than 7.9. NA: not applicable.
which is the value required for inclusion (29). Removal of these three parameters simultaneously altered the objective function value by 7.26. Removal of θ_2 rendered the model equations independent of the creatinine CL and simplified the model. The remaining three significant parameters were θ_1, θ_3, and θ_5. The final PPK Model is described by Eqs. (10) and (11).

$$CL^\text{typ} = (\theta_1 \times BSA) \times (1 - \theta_4)$$
$$V^\text{typ} = \theta_5 \times BSA^2$$

Table III shows the parameter estimates and their coefficient of variations (CV) and 95% confidence intervals. The resulting final PPK Model, using only the two covariates BSA and gender, reduced the estimated interindividual variability in CL by 5-fold (from 30% to 6%) and the variability in V by 6-fold (from 20% to 3%).

Derivation of PPK Model-Based Dosing Equations

Due to the residual suramin concentration at the time of the second and later treatment cycles, separate equations are required to calculate the doses for the first treatment cycle and subsequent cycles.

The first dose was calculated by using Eq. (12), a simplified version of Eq. (1).

$$\text{Dose} = \frac{C \times V}{e^{-k \times t}}$$

Hence, dose calculation requires the values of V and k, the elimination rate constant. Equation (13) describes k^typ, as a function of CL^typ and V^typ.

$$k^\text{typ} = \frac{CL^\text{typ}}{V^\text{typ}}$$

The value of k for each patient was calculated by using Eqs. (10), (11), and (13). The average k value (k^typ) was 0.0026 h$^{-1}$ for males and 0.0022 h$^{-1}$ for females. k^typ showed a low variability within the same gender (CV of 7% for males and 5% for females). Substituting the values of k^typ for each gender and the desired C of 15 μM or 21.4 μg mL$^{-1}$ at 48 h into Eq. (12) yielded Eq. (14).

$$\text{First cycle dose (mg)} = \frac{(21.4 \times 5.13 \times BSA^2)}{e^{-(0.0026 \times 0.0022 \times 48)}} = \text{FACTOR1} \times BSA^2$$

The numerical values of FACTOR1 were calculated to be 124 mg m$^{-2}$ for males and 122 mg m$^{-2}$ for females. For ease of dose calculation in later studies, the value of FACTOR1 was set at 125 mg m$^{-2}$ for both genders.

To attain the same target concentrations of 21.4 μg mL$^{-1}$ at 48 h during subsequent treatment cycles, the dose administered should replace the fraction of the dose that was eliminated during the interval between treatments. This is described in Eq. (15).

Subsequent cycle dose (mg)

$$= \text{First dose} \times (1 - e^{-k \times t})$$
$$= \text{FACTOR1} \times BSA^2 \times (1 - e^{-k \times t})$$

Note that in contrast to the first cycle, where $t = 48$ h, the value of t during subsequent cycles is a variable that equals the time lapsed since the previous cycle. Furthermore, the value of t for the first cycle was relatively short (i.e., 48 h), which resulted in a <2% difference in the FACTOR values for males and females. Because of this small difference, it was not necessary to adjust for the gender-related differences in the calculation of the first cycle doses (i.e., FACTOR1 was set at 125). On the other hand, calculations of doses for subsequent cycles with time intervals of approximately 3 weeks (i.e., $t \geq 504$ h) yielded ~9% higher values for males than for females, and gender-based dose adjustments were made.

PPK Model-Based Dosing Method: Precision and Accuracy Determination, and Refinement using Phase I Results

The precision and accuracy of the PPK Model was determined by retroactive analysis of the data of the first 12 phase I patients. The precision of plasma concentration prediction by PPK Model, evaluated by using Eq. (7), was 22%. A comparison of PPK Model-predicted dose and Ideal Dose (calculated by using Eq. (5) to yield a plasma concentration of 15 μM at 48 h) indicated a 13% overestimation in the model prediction. Equation (15) was therefore further modified by multiplying FACTOR1 with 0.88 (i.e., 1 divided by 1.13), to yield Eq. (16). The overestimation is likely a result of a slight overestimation of V^typ and consequently the calculated dose.

$$\text{Subsequent cycle dose (mg)} = 0.88 \times \text{FACTOR1} \times BSA^2 \times (1 - e^{-k \times t})$$

This refinement yielded an accuracy of 102 (range, 51–151; median, 100; 23% standard deviation) for individual treatment cycles in individual patients, and 100 (range, 74–121; median, 97; 13% standard deviation) for all treatments in all patients. Figure 3 shows the correlation between Refined PPK Model-predicted dose and Ideal Dose.

We next performed prospective analysis by using Eqs. (14) and (16) to calculate the suramin doses during the first and subsequent cycles, respectively, for three additional phase I patients. To maintain the peak suramin concentration below 50 μM, the suramin dose was administered in two parts with two-thirds of the total dose administered prior to chemotherapy, followed by the remaining one-third of the dose given 24 h after the first dose. The plasma concentrations in all treatments in these three additional phase I patients were within the target range of 10–50 μM over the 48-h duration. The difference between the observed and target plasma concentrations of 15 μM at 48 h were <17%. Based on the above results, the Refired PPK Model-based
dosing equations [Eqs. (14) and (16)] were adopted and their performances were further evaluated in the subsequent phase II trial.

Validation of Refined PPK Model-Based Dosing Method in Phase II Patients

Forty-seven patients (receiving a total of 199 treatments) provided sufficiently detailed pharmacokinetic data for model validation. The suramin doses ranged from 135 to 673 mg. The target concentration range was successfully reached in >94% of administrations; suramin concentrations were below 50 \(\mu \text{M} \) in 194 of 199 cycles (97%) at the end of paclitaxel infusion (i.e., 4.5 h) and were at or above 10 \(\mu \text{M} \) at 48 h in 192 of 199 cycles (96%).

As the gender difference in suramin clearance observed in the phase I study was based on only five female patients, we extended the evaluation of the gender effect by comparing the suramin concentrations in male (\(n = 28 \)) and female (\(n = 19 \)) phase II patients. Note that the phase II female patients received on average 9% lower BSA-normalized doses. The results indicate no significant gender-related difference in suramin clearance (0.023 \(\pm \) 0.006 L h\(^{-1}\) m\(^{-2}\) in females and 0.024 \(\pm \) 0.005 L h\(^{-1}\) m\(^{-2}\) in males, \(p > 0.37 \)).

DISCUSSION

Dose-Dependent Pharmacokinetics of Suramin

The current study showed that the dose of suramin used as a chemosensitizer is approximately 10% of MTD (38). A comparison of the pharmacokinetics of chemosensitizer suramin to the literature data on MTD suramin (38) shows a 2.5-fold higher clearance (Table I). This confirms the nonlinear suramin disposition suggested by a preliminary report on six subjects where the clearance of a 200-mg test doses was at least 2-fold lower than the clearance during MTD treatment with initial weekly administration of 2,000–2,800 mg m\(^{-2}\) [bar graph in (39)].

The processes for suramin clearance are not well understood. A study in patients with acquired immunodeficiency syndrome showed that suramin is essentially unmetabolized (40). The suggestion that renal clearance may play an important role was based on the finding that renal clearance accounted for total clearance in a single patient and the reduced total clearance in patients who received furosemide, a known inhibitor of tubular secretion (41). The present study provided an opportunity to test this hypothesized elimination; the results showed that renal clearance accounted for less than 10% of total clearance, which is in line with the value of ~20% we estimated from the published data on MTD suramin (42). The minor role of renal clearance for chemosensitizer suramin is also consistent with the exclusion of creatinine clearance as an important covariate of the PPK Model.

Several findings suggest dose-dependent tissue distribution of suramin. First, the plasma pharmacokinetics of MTD suramin was better described by a three-compartment open linear model than by a two-compartment model; the latter underestimated the plasma concentrations during the wash-

Table IV. PPK-Based Nomogram of Suramin

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>FACTOR (mg/m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days since the administration of the first dose during previous cycle</th>
<th>FACTOR (mg/m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>82</td>
</tr>
<tr>
<td>23</td>
<td>84</td>
</tr>
<tr>
<td>24</td>
<td>86</td>
</tr>
<tr>
<td>25</td>
<td>87</td>
</tr>
<tr>
<td>26</td>
<td>88</td>
</tr>
<tr>
<td>27</td>
<td>90</td>
</tr>
<tr>
<td>28</td>
<td>91</td>
</tr>
<tr>
<td>29</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>93</td>
</tr>
<tr>
<td>31</td>
<td>94</td>
</tr>
<tr>
<td>32</td>
<td>95</td>
</tr>
<tr>
<td>33</td>
<td>96</td>
</tr>
<tr>
<td>34</td>
<td>97</td>
</tr>
<tr>
<td>35</td>
<td>98</td>
</tr>
<tr>
<td>36</td>
<td>98</td>
</tr>
<tr>
<td>37</td>
<td>99</td>
</tr>
<tr>
<td>38</td>
<td>100</td>
</tr>
<tr>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>41</td>
<td>102</td>
</tr>
<tr>
<td>42</td>
<td>102</td>
</tr>
<tr>
<td>44</td>
<td>103</td>
</tr>
<tr>
<td>47</td>
<td>104</td>
</tr>
<tr>
<td>49</td>
<td>105</td>
</tr>
<tr>
<td>52</td>
<td>106</td>
</tr>
<tr>
<td>55</td>
<td>106</td>
</tr>
</tbody>
</table>

Fig. 3. Comparison of doses calculated by the PPK-based dosing method to Ideal Dose in individual patients. The first 12 patients in the phase I trial received suramin doses determined by real-time pharmacokinetics. For these patients, the Ideal Dose (mg m\(^{-2}\)) needed to obtain a plasma concentration of 15 \(\mu \text{M} \) at 48 h was calculated for each cycle as discussed in Materials and Methods. Diamonds represent data points and the line represents the linear regression line (\(y = 1.04x, r^2 = 0.59, p < 0.0001 \)).
out phase of a 12-week treatment (14, 38). The existence of a slowly accumulating third compartment for MTD suramin is further supported by the slow tissue accumulation kinetics in rats receiving similar doses (43). In contrast, chemosensitizer suramin was well described by a two-compartment model. Second, chemosensitizer suramin showed a 40% smaller steady-state distribution volume. Third, progressive increases in the terminal half-life, which would be expected for significant drug accumulation in a deep, slowly equilibrating third compartment over time, was not observed during cycle 2 to cycle 10 (over 30 weeks). These findings suggest a deep compartment that is apparent only at MTD. Further studies to investigate the mechanisms of this unusual dose-dependent drug distribution and whether it contributes to the loss of the chemosensitization effect are warranted.

PPK Model-Based Dosing Nomogram

The present study used a one-compartment PPK Model (as opposed to using a two-compartment model). This approach eliminates the need of multieponential equations and enables the derivation of an easy-to-use equation for clinical practice. The good predictive power of this equation was demonstrated in 50 patients (3 for phase I and 47 for phase II). The gender difference (14% lower clearance for 5 female patients) observed during the phase I trial led to the first dosing equations with gender-specific dose calculations. But because this difference was not observed in subsequent phase II studies in a larger group of female patients (n = 19), we recommend using a single dose calculation for both genders. To further facilitate clinical application, we constructed a nomogram that reduces the dosage calculation to a multiplication of the squared value of BSA with a tabulated factor to accommodate variations in treatment intervals (Table IV).

This study further showed that maintenance of patient plasma concentrations in the range of 10–50 μM for 48 h cannot be accomplished by a single intravenous short infusion starting at the beginning of the 48-h period. High peak concentrations can be avoided by using a number of approaches. In the current study, a split-dose schedule was successfully used to maintain concentrations within the desired range. An alternative approach, currently used in other phase II trials, is to administer an initial loading suramin dose, during the first treatment cycle, several hours earlier before chemotherapy.

The PPK Model-based dosing method for chemosensitizer suramin differs in several ways from the previously published fixed-dose method for MTD suramin (16, 17). First, the suramin dose in earlier studies is targeted to continuously maintain plasma concentration between 100 and 200 μM, and results in a >10-fold higher dose requirement over 3 weeks compared to chemosensitizer dose used in the present study. Second, to maintain high and cytotoxic concentrations, MTD suramin regimen includes a loading dose followed by tapered follow-up doses at intervals increasing from 1 to 10 days and, in later studies, to >40 days. These types of fixed-dose schedules are not applicable for chemosensitizer suramin, where the emphasis is not on maintaining near-constant maximally tolerated concentrations, but rather on keeping plasma concentrations within the effective range (10–50 μM) for the duration when the chemotherapeutic agents are present at therapeutically significant values (e.g., 48 h for paclitaxel and carboplatin).

CONCLUSION

The present study provided a PPK Model-based nomogram to identify the chemosensitizer suramin dose in patients, to deliver the target plasma concentrations that produced chemosensitization in human xenograft models (1–3), over 48 h. This approach further eliminates the requirement of blood sampling for pharmacokinetic evaluation to guide dose adjustments. Our results further indicate nonlinear disposition of suramin in patients, and no significant pharmacokinetic interaction among suramin, paclitaxel, and carboplatin.

ACKNOWLEDGMENTS

This study was supported in part by R37CA49816, R01CA78577, R21CA91547 and U01CA76576 from the National Cancer Institute, NIH, DHHS. Patients were treated at a General Clinical Research Center (GCRC), which is supported by M01-RR00034 from the National Institutes of Health, DHHS. Analysis of carboplatin concentrations was performed by the Pharmacoanalytical Core Laboratory of The Ohio State University Comprehensive Cancer Center. Tong Shen’s invaluable help in the renal clearance studies and management of clinical trial data is gratefully acknowledged.

REFERENCES

...
Suramin: Clinical Uses and Structure-Activity Relationships

Ross P. McGeary¹,²,*, Andrew J. Bennett¹, Quoc B. Tran¹, Kelly L. Cosgrove¹ and Benjamin P. Ross¹,²

¹School of Molecular & Microbial Sciences, The University of Queensland, Brisbane, Qld 4072, Australia; ²School of Pharmacy, The University of Queensland, Brisbane, Qld 4072, Australia

Abstract: Suramin is a polysulfonated polyaromatic symmetrical urea. It is currently used to treat African river blindness and African sleeping sickness. Suramin has also been extensively trialed recently to treat a number of other diseases, including many cancers. Here, we examine its modes of action and discuss its structure-activity relationships.

Key Words: Suramin, trypanosomiasis, onchocerciasis, FGF.

*Author Profile: Ross McGeary is a Senior Lecturer at The University of Queensland, Brisbane, Australia. He is a medical chemist with joint appointments at the Chemistry and Pharmacy Schools. Dr. McGeary’s research focuses on the development of new synthetic methodologies, and the design and synthesis of enzyme inhibitors and other biologically important molecules.

INTRODUCTION

Suramin (1) (also known as Germanian and Bayer-205) is a symmetrical polysulfonated polyaromatic urea. The hexa-sodium salt (C₁₅H₁₄N₆Na₆O₂₃S₆, molecular weight 1429.2) is a highly water-soluble, hygroscopic pale pink powder. Its discovery in 1916 developed out of earlier observations that trypan red (2), and other dyes such as trypan blue (3) and afridol violet (4) [1], cured trypanosomiasis in mice [2]. The composition of suramin was kept secret by Bayer, until Fournaud and coworkers elucidated the chemical structure and published it in 1924 [3].

Suramin has been used as an early stage treatment of trypanosome-caused onchocerciasis (African river blindness) and African trypanosomiasis (African sleeping sickness) since 1920 [4]. It is currently under clinical evaluation for its potential to regress a number of cancer cell lines, including non-small cell lung cancer, advanced breast cancer, hormone refractory prostate cancer, metastatic renal cell cancer, colorectal cancer and high-grade gliomas [5-7]. Suramin’s in vitro activity against HIV led to it being trialed in AIDS patients [8, 9]. Suramin binds to a large number of peptidic growth factors [10]. The extremely diverse range of biologically important molecules and cell lines that suramin has been reported to inhibit is, perhaps, due to its non-specific mode of binding [11]. As a result, however, its clinical applications are significantly limited because non-specific binding leads to side effects and high toxicity. Additionally, its great metabolic stability, long plasma half-life (41-78 days) and a relatively low therapeutic index are significant hurdles to overcome if members of this family of compound are to be more broadly developed as drugs [12-14].

DISEASES TREATABLE WITH SURAMIN

Malignant Neoplasms

In 1989 suramin was trialed on 15 patients against a number of metastatic cancers, with some encouraging results [15]. Its efficacy as a treatment for metastatic adrenocortical carcinoma was examined, with the authors concluding that suramin possessed antineoplastic efficacy in the treatment of this disease, but that its toxic side effects and narrow therapeutic window required strict monitoring of serum suramin levels in patients and made it unsuitable as a first-line treatment for this carcinoma [16]. Although suramin caused significant dose-dependent growth inhibition of human breast cancer cells in vitro [17-19], pilot studies which examined suramin’s efficacy in treating breast cancer revealed no tumor responses [20, 21]. More recent work, however, has shown a marked enhancement of the anti-cancer effects of paclitaxel when co-administered with low-dose suramin to human MCF7 breast xenograft tumors in mice, leading to the initiation of phase I/II trials of paclitaxel and low-dose suramin combination in advanced metastatic breast cancer patients [22].

Suramin has shown promise as a treatment option for hormone-refractory prostate cancer [23-30]. In 2000, a randomized phase III trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone showed that moderate palliative benefit was achieved with suramin, and that time to disease progression was longer in patients who received suramin [5]. However, a later study by Rosen and coworkers was unable to confirm the previously reported high rate of activity and durability of remission achieved using suramin [31]. Kaur and coworkers [14], and Autorino and coworkers [32] have critically reviewed the phase II and phase III clinical trial outcomes of suramin in the treatment of prostate cancer. A 1992 study of the effectiveness of suramin in treating advanced platinum-resistant ovarian cancer showed that some patients experienced disease stabilization and clinical
improvements [33]. Suramin caused significant dose-dependent growth inhibition of rat pancreatic tumors in vivo [17].

The effect of suramin on the human esophageal squamous cell carcinoma cell line KEsC-II was studied. Cell proliferation was stimulated at low concentrations of suramin, and inhibited at high concentrations, with the effects suggested to arise via phosphorylation of epidermal growth factor (EGF) receptors [34]. Suramin inhibits the growth of rhabdomyosarcoma [35]. The mechanism of action in this case was determined to be the interference of the binding of insulin-like growth factor II (IGF-II) to the type I IGF receptor, thereby interrupting the IGF-II autocrine growth in these cells [35]. Similarly, suramin inhibits the growth of non-small cell lung cancer cells that express EGF receptors, and suramin was shown to inhibit, in a concentration-dependent manner, the binding of EGF to its receptors in these cells [36]. A 2000 study evaluated the activity of suramin and a number of its analogues against a panel of human tumor cell lines and in primary cultures of tumor cells from patients, in an attempt to identify the suramin pharmacophore so as to develop suramin analogs with improved therapeutic ratios. These studies suggested that the pharmacophore for cytotoxicity was different for tumor cells from patients and for cell lines. It was also shown that suramin and its analogs were insensitive to a number of drug resistance mechanisms [37].

Onchocerciasis

Onchocerciasis (African river blindness) is caused by *Onchocerca volvulus*, a parasitic worm that is transmitted by blackflies of *Simulium* species, and is very long-lived in the human body. It is endemic in many countries in Africa and Latin America. The disease results in a number of morbidities, including blindness, skin rashes, lesions, intense itching and skin depigmentation [38]. Suramin has been used since the 1920s as an anthelmintic to treat onchocerciasis [4, 39]; however, it has now been largely superseded by ivermectin (5) [40]. Nevertheless, suramin remains the only drug in clinical use for the treatment of onchocerciasis that is effective against adult worms.

Trypanosomiasis

Trypanosomiasis (African sleeping sickness) is a disease of humans and cattle endemic in regions of sub-Saharan Africa. It is caused by a trypanosome (a parasitic protozoan of *Trypanosoma* species) and is transmitted by the tsetse fly. Left untreated, it is invariably fatal [41, 42]; the World Health Organization estimates that there are 40,000 mortalities per year [41]. Suramin and pentamidine (6) have been used as an early stage treatment of trypanosomiasis (before the parasites invade the central nervous system (CNS)) since 1920 [4, 43]. Eflornithine (7) and the arsenic-containing
drug, melarsoprol (8), are used for later stages of the disease when the parasites are established in the CNS.

Suramin accumulates only slowly in trypanosomes, and it has been suggested that uptake of this drug occurs via endocytosis bound to low-density lipoprotein [44]. Its mode of action against trypanosomes is unknown.

Toxicity

The toxic effects of suramin are well documented [14]. Clinical trials of suramin in cancer patients have uncovered frequent toxic side effects, including proteinuria, reversible liver toxicity, cornea damage such as vortex keratopathy, adrenal insufficiency, coagulopathy, and reversible acute demyelinating polyneuropathy [15]. A trial of suramin’s efficacy in treating metastatic adrenocortical carcinoma, in which the drug was administered for periods of up to 15 months, reported serious side effects in patients, including coagulopathy, thrombocytopenia, polyneuropathy and allergic skin reactions. The deaths of two patients in that trial were suggested by the authors to be possibly related to suramin therapy [16]. In a clinical trial of hormone-refractory prostate cancer, the most commonly encountered side effect was fatigue but, again, a fatality due to idiosyncratic myelosuppression (grade V) was observed in one patient [31]. Another trial of suramin’s efficacy against metastatic prostate cancer reported frequent ocular symptoms such as corneal deposits and lacrimation [45]. Skin reactions to suramin are common, most usually pruritus or urticaria, but fatal toxic epidermal necrolysis has been reported [46, 47]. The most common dose-limiting toxic effects are malaise and lethargy [48], and neurotoxicity [49]. Suramin has been shown to prevent and terminate pregnancy in mice [50].

Suramin is notable for its very high (99.7%) serum protein binding, its very long half-life (41-78 days [6]), and high metabolic stability [51]. Suramin’s volume of distribution is 31-46 litres and 80% of the drug is excreted renally [52].

MODES OF ACTION

Interaction of Suramin with Proteins

The anti-tumor activity of suramin [34, 53] has been proposed to stem from either its binding to essential growth factors (antagonizing the ability of these factors to stimulate the growth of tumor cells in vitro [15]), inhibition of protein tyrosine phosphatases, inhibition of angiogenesis, or a combination of these three processes [35, 36, 53-57]. In fact, two of these mechanisms are probably interconnected, as several reports have noted that the known angiostatic activity of suramin is at least in part related to fibroblast growth factor (FGF) binding and inhibition [58-64]. Table 1 summarizes the growth factors and enzymes that have been shown to be inhibited by, or bind to, suramin.

FGF Binding

Suramin’s ability to block the binding of fibroblast growth factor (FGF) to its receptor (FGFR) is of particular interest, because this event is fundamental in the process of angiogenesis. The FGFs comprise a family of proteins which are required for a variety of biological processes including cell growth and movement, differentiation, and protection from cell death [101-103]. They function by interacting with their cognate receptor (FGFR), which is a transmembrane protein possessing an extracellular FGF/heparin ligand binding region and an intracellular tyrosine kinase domain [104]. Activation of the receptor and subsequent signal transduction occurs when two FGF:FGFR complexes dimerize [105].
Heparin is required for dimerization to occur because it is able to bind to both FGF and FGFR, thereby strengthening the ternary complex formed on the cell surface [103]. Two crystal structures of the FGF:FGFR:heparin ternary complex exist, but they differ significantly, and there is uncertainty regarding which of these structures (if either) best represent the biologically relevant structure of the complex [103].

It is clear that the inhibition of FGF activity by suramin results from the formation of a complex with FGF, not from a direct interaction with FGFR [106]. It is also highly likely that suramin binds at or near to the heparin binding site, since heparin physically disrupts suramin-FGF complexes and counteract the angiostatic effects of suramin [59, 61, 63, 107-110]. Marchetti’s group has also reported that suramin inhibits heparanase, a glucuronidase whose activity correlates with the metastatic propensity of tumor cells [74].

A solution structure of FGF-1 complexed with 1,3,6-naphthalenetricarboxynitrate (NTS) (9) showed that NTS weakly and heterogeneously bound to the heparin binding site of this growth factor [111]. NTS has been shown to have angiostatic activity and, according to Lozano et al. [111], it can be considered a minimal model for suramin action. In another study by the same group, the crystal structure of FGF-1 in complex with 5-amino-2-naphthalenesulfonate (ANS) (10) was solved. The solved structure revealed a 1:1 stoichiometric ratio of FGF-1 to ANS, with ANS bound to the positively-charged heparin binding site of FGF-1 [112].

Two recent studies have published evidence not in concord with previous models on suramin’s interactions with FGF. Ganesh et al. reported the crystal structure and intermolecular interactions of a 1:1 complex of suramin with the heparin-binding site in vaccinia virus complement control protein (VCP), which is geometrically similar to many heparin-binding proteins, including FGF [97]. The authors were able to compare this crystal structure with the crystal structure of the heparin-VCP complex, and so determine that suramin interacts with a single heparin-binding site in VCP [97]. This study showed significant differences in the orientations of the naphthalene rings (end groups of suramin) relative to the configuration of binding of NTS and ANS to FGF as described in previous studies [111, 112]. Ganesh and co-workers also noted that superimposition of each of the naphthalene rings in suramin, from the crystal structure [97], on the naphthalene rings in ANS and NTS complexes [111, 112] resulted in suramin either having severe steric clashes with the FGF or no interaction beyond the naphthalene ring. They concluded therefore that the structural information gained from the ANS and NTS complexes was of limited use in elucidating the mode of binding of suramin to FGF.

Using isothermal titration calorimetry, Kathir et al. [113] suggested that human FGF-1 (hFGF-1) binds to two molecules of suramin with nanomolar affinity. This ternary complex subsequently oligomerizes to form a stable inactive tetramer which is incapable of binding to the receptor (Fig. (1)). The binding of the suramin molecules to hFGF-1 was shown to occur simultaneously at specific sites on the protein, inducing a conformational change and revealing solvent-exposed hydrophobic residues at the surface. Formation of the inactive tetramer then occurs due to the hydrophobic

Table 1. Enzymes and Growth Factors Inhibited by Suramin

<table>
<thead>
<tr>
<th>Enzyme/Growth Factor</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA polymerase</td>
<td>[65]</td>
</tr>
<tr>
<td>Reverse transcriptase</td>
<td>[9, 66-68]</td>
</tr>
<tr>
<td>Topoisomerase-I and Topoisomerase-II</td>
<td>[69-71]</td>
</tr>
<tr>
<td>ATPase</td>
<td>[72, 73]</td>
</tr>
<tr>
<td>Heparanase</td>
<td>[74]</td>
</tr>
<tr>
<td>Protein tyrosine phosphatases (PTP)</td>
<td>[55, 75]</td>
</tr>
<tr>
<td>Protein kinase C</td>
<td>[76, 77]</td>
</tr>
<tr>
<td>Phosphoglycerate kinase</td>
<td>[78]</td>
</tr>
<tr>
<td>Diacylglycerol kinase</td>
<td>[79]</td>
</tr>
<tr>
<td>NAD⁺-dependent histone deacetylases (surtuins)</td>
<td>[80]</td>
</tr>
<tr>
<td>Phosphatidylinositol kinase</td>
<td>[79]</td>
</tr>
<tr>
<td>G-Protein coupled receptor kinases</td>
<td>[81]</td>
</tr>
<tr>
<td>Ionotropic adenine and uracil 5'-nucleotide (P2X/P2Y) receptors</td>
<td>[82-84]</td>
</tr>
<tr>
<td>Bothrops asper venom phospholipase A2 (PLA2)</td>
<td>[85]</td>
</tr>
<tr>
<td>Fibroblast growth factors (FGFs)</td>
<td>[63, 86, 87]</td>
</tr>
<tr>
<td>Platelet-derived growth factor (PDGF)</td>
<td>[88, 86]</td>
</tr>
<tr>
<td>Epidermal growth factor (EGF)</td>
<td>[15, 36, 86]</td>
</tr>
<tr>
<td>Transforming growth factor-beta (TGF-β)</td>
<td>[15, 86]</td>
</tr>
<tr>
<td>Insulin-like growth factor II (IGF-II)</td>
<td>[35]</td>
</tr>
<tr>
<td>Androgen-induced growth factor (AIGF)</td>
<td>[89, 90]</td>
</tr>
<tr>
<td>Nerve growth factor (NGF)</td>
<td>[91]</td>
</tr>
<tr>
<td>Heparin-binding growth factor type-2 (HBGF-2)</td>
<td>[86]</td>
</tr>
<tr>
<td>Follicle-stimulating hormone (FSH)</td>
<td>[92]</td>
</tr>
<tr>
<td>Interleukin-2 (IL-2)</td>
<td>[93]</td>
</tr>
<tr>
<td>Interleukin-6 (IL-6)</td>
<td>[94]</td>
</tr>
<tr>
<td>Tumor necrosis factor-alpha (TNFα)</td>
<td>[95, 96]</td>
</tr>
<tr>
<td>Vaccinia virus complement control protein (VCP)</td>
<td>[97]</td>
</tr>
<tr>
<td>Plasmodium falciparum merozoite surface protein-1</td>
<td>[98]</td>
</tr>
<tr>
<td>Triosephosphate isomerase (TIM) reactivation</td>
<td>[99, 100]</td>
</tr>
</tbody>
</table>
attraction between the transiently exposed non-polar surfaces. Further NMR experiments revealed that suramin binds to residues of FGF that are involved in binding to heparin, as well as residues involved in binding to the FGFR. These two binding sites are separated by a distance of ~32 Å which suggested that a single molecule of suramin with a length of ~24 Å could not bind simultaneously to both sites [113].

Structure-Activity Relationships of FGF Binding

There have been a number of studies in which suramin analogs were prepared to determine structure-activity relationships (SARs) for suramin-FGF binding. These studies focused on a number of aspects of the structure of suramin, including the length and rigidity of the molecule, the nature of its end groups, its symmetry, the central urea group, and its methyl substituents [12, 37, 58, 62, 106, 112, 114-119]. The results of these SAR studies often differ from those directed at HIV (reverse transcriptase inhibition) [120], trypanosomiasis [121], the P2 receptor [84], or class III histone deacetylases (surtuins) [80].

The major deficiency in most of these studies is that they focused on the potential angiostatic or anti-cancer activities of suramin analogs, which are consequences of complex processes rather than the effect resulting from the direct binding of suramin to FGF or its receptor [58, 62, 106, 115-119]. Therefore, structure-activity relationships derived from these investigations do not necessarily mean that activity against proliferation and differentiation was through the inhibition of FGF by suramin. Furthermore, the SAR study summarised by Fig. (2) were obtained from different studies, many employing different cell lines (Table 2), so biological activity observed for a particular functional group in one particular cell line may not necessarily confer activity in a different biological context.

Length and Symmetry of Suramin

Several SAR studies have noted that a minimum molecular length of suramin analogs was required for activity, so that compounds without at least one aromatic “spacer” positioned symmetrically either side of the central urea group had little or no biological effect compared to suramin itself [12, 58, 62, 106, 114, 117]. The spacing between the anionic binding sites in FGF is ~32 Å and thus these pockets require inhibitors in which the two anionic end-groups are similarly separated.

Molecular symmetry does not appear to be a requirement for inhibitory activity in suramin analogs, since some asymmetric compounds were found to have similar activity to suramin [106]. However, these compounds still satisfied the minimum length requirement for an inhibitor. Most analogs tested have been symmetrical due to ease of synthesis. Interestingly, some studies showed that smaller, asymmetric compounds containing a naphthalenesulfonate moiety had anti-proliferative or angiostatic activity against FGF-promoted cell lines [83, 111, 112, 115, 118].

Table 2. Assays Used for Suramin and its Analogs

<table>
<thead>
<tr>
<th>Type of Assay</th>
<th>Specific Assay</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell proliferation/tumor growth inhibition</td>
<td>Inhibition of cell growth (various cell lines including carcinomas)</td>
<td>[37, 58, 112, 115-118]</td>
</tr>
<tr>
<td></td>
<td>Observation of tumor colon cancer cell differentiation</td>
<td>[119]</td>
</tr>
<tr>
<td></td>
<td>Mouse in vivo tumor growth inhibition</td>
<td>[118]</td>
</tr>
<tr>
<td>Angiogenesis inhibition</td>
<td>Neovascularization of the chorioallantoic membrane (CAM assay)</td>
<td>[12, 62, 106, 114-116, 118]</td>
</tr>
<tr>
<td></td>
<td>Mouse angiogenesis assay – sponges implanted in backs of mice and evaluated for angiogenesis</td>
<td>[12, 58, 106, 112, 114]</td>
</tr>
<tr>
<td></td>
<td>Microcarrier angiogenesis assay</td>
<td>[117]</td>
</tr>
<tr>
<td>FGF binding inhibition</td>
<td>Inhibition of FGF-2-stimulated bovine adrenalcapillary endothelial cell [H]methyl-thymidine uptake</td>
<td>[58]</td>
</tr>
<tr>
<td></td>
<td>Inhibition of specific 125I-FGF-2 binding to FGFR</td>
<td>[12, 58, 106, 114]</td>
</tr>
</tbody>
</table>
Suramin displays a high degree of rigidity due to the conjugated nature of the molecule. Modelling studies of suramin and structurally related molecules belonging to the suradista family (Fig. (3)) showed that in solution the compounds preferentially adopt a symmetrical, extended, quasi-planar arc shape with a distance between the two naphthalenesulfonate units of either 16-20 or 24-30 Å [12, 78, 114, 122]. Several reports have shown that the molecular rigidity of suramin is essential for inhibitory activity. Replacement of the central urea group or the aromatic spacers with more flexible aliphatics translated into a sharp decrease in activity [12, 62, 117]. Interestingly, Ganesh et al. have suggested that suramin experiences much greater conformational flexibility in solution than is generally believed, and they noted that suramin adopts a helical (non-planar) conformation in the crystal structure of the suramin-VCP complex [97].

Nature of the Aromatic Anionic Region

All SAR studies of suramin analogs agree on the necessity for anionic aromatic regions at each end of the compound [12, 37, 58, 62, 114-117]. While sulfonates have been the default choice of anionic group, a few studies at least have suggested that the aromatic portion can contain anionic groups other than sulfonates. Analogs where the sulfonates were replaced with carboxylates (e.g. 11 and 12) were found to display activity [115], as were analogs, such as 13, incorporating phosphonate groups [37].

The aromatic end group need not necessarily be a naphthalene derivative because several studies have found that analogs such as 11-13, or those containing benzene monosulfonic acid groups were also active. For these compounds Gagliardi et al. demonstrated a reduced efficacy in the CAM assay (Table 2, 7-26% inhibition compared to 64% inhibition for suramin) [62]. However, in studies by Firsching et al. [116, 117] and Kreimeyer et al. [115], analogs containing benzene monosulfonic acids had comparable activities to suramin in the majority of assays. Several studies altered the number of sulfonate groups (suramin contains six, three at each end) with varying results [12, 58, 62, 106, 112, 114, 116, 117]. While several benzene monosulfonic acid derivatives were found to display reasonable activity (see above), many studies argued that analogs required at least four sulfonate groups for good activity, with six required for activity comparable to that of suramin [12, 62, 106, 114, 116]. The majority of reports agreed that the actual positions of the sulfonate groups on the aromatic rings did not significantly affect activity [58, 62, 115-117].
It should be noted that suramin analogs with fewer anionic groups have been shown in several studies to be significantly less toxic in mice [12, 114-117].

OTHER STRUCTURAL FEATURES

Several studies of anti-proliferative activity or FGF binding, have reported that the removal of the methyl groups of suramin did not affect inhibitory activity [12, 37, 62, 114, 116, 117, 122]. This contrasts the loss of trypanosomiasial activity when the methyl groups are omitted [3]. One study, in which the methyl groups of suramin were replaced with isopropyl groups, reported a increase in activity of the inhibition of cell growth in bovine FGF-stimulated porcine pulmonary artery endothelial cells (IC$_{50}$ of 189 μM compared to suramin’s IC$_{50}$ of 521 μM) [4].

Amide Groups

No SAR study has systematically examined the roles of the amide groups of suramin, although one analog, NF279 (14), in which the amide groups were repositioned para-relative to the central urea group, showed high activity (the methyl groups were also removed) [37, 80, 82]. This deficiency of studies is despite the fact that amides are frequently involved in hydrogen bonding, one of the important means by which drugs can bind to their targets. It is thereby possible that one, or more, of the amide groups or the central urea group could be playing an essential role in the in vivo activity of suramin.

SUMMARY AND FUTURE PROSPECTS

Suramin binds to, and inhibits, a large number of enzymes and growth factors. This lack of specificity of binding limits its application as a clinical drug, and results in a broad range of toxicities and side effects. Although suramin remains useful for the treatment of onchocerciasis and trypanosomiasis, new drugs or improved analogs are needed to treat these diseases, as resistance to existing drugs increases. Suramin’s promise as an anti-cancer drug has not yet been fulfilled. Suramin’s role as an anti-angiogenesis agent appears to be related to its structural similarity to heparin, and its ability to inhibit the formation and dimerization of the FGF:FGF:heparin ternary complex. Structure-activity relationship studies of suramin have revealed much about its pharmacophore, but the development of suramin analogs as drugs will require candidates with much higher selectivities, and much lower toxicities.
ABBREVIATIONS

AIGF = Androgen-induced growth factor
ANS = 5-Amino-2-naphthalenesulfonate
CAM = Chorioallantoic membrane
CNS = Central nervous system
EGF = Epidermal growth factor
FGF = Fibroblast growth factor
FGFR = FGF Receptor
HBG = Heparin-binding growth factor
IGF = Insulin-like growth factor
NGF = Nerve growth factor
NTS = 1,3,6-Naphthalensulfonate
PDGF = Platelet-derived growth factor
PTP = Protein-tyrosine phosphatase
SAR = Structure-activity relationship
TGF = Transforming growth factor
VCP = Vaccinia virus complement control protein

REFERENCES

Suramin: Clinical Uses and Structure-Activity Relationships

Mini-Reviews in Medicinal Chemistry. 2008, Vol. 8, No. 13 1393

Purinergic system in psychiatric diseases

A Cheffer1, ARG Castillo1, J Corrêa-Veloso1, MCB Gonçalves2, Y Naaldijk1, IC Nascimento1, G Burnstock3,4 and H Ulrich1

Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.

Molecular Psychiatry (2018) 23, 94–106; doi:10.1038/mp.2017.188; published online 26 September 2017

INTRODUCTION
The first evidence that adenosine triphosphate (ATP) and related nucleotides function as neurotransmitters was obtained in the 1970s1–3 with the proposal of ATP cotransmitter action in subsequent years.4–6 ATP is co-released with several neurotransmitters, such as acetylcholine, GABA, glutamate, noradrenaline and serotonin (5-hydroxy-tryptamine (5-HT)).7,8 It acts on specific receptors in the pre- and postsynaptic neuronal and glial membrane, known as purinergic receptors.5–11 Ectonucleotidases control extracellular ATP concentration, preventing prolonged agonist exposure and receptor desensitization. ATP hydrolysis generates adenosine diphosphate (ADP), adenosine monophosphate (AMP) and adenosine (ADO), involved in cell signaling.12–14

Purinergic receptors are classified into P1 and P2 receptors according to their biochemical and pharmacological properties.15,16 P1 receptors are metabotropic and sensitive to ADO and subdivided into A1, A2A, A2B and A3 receptors. Whereas A1, A2A and A3 receptors have high affinities, the A2B subtype has low affinity to its ligand.17,18 A1 and A3 receptors bind to the G_{V/o} protein family, responsible for inhibition of cAMP production.19 A2A and A2B receptors stimulate the production of cAMP via G_{βγ} protein activity.10 A1 and A3 receptors also promote phospholipase C-β activity and consequently the formation of inositol-1,4,5-trisphosphate.7 ADO formed from the catabolism of adenine nucleotides preferentially activates A2A receptors, whereas ADO released by specific nucleoside transporters activates A1 receptors.19 P1 receptors are antagonized by methylxanthines and their derivatives, like caffeine, in moderate doses.20

P2 receptors are activated by nucleoside di- and triphosphates (ATP, ADP, uridine triphosphate (UTP), uridine diphosphate (UDP) or UDP-glucose) and classified as P2X and P2Y receptors.10,21,22 P2X receptors are ATP-gated ion channels permeable to Na⁺, K⁺ and Ca²⁺ cations.22,23 Seven subunits of these receptors (P2X1–7) expressed by different cell types are grouped either in a homomeric or heteromeric mode.11,24,25 P2Y receptors are metabotropic and activated by purines and pyrimidines, such as ATP, ADP, UTP, UDP or UDP-glucose, and they are divided into P2Y1, 2, 4, 6, 11, 12, 13 and 14 subtypes. P2Y1, 2, 4, 6 and 11 receptors are coupled to G_q and G₁₁ proteins, leading to phospholipase C-β activation and generation of inositol-1,4,5-trisphosphate and diacylglycerol with subsequent Ca²⁺ release from endoplasmic reticulum.19,25,27 P2Y12, 13 and 14 subtypes are coupled to G_i and G_o inhibit adenylyl cyclase and affect intracellular calcium concentration.11,28

Purinergic signaling is involved in neurodevelopment and pathophysiological processes, such as cell proliferation, differentiation, neuron–glia crosstalk and inflammation.8,29–31 P1 receptor functions appear to be better understood than those of P2 receptors in some psychiatric conditions. A1 and A2A receptors control synaptic plasticity and neurotransmitter release, for instance, glutamate, dopamine and GABA.30,31 These neurotransmitters are targets for classical and novel drug treatment of several psychiatric conditions.32 That is also the case for the A3 receptor regulating serotonergic and glutamatergic systems.33,34 P2 receptors are closely related to embryonic neurodevelopment, and any disturbance of purinergic signaling may be a core process leading to psychiatric diseases in general.35 Psychiatric disorders are explained by complex inheritance models with interplaying genes, epigenetics and environment in the etiological basis. In this review, we summarize the main findings linking the purinergic system to the most investigated psychiatric diseases.

DEPRESSION
Depression, elicited by acute and chronic stress, is related to an abnormal activation of the hypothalamic–pituitary–adrenal axis leading to increased levels of glucocorticoids (cortisol in humans, corticosterone in rodents).36 Both hypothalamic–pituitary–adrenal axis and hormonal release are controlled by ADO receptors.37 For instance, the activation of A2 receptors by ADO increases adrenal corticosterone synthesis, an effect that is blocked by A2 receptor
antagonism.38 The particular involvement of A2A receptors in the control of hypothalamic–pituitary–adrenal axis and in regulating glucocorticoid actions is suggested by the fact that receptor overexpression promotes alterations in the levels of corticosterone and enhances synaptic plasticity and memory impairments induced by glucocorticoid. The latter effects are reversed by inhibiting the A2A receptor,59 in agreement with previous findings.50,51 Mostly, inhibitory A1 and excitatory A2A receptors promote pre- and postsynaptic modulatory effects on glutamatergic and monoaminergic neurotransmission8 and are relevant for both synaptic plasticity and neuroprotection. For instance, activation of A1 receptors decreases hippocampal 5-HT release, one of the major neurotransmitters implicated in depression, whereas A2 receptor activation results in opposite effects.42 Accordingly, A1 receptor agonists block 5-HT-mediated induction of prefrontocortical neuronal activity.43 These data illustrate how ADO contributes to the fine control of different brain networks and how alterations in adenosinergic signaling are involved in psychiatric diseases and may be explored in the search for new treatments; this has been extensively reviewed in the literature (see, for instance, Cunha20).

Enhanced neuronal A1 receptor expression in transgenic mice led to pronounced acute and chronic resilience toward depressive-like behaviors.44 Opposite effects were observed in A1 receptor knockout (KO) mice, which showed increased depressive-like behavior and were resistant to antidepressant effects of sleep deprivation.45 The chronic unpredictable stress (CUS) model, an animal model for depression, is related to increased corticosterone levels, abnormal hippocampal circuits, altered mood and decreased memory performance.46,47 Caffeine prevented depressive-like behavior and synaptic alterations induced by CUS.41 Remarkably, caffeine consumption increases in stressful conditions47 and correlates inversely with the incidence of depression in patients48,49 and the risk of suicide.50,51 Both blockade of A2A receptors by the selective antagonist KW6002 and its genetic deletion in CUS mice resulted not only in prophylactic, but also in therapeutically beneficial effects.51 For instance, genetic deletion of A2A receptors prevented behavioral and synaptic alterations observed in CUS mice.41 In agreement, A2A receptor overexpression in forebrain neurons induced depressive-like behavior in rats.52 Similarly, A2A receptor antagonism exerts antidepressant effects in behavioral paradigms, such as the forced swimming test and tail suspension test.53,54 and also prevents maternal separation-induced long-term cognitive impairments.50,51 Interestingly, alterations in the expression of A2A receptors have also been observed in platelets of patients with major depression disorder (MDD), suggesting that the receptor might be an important disease biomarker.53 In zebrafish, A1 receptor antagonism prevents MK-801, an uncompetitive antagonist of N-methyl-D-aspartate receptors, from promoting antidepressant-like effects.54 In addition, CUS decreased cell surface adenosine deaminase (ADA) activity in zebrafish brain membranes, although ectonucleotidase and soluble ADA activities did not change.55 Reduced ADA activity could be a compensatory switch mechanism, by which low or high ADO concentrations for agonists, the occurrence of A1/A2A heteromers may be a factor expression in hippocampus, where this neurotrophic factor plays a key role in synaptic plasticity, neurogenesis and neuroprotection.80,81 It is worth mentioning that uptake and bioavailability of 5-HT in the synaptic cleft is also regulated by A2A receptors, as, in the absence of the receptor, an elevation in 5-HT levels was observed in a lipopolysaccharide-evoked depressive behavior model.50 Moreover, by using the same model, the P2X7 receptor antagonist Brilliant Blue G had antidepressant effects and attenuated anhedonia, a key feature of depression.52

In humans, the two most commonly studied P2X7 receptor single-nucleotide polymorphisms (SNPs) associated with increased susceptibility to depression, as well as to panic attack and bipolar disorder (BD), are Gln460Arg (rs2230912) and His155Tyr (rs208294).83–86 Replacement of glutamine by arginine resulted in a receptor protein as active as the wild-type one, although the interaction of the Gln460ArgP2X7 receptor variant with wild-type P2X7’s subunits impaired receptor function when both variants had been overexpressed in HEK293 cells. There is no clue so far regarding the physiological importance of this finding. On the other hand, the polymorphic His155TyrP2X7 receptor is more active than the wild-type one that could explain, to some extent, its association with psychiatric disorders, given the P2X7 receptor-mediated proinflammatory effects.88

SCHIZOPHRENIA

ADO has emerged as an important interplayer because of its modulatory effects on glutamate and dopamine transmission, classical neurotransmitters involved in pathophysiology of schizophrenia (SCZ).89–92 A1 receptor agonists inhibit glutamate release and reduce N-methyl-D-aspartate receptor-induced ion currents.93–95 In contrast, activation of A2A receptors increases release of glutamate in striatal and cortical regions.96 Activation of A1 receptors should inhibit dopamine release, as receptor blockade has opposite effects.98 Dopamine D2 receptor activation decreases glutamate release, forming A2A/D2 or even A1/A2A receptor heteromers. As ADO has a higher affinity for A1 receptors, and A2A receptor activation reduces the affinity of A1 receptors for agonists, the occurrence of A1/A2A heteromers may be a switch mechanism, by which low or high ADO concentrations inhibit or facilitate glutamate release, respectively.96,99,100 A2A and D2 receptors are reported to exert antagonistic interactions, as A2A agonists reduce the affinity of D2 receptors for dopamine in

both rat and human striatum. An open clinical trial demonstrated that patients treated with a combination of the antipsychotic drug haloperidol and dipyridamol (an ADO uptake inhibitor, increasing ADO availability in the synaptic cleft) had a greater improvement in positive symptoms (delusions and hallucinations) when compared with patients treated with haloperidol alone. Similar results were obtained when allopurinol had been used as an adjuvant for treatment of patients with refractory positive symptoms. However, neither dipyridamol nor allopurinol (inhibitor of ADO metabolic degradation) were effective in the treatment of schizophrenic patients when used as monotherapy.

A decrease in the expression of A2A receptor protein and mRNA in striatum of schizophrenic patients has been reported, whereas no alteration in the expression of A1 receptors was observed. On the other hand, the upregulation of A2A receptor expression observed in some groups of schizophrenics may represent a compensatory and adaptive mechanism to ADO hypofunction or a response to antipsychotic treatment. A2A receptor-deficient mice showed anatomical (ventricle enlargement) as well as behavioral alterations (reduced startle habituation and prepulse inhibition) similar to those observed in schizophrenic patients. Accordingly, specific activation of A2A receptors reversed impairments in prepulse inhibition observed in an animal model of SCZ. ADO effects are not restricted to neurons as demonstrated by the fact that mice lacking specifically astrocytic A2A receptors show psychomotor and memory impairments similar to those observed in SCZ. As expected, augmentation of ADO levels through pharmacological inhibition of ADO kinase resulted in improvements of the psychotic symptoms in an animal model for SCZ. Mice overexpressing ADO kinase with intrastriatally transplanted ADO-releasing cells regained their locomotor responsiveness to amphetamine. Impairment of cognitive functions was also reversed when cells releasing ADO had been grafted into the hippocampus. Moreover, reduced activity of ectonucleotidases and supposedly diminished levels of ADO were observed in the post-mortem striatum of schizophrenic patients when compared with controls. Although these data on ADO receptor expression point to a general hypoadolesinergic state in SCZ, we should be careful with their interpretation, as such a state might be present only in a subgroup of SCZ patients because reduction in A2A receptor expression was not observed in 50% of patients. It could be postulated that SCZ, similar to other brain diseases, also results from an imbalance between A1 and A2A receptor activities. However, more functional studies are necessary to better distinguish how A1 and A2A receptors are involved in SCZ. Even here one should be careful, as the same subtype of ADO receptor may be differently implicated in SCZ, depending on the brain area considered, as demonstrated for A2A receptors and fear conditioning/anxiety behavior.

In spite of increasing evidence of ADO involvement in SCZ, studies have failed in identifying A2A receptor polymorphisms as risk factors for this illness. However, genetic variants of the A1 receptor and ADA are likely good candidate markers for SCZ. Some SNPs are more frequent in Japanese schizophrenic populations and should be further analyzed as susceptibility factors for the disease. ADA 22G/A is less active than the G/G genotype, and its expression is probably linked to higher ADO concentrations. A significantly lower frequency of this polymorphism was found in schizophrenic patients. In agreement, haloperidol was found to inhibit ATP hydrolysis and ADO deamination that could, to some extent, contribute to its therapeutic effects.

The fact that dopamine release in the striatum and nucleus accumbens is induced by extracellular ATP provides indirect evidence that P2X and P2Y receptors could influence SCZ.
development. ATP-induced release of dopamine was largely inhibited by Reactive Blue-2, a P2Y receptor antagonist, suggesting predominant participation of P2Y receptors.

Hempel et al. showed that the tricyclic antipsychotics prochlorperazine and trifluoperazine allosterically and negatively modulate human P2X7 receptor activity. Therefore, one may speculate that the antipsychotic-induced inhibition of the P2X7 receptor would contribute to therapeutic efficacy. In agreement, both pharmacological blockade and genetic silencing of the P2X7 receptor alleviated schizophrenic-like behavior in an animal SCZ model. In view of P2X7 receptor participation in memory control, these data indicate that the P2X7 receptor might be involved in modulating SCZ symptomatology. However, polymorphisms in the gene encoding the P2X7 receptor were not associated with genesis of SCZ.

BIPOLAR DISORDER

It was recognized, in the late nineteenth century, that some patients with gout or hyperuricemia experiencing abnormal mood conditions improved after lithium treatment, not only from gout or hyperuricemia but also from mood disturbances. Since that time, the link between uric acid (UA) levels and mood disturbances has given rise to the purinergic dysfunction hypothesis for BD. High levels of UA in bipolar patients were associated to impulsivity and excitable behavior, irritated mood, hyperthymic temperament and severe manic symptoms, whereas low levels were linked to depressive mood scores, independently of the disorder phase. (Figure 1). Lowest levels of UA were observed in MDD patients, suggesting that UA would be a useful biomarker to differentiate BD from MDD. Furthermore, BD patients have increased risks of developing gout, whereas allopurinol, an inhibitor of xanthine oxidase used for treating and preventing gout, reduces manic symptoms when used as an add-on therapy for treatment-resistant BD patients (Figure 1), as shown in open clinical trials. Strikingly, allopurinol was efficient against aggressive behavior observed in dementia patients, corroborating the association between UA levels and impulsivity/aggressiveness.

Peripherally, ADO levels, but not other purinergic metabolites (inosine, hypoxanthine, xanthine or UA), have been recently shown to be decreased in blood serum of euthymic bipolar patients (Figure 1). This fact was associated to higher psychosocial functioning impairments and also corroborated with other hypotheses for the pathophysiology of BD, such as neuroinflammation and microglial dysfunction modulated by ADO. In addition, a meta-analysis performed by Hirota and Kishi showed benefits of ADO modulators for bipolar and schizophrenic patients.

In the central nervous system, ADO plays important roles in neuron and glia interactions across the excitatory responses via the glutamatergic system. Furthermore, carbamazepine, an antiepileptic drug with mood stabilizer activity and an A1 receptor antagonist, modulates ADO and receptor expression levels during chronic treatment in patients and animal models, corroborating that A1 receptor agonism may open new avenues for novel therapeutics (Figure 1). However, the involvement of A1 receptor encoding gene polymorphisms in development of BD is still controversially discussed. Still regarding P1 receptors, the A2A subunit was upregulated in platelets from bipolar patients treated with typical but not atypical antipsychotics, possibly through the heteromeric complex formed by A2A and D2 receptors.

Among P2X receptors, several studies showed a contentious correlation between SNPs in P2X7 receptor gene/promoter and affective disorders, indicating a nonspecific genetic involvement in BD etiology, development or cognitive impairment. On the other hand, animal studies demonstrated clearer correlation between P2X7 receptor targeting and emotional behavior associated with BD and MDD. P2X7 receptor expression was shown to be increased by sleep deprivation; rapid cycling BD was also associated with higher expression of P2X7 receptors. Thus, there is a growing interest in developing therapeutics based on targeting P2X7 receptors in BD and MDD. Moreover, neuroinflammation linked to P2X7 receptor roles is also implicated in BD. Figure 1 summarizes the action of diverse purinergic system components in BD.

AUTISM SPECTRUM DISORDERS

Initial studies reported increased nucleotide catabolism in patients with seizures, ataxia, neurodevelopment impairment and poor social interaction. Patients treated with oral administered pyrimidine nucleotides (UMP, CMP) showed significant improvement. Regarding extracellular purine metabolism, genotype and allele frequencies of ADA-Asn8 polymorphism were increased by a factor of two in Italian autism spectrum disorder (ASD) populations. This polymorphism is 35% less functional than the more common ADA-Asp8 allele, suggesting neuronal A1 receptor overstimulation in ASD, once cell membrane surface ADA and A1 receptor expression are physically related. Otherwise, A1 receptor activity has been claimed to be neuroprotective, and some evidence points to autistic symptom improvement with ADO increase. In general, A1 receptors show a tonic, constant low activity, preventing glutamate overrelease, interacting mainly with Glu receptors and hyperpolarizing neurons by activating voltage-dependent ion channels. A2A receptors are activated by higher levels of ADO, stimulating glutamatergic signaling and promoting long-term potentiation.

Notwithstanding, a balance between different levels of ADO and distinct activity profiles of P1 receptors in distinct brain areas may lead to diverse results and explain apparently controversial findings. For instance, although ADA activity decreases extra- and intracellular ADO levels, ADA/A1 receptor association may facilitate signaling of this receptor.

Freitag et al. investigated the association between SNPs in the A2A receptor gene and ASD. Although rs2298383 and rs2236624 SNPs were identified as genetic risk factors for autism as suggested by decreased heterozygosity in patients, others (rs3761422-CT/TT, rs5751876-CT/TT and rs35320474-T) were associated with the occurrence and severity of autism symptoms, such as anxiety, repetitive behavior/stereotypy, impaired social interaction and verbal communication (Figure 2a), demonstrating, once again, that A2A receptors modulate behavior in both healthy and disease conditions.

Indeed, A2A receptor KO mice are more anxious than wild-type controls. Striatum A2A receptor KO mice have habit formation impairment and are more goal directed and flexible than the wild-type group under lever-press training, whereas striatum A2A receptor activation impaired goal-directed behavior. This receptor is highly expressed by striatopallidal neurons, through which it regulates goal-directed behavior acquired by operant conditioning, habit formation through stimulus-response learning (goal-directed/habit formation shift) and memory. Moreover, A1 and A2A receptor agonists attenuate stereotypy in animal models of ASD symptomatology in a way that probably depends on the interaction with dopamine D2 receptors and activation of the indirect pathway. Similar results were obtained by various researchers for ADO receptor pathways, mainly concerning the A2A receptor related to ASD behaviors, and are strong evidence of a direct role of the adenosinergic system on ASD.

A3 receptor agonists enhance the surface expression and activity of antidepressant-sensitive 5-HT transporters whose gain-of-function variants have been associated to both autism and obsessive–compulsive disorder. Accordingly, the hyperfunctional L90V and V171I A3 receptor variants were identified in ASD

Molecular Psychiatry (2018), 94 – 106
patients and some nonaffected relatives, but not in controls (Figure 2b). These residues are close to the ADO-binding site, explaining why they affect A3 receptor activity. The interactions between the adenosinergic, dopaminergic and serotoninergic systems illustrate the need of further studies in order to better explain behavior and its disorders at a molecular level.

![Figure 2. Involvement of the purinergic system in autism spectrum disorder (ASD).](image1)

(a) Although the activation of P1 receptors (A1 and A2A receptors; green arrows) ameliorates ASD symptoms, such as stereotypy, inhibition of P2 receptors (mainly P2X7 and P2Y2 subtypes that are likely overexpressed in ASD animal models; red arrows) has the same effect, attenuating metabolic and behavioral alterations observed in ASD animal models. On the other hand, single-nucleotide polymorphisms (SNPs) in the gene encoding the A2A receptor have been found that increase either the susceptibility to ASD or the occurrence of symptoms usually observed in the disease. (b) A3 receptors and the antidepressant-sensitive 5-hydroxy-tryptamine (5-HT) transporter (SERT) are presynaptically colocalized. Selective activation of A3 receptors by IB-MECA increases the surface expression of SERT and, consequently, 5-HT reuptake into the presynaptic neuron (gain-of-function variants of SERT have been found in ASD patients). Therefore, A3 receptor antagonists may be potential candidates for development of novel therapeutics against ASD.

![Figure 3. Purinergic system in anxiety and attention deficit/hyperactivity disorder (ADHD).](image2)

(a) Antagonism (red arrows) of both A1 (by caffeine, CPT, CPX, and DPCPX) and P2Y1 receptors (by MRS2179) is anxiogenic, whereas anxiolytic effects have been observed with A1 receptor activation (by CPA, CCPA, and TRR469; the latter is an A1-positive allosteric modulator) and P2Y1 receptor activation by the P2Y receptor agonist ADPβS. Receptor activation is indicated by green arrows. Although polymorphisms in the genes coding for A2A (rs5751876) and P2X7 receptors (rs1718119) have been suggested to predispose to anxiety, these results are still controversial and lack corroborating evidence. (b) The most used therapeutic against ADHD, methylphenidate (MPH), acts by blocking the dopamine transporter (DAT) with a consequent increase in dopamine availability in the synaptic cleft. Caffeine augments responsiveness to MPH, probably by reducing DAT expression. Moreover, caffeine inhibits ADO receptors. Accordingly, the specific A2A receptor antagonist ZW241385 is capable of alleviating memory impairments observed in ADHD. CCPA, 2-chloro-N6-cyclopentyladenosine.
in sensory and social task performance, vocalization responses and a plausible deficit in the ability to extract and filter relevant information from the external milieu, suggesting that P2X4 receptors regulate information processing and perceptual and sociocommunicative functions. Compared with control mice, KO mice expressed less N-methyl-D-aspartate receptors in the prefrontal cortex, and increased expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in the hippocampus.182

Navaiaux et al.183 hypothesized that autism and comorbidities can result from metabolic states associated with cellular danger response sustained by the purinergic system. Therefore, they investigated these pathways and autonomic behavior in the offspring of a maternal immune activation mouse model of ASD. Compared with control animals, maternal immune activation mice showed autistic behavior, decreased synaptosomal expression of P2X7 and P2Y2 receptors as well as their effectors phospho-calmodulin-dependent protein kinase II and phospho-extracellular signal–regulated kinase-1/2 together with synaptosomal ultrastructural abnormalities. Mitochondrial responses in the maternal immune activation model led to increased purine and pyrimidine release and, consequently, to downregulation of P2X7 and P2Y2 receptor expression as a compensatory response.183 Treatment with the P2 receptor antagonist suramin, which is more potent in inhibiting P2Y2 receptors than P2X7 receptors, normalized autism-like behavior, suggesting the involvement of a hyperactivated purinergic system in this disorder. Subsequently, a single suramin dose was enough to correct over 90% of metabolic pathway disturbance and all tested behavioral abnormalities (Figure 2a).184 Suramin produced similar results in a genetic Fragile X syndrome model, characterized by cognitive impairments frequently associated with ASD,185 and led to symptom improvement in autistic patients.186 Other mechanisms rather than P2 receptor inhibition cannot be ruled out, as suramin does not only interfere with the purinergic system.187 Moreover, results from Navaiaux et al.183 evidenced that the purine metabolism was strongly involved in those ASD models.188

Mitochondrial components, once in the extracellular medium, may function as ‘pathogens’ and trigger inflammatory responses, as observed in ASD patients.189 We should highlight once again that the purinergic system is related to inflammation, and that ATP also acts as a danger signal molecule.190,191 In fact, P2X7 receptor activation by ATP release may mediate brain inflammation as already postulated for other psychiatric diseases, such as MDD, SCZ and BD discussed here.71,127,161

ANXIETY DISORDERS
In anxiety-related behavior tests, both A1 and A2A receptor KO models showed increases in anxiety compared with wild-type animals.192–194 Heterozygous mice did not develop any anxiety phenotype indicating that the complete absence of ADO receptor expression is necessary for anxiety induction. Moreover, inhibition of A1 but not of A2A receptors resulted in anxiety-like behavior in zebrasfish.195 However, a recent work showed that A2A receptor antagonism is anxiolytic in male animals pretreated with glucocorticoid.196 In addition, A1 receptor activator TRR469 promotes anxiolytic effects comparable to diazepam without inducing sedation and motor impairment observed with diazepam (Figure 3a).197 Guan(osine has anxiolytic effects in rats, correlating with increased ADO and reduced glutamate levels in the cerebrospinal fluid.198 Guanosine effects on glutamate release are mimicked by the A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, but inhibited by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, indicating that activation of A1 receptors prevents anxiety behavior.199 In agreement, activation of A1 receptors using 2-chloro-N6-cyclopentyladenosine or N6-cyclopentyladenosine in mice showed anxiolytic properties, whereas the use of A1 receptor antagonists such as 8-cyclopentyl-1,3-dimethylxanthine and 8-cyclopentyltheophylline promoted anxiety behavior (Figure 3a).199,200

Caffeine increases panic attacks in patients suffering from panic disorder,201 the effect being more prominent in the presence of 1976C>T and 2592C>T A2A receptor polymorphisms,202 suggesting that A2A receptors also play a role in anxiety disorder. In agreement, deletion of A2A receptors in the forebrain augmented startle response and induced anxiety behavior in animals,116 and this has been reproduced in patients.203,204 Caffeine-induced increase of startle response is more pronounced in patients carrying the A2A receptor 1976C>T risk genotype.205 In addition, A2A receptor polymorphism 1976T/C is associated with development of panic attacks and elevated anxiety.206,207 This finding was partially reproduced with an European population but studies with Asian populations did not reveal any connections between A2A receptor polymorphisms and anxiety development207 (Figure 3a). This suggests that Caucasian populations are more prone to effects of A2A receptor 1976T/C polymorphism.

Among P2 receptors, a SNP in the P2X7 receptor gene (rs1718119) is associated with an increase in anxiety-related episodes, such as agoraphobia and panic attack (Figure 3a).208 On the other hand, P2X7 receptor KO mice did not reveal anxiety-like behavior,183 contradicting previous findings in human subjects.209 Suramin produced similar results in a genetic Fragile X syndrome model, characterized by cognitive impairments frequently associated with ASD,185 and led to symptom improvement in autistic patients.186 Other mechanisms rather than P2 receptor inhibition cannot be ruled out, as suramin does not only interfere with the purinergic system.187 Moreover, results from Navaiaux et al.183 evidenced that the purine metabolism was strongly involved in those ASD models.188

ATTENTION DEFICIT/HYPERACTIVITY DISORDER
Higher plasma levels of UA have been found positively correlated with impulsivity and hyperactivity traits, as continual predisposition in psychiatric conditions, like attention deficit/hyperactivity disorder (ADHD). Methylphenidate (MPH), a dopamine and noradrenaline reuptake inhibitor, diminished UA plasma concentration in children.211 Unipolar depression patients suffering from ADHD showed higher serum UA plasma levels when compared with patients suffering from unipolar depression alone.212 In agreement, positive correlation exists between higher UA plasma levels and impulsiveness/excitement seeking traits in humans.136 Similar results were obtained in a hyperuricemia mouse model.136 Caffeine produced positive effects in patients suffering from ADHD, providing a direct link between adenosinergic signaling and ADHD.213 Caffeine has been used to study behavior, memory and cognitive dysfunction in ADHD. It increases arousal, as indicated by skin conductance level changes resulting from, for instance, sweating and skin blood flow increase triggered by sympathetic autonomic activation,214 both in healthy and in ADHD children.215,216 However, caffeine-induced augmentation in arousal of ADHD patients depends on symptom severity and is strongly associated with hyperactivity and impulsivity.217 Moreover, rats previously and chronically treated with caffeine during adolescence augmented locomotor activity when challenged with an inactive MPH dose, suggesting a caffeine-induced cross-sensitization to MPH.217 Besides the blockade of A2A receptor, another underlying mechanism could be caffeine-induced reduction in the expression of dopamine transporter and, consequently, in dopamine reuptake in the frontal cortex and striatum, as demonstrated with spontaneously hypertensive rats, an animal model for ADHD (Figure 3b).218–221 In this model, chronic caffeine treatment led to attention and memory performance.
improvements.221 Despite the positive effects of caffeine in ADHD patients, its efficacy as a drug for ADHD treatment has not been established.213

Augmented A1 receptor expression in mouse frontal cortex, a region involved in the MPH-mediated effects, occurred following acute MPH overdosage, suggesting participation of A1 receptors in ADHD pathophysiology and responses to MPH exposure.222 The relation between A2A receptors and motor hyperactivity observed in ADHD is controversially discussed. A2A receptors may favor ADHD given their enhanced expression and colocalization with dopamine transporter in the frontal cortex of spontaneously hypertensive rats (Figure 3b).218 However, in agreement, both caffeine and the selective A2A receptor antagonist reversed social memory impairments observed in spontaneously hypertensive rats when compared with control animals.221 In agreement, both caffeine and the selective A2A receptor antagonism reversed social memory impairments observed in spontaneously hypertensive rats (Figure 3b).218 However, in cocaine-insensitive dopamine transporter mice, an animal model of ADHD hyperactivity, A2A receptor blockade resulted in increased motor activity, whereas A2A receptor activation led to decreased motor activity.223 By using another ADHD animal model, a positive correlation was confirmed between A2A receptor expression and hyperactivity that was exacerbated by the treatment with psychostimulants.224

In Tourette syndrome, a disorder that can share etiological features with ADHD, polymorphisms in the genes encoding A1 and A2A receptors have opposite effects, suggesting that such SNPs might also be involved in ADHD.225 Although A1 SNP rs2228079 was associated with reduced Tourette syndrome severity, A2A SNP rs5751876 increases the risk of Tourette syndrome.225 Previous work demonstrated that other A2A polymorphisms (rs3761422 and rs35320474), besides rs5751876, directly correlate with attention deficits and hyperactivity in ADHD patients.226 As mentioned before, A2A receptor rs5751876 polymorphism has already been associated with ASD and anxiety.170,205

Table 1. Involvement of purinergic system components in psychiatric disorders

<table>
<thead>
<tr>
<th>Purinergic system</th>
<th>Uric acid + metabolism</th>
<th>P1 receptors</th>
<th>P2 receptors</th>
<th>Enzymes</th>
<th>Guanosine receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major depressive disorder</td>
<td>58</td>
<td>41, 44, 48-56, 76</td>
<td>68, 78-80, 82-86</td>
<td>57, 59</td>
<td></td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>104-106, 121</td>
<td>93, 101, 103, 107, 108-113, 117-119</td>
<td>125, 128, 130</td>
<td>115, 120</td>
<td></td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>133, 136-138, 145</td>
<td>146, 148-151</td>
<td>84-86, 152-158, 163</td>
<td>182-186</td>
<td>166</td>
</tr>
<tr>
<td>Autism spectrum disorders</td>
<td>165</td>
<td>33, 166, 167, 170, 172, 181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety disorders</td>
<td>116, 193-197, 199-207</td>
<td>78, 208-210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention deficit/hyperactivity disorder</td>
<td>211, 212</td>
<td>170, 216-219, 221-226</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As one can notice, there is a large body of evidence for diverse components of the purinergic system involved in psychiatric disorders to be explored as potential therapeutic targets. As most of these works have been restricted to genetic/pharmacological approaches and to the use of postnatal animal models, a plethora of information regarding the plausible neurodevelopmental nature of psychiatric diseases may be missing. Over the past 10 years, our research group has collected many results on expression and activity patterns of P2 receptors during neurogenesis. Importantly, P2 receptors are differentially expressed during the course of proliferation, migration and differentiation into distinct neural phenotypes expressing functional cholinergic, GABAergic and glutamatergic neurotransmitter receptors.28 Here we propose some hypotheses on how purinergic signaling could be the neurodevelopmental basis of psychiatric disorders. For instance, we have demonstrated that P2X7 receptor expression is higher in undifferentiated embryonic stem cells compared with neural-differentiated cells, and blockade of P2X7 receptor activity induces the differentiation into neurons.227 Moreover, as stated earlier, P2X7 receptors control the hippocampal concentration of brain-derived neurotrophic factor,228 and antidepressant fluoxetine is able to increase brain-derived neurotrophic factor mRNA expression in hippocampus, ventral temporal area and nucleus accumbens.229 Therefore, it could be hypothesized that anatomical brain alterations observed in MDD patients,229 such as reduced gray matter volume in areas implicated in the emotional control, would have their onset in development, in which increased P2X7 receptor activity would play an important role. This hypothesis could be investigated by mimicking the neurodifferentiation process of induced pluripotent stem cells obtained from MDD patients.

A similar hypothesis could be formed and tested for SCZ that is also characterized by reduced gray matter volume and ventricle enlargement.230 However here, besides P2X7 receptor hyperactivity, decreased A2A receptor activity would contribute to these pathological consequences.111 Furthermore, expression and activity alterations in brain cytoarchitecture and proteins involved in neuronal migration indicate that SCZ can result from impaired cell migration during the development of the cerebral cortex.231,232 Another hypothesis is that disturbed P2X and P2Y receptor expression during neurodevelopment might be one of the underlying mechanisms. As we have observed, these receptors follow a specific expression pattern along neural differentiation of rat embryonic telencephalon neurospheres, and ATP induces neural migration.233

Recent data have indicated that BD is also a neurodevelopmental disorder, and that an impaired neural network is involved in its pathogenesis. By using neurons derived from induced pluripotent stem cells obtained from BD patients, human post-mortem brain samples and an animal model, Snyder and coworkers234 shed more light on the mechanisms by which lithium acts. Their data show that lithium acts by promoting desphosphorylation of collapsin response mediator protein-2 (CRMP2) through glycogen synthase kinase-3β inhibition and, consequently, by favoring CRMP2 interaction with cytoskeleton proteins that, in turn, rescue suitable dendritic spine formation and neural network functioning.234 We have also observed alterations in the expression of purinergic system components, mainly of ADO receptors, after treating a BD animal model (unpublished data). As the activation of A2A and P2X7 receptors triggers AKT–glycogen synthase kinase-3β signaling pathway,235,236 controlling expression of these two most implicated purinergic receptors in BD, could be an additional mechanism, by which lithium regulates the phosphorylation state of CRMP2. Concomitantly, lithium-induced reduction in P2X7 receptor expression could protect the cells against the neuroinflammatory process implicated in BD.163,164 CRMP2 may also be important for further psychiatric disorders, as
PERSPECTIVES

Here, we discuss recent findings that together point to an important link between the purinergic system and psychiatric diseases, as summarized in Table 1. Although remarkable progress has been made regarding the participation of neurotransmitter systems and molecular mechanisms underlying the pathophysiology of psychiatric disorders, a view based only on traditional monoaminergic neurotransmission is oversimplified, and more attention should be drawn on other signaling mechanisms.

As the purinergic system plays a special and important regulatory role in brain monoaminergic pathways, increasing efforts have been undertaken in targeting it. For example, the heteromeric complex of A2A and dopamine D2 receptors is a poorly explored target involved in pathological and therapeutic mechanisms. In fact, dopaminergic dysfunction is essentially observed in many psychiatric conditions and has been recently investigated in animal models not only for ADHD but also for bipolar mania, established through the selective inhibition of dopamine transporters and subsequent overstimulation of dopamine receptors. However, specific investigations of purinergic modulation under these conditions are missing and could provide a key contribution to the understanding of psycho- and motor-stimulation through dopaminergic signaling. Similarly, the glutamatergic hypothesis for the psychiatric disorders here discussed lacks specific investigations through a purinergic perspective. Notably, both P1 and P2 receptors through A2A and P2X7 subtypes prevent hyperexcitability and glutamate excitotoxicity, providing a possible target for controlling the progression and possible neurodegeneration in psychiatric conditions for better understanding, see Parpura and Schousboe). In this sense, we should also mention that the dysfunctional circuitry overlap between several psychiatric conditions could provide a clue for better understanding disease pathophysiology and etiology. Indeed, novel common mechanisms would facilitate further etiological classification of these disorders and the development of new drugs that may be used for the treatment of different psychiatric disorders at the same time.

Obtained results for the most investigated psychiatric disorders refer to ADO receptors (for all of the diseases, at least 83% of the current literature refer to involvement of ADO receptors). Few data have been published pointing at other components of the purinergic system, despite their implications in processes relevant for central nervous system development, such as cellular migration and neurodifferentiation (for instance, P2 receptor signaling is closely related to neurodevelopment, and its investigation is still at the beginning or even lacking for many psychiatric disorders). This could result, to some extent, from historical questions. ADO-induced effects were early recognized, and coffee use dates back to the tenth century. As many psychiatric diseases apparently have neurodevelopmental origins, further investigations may reveal P2 receptor functions in psychiatric conditions.

Investigation of molecular pathways of human behavior is necessarily indirect because of obvious ethical issues by employing in vitro and also animal models. However, researchers in this field have clear awareness of their model limitations. It is quite difficult to classify behavior disorders in humans, and we are not sure how closely they can be observed in animal models that are, at best, mimicking some behaviors of these disorders and do not reproduce a disease in its complexity. Moreover, the interpretation of results obtained with animal models will always be controversial, because psychiatric diseases share many symptoms and have similar patterns of neurotransmitters involved. Deletion or knockout of genes or pharmacological receptor stimulation/blockade have multiple effects on the entire organism, not restricted to the brain. Consequently, some effects observed in KO models are not necessarily linked to the pathophysiology of a determined psychiatric condition.

Furthermore, our current nosological classifications are not the best ones. They are based on behavioral phenotypes because of the lack of diagnostic molecular markers, and there is overlap between supposed discrete disorders and even between disorders and normal/functional behavior. Bias could also result from population stratification, making candidate gene investigation for psychiatric disorders a challenging task. Further effort is needed for elucidating molecular mechanisms, how purinergic receptors trigger pathways, linking purinergic signaling with other neurotransmitters, neuromodulators, neuropeptides and neurotrophic factors and psychiatric diseases.

A better understanding of the cellular source of ATP release and the role of its metabolites in glial-neuron communication, as well the specific functions of purinergic receptors in neuropathological context of each psychiatric disorders, is a challenge. Despite the limitations of genetic/pharmacological approaches and animal models, progress has been made and increased our understanding of how the purinergic system and psychiatric disorders are connected, and we are more aware of the importance of this system for normal brain functioning.

In addition to genetic/pharmacological approaches, in vitro modulation of psychiatric conditions such as by induced pluripotent stem cells obtained from patients has arisen as an important tool for the understanding of developmental stages and progressive mechanisms of psychiatric disorders in a more specific and personalized way. Furthermore, this approach can provide further insights into the action of pharmacological interventions as well on molecular mechanisms underlying purinergic signaling in those conditions. For example, induced pluripotent stem cells derived from bipolar patients were recently used as a tool for better understanding lithium-response pathways, as stated earlier. We believe that different approaches leading to complementary and concordant results will allow us to get closer to a meaningful explicative theory for many of the psychiatric disorders discussed in our review.

In summary, the purinergic system represents a promising research area for future and deeper insights into the molecular basis of psychiatric diseases and may allow development of novel therapies.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

HU acknowledges grant support from the Brazilian funding agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation, FAPESP Pro. Nr. 2012/50880-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for fellowship support. AC, ICN and YN thank FAPESP for post-doctoral fellowships (FAPESP Proj. Nr. 2013/02293-5, 2015/18730-0 and 2015/14343-2, respectively). JC-V thanks CNPq for fellowship support. The doctoral thesis research of ARGC and MCBG is supported by fellowships from CNPq.

REFERENCES

Molecular Psychiatry (2018), 94 – 106

4 Langer SZ, Pinto JE. Possible involvement of a transmitter different from nor-epinephrine in the residual responses to nerve stimulation of the cat nictitating membrane after pretreatment with reserpine. J Pharmacol Exp Ther 1976; 196: 667–73.

5 Burnstock G. Do some nerve cells release more than one transmitter? Neur-oscience 1976; 1: 239–248.

6 French AM, Scott NC. Evidence to support the hypothesis that ATP is a co- transmitter in rat vas deferens. Experientia 1983; 39: 264–266.

patients with schizophrenia or schizoaffective disorder. Schizophr Res 2012; 138: 35–38.

140 Ioannidis K, Chamberlain SR, Müller U. Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder—was this a correct decision? A literature review. *J Psychopharmacol* 2014; 28: 830–836.

Barruyer RJ, Clarke AR, McCarthy R, Selikowitz M, MacDonald B, Dupuy FE. Caffeine effects on resting-state electrodense levels in AD/HD suggest an anomalous arousal mechanism. *Biological Psychiatry* 2012; 89: 606–608.

