Review

Antipurinergic therapy for autism—An in-depth review

Robert K. Naviaux

University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, MC #8467, San Diego, CA 92103, United States

ABSTRACT

Are the symptoms of autism caused by a treatable metabolic syndrome that traces to the abnormal persistence of a normal, alternative functional state of mitochondria? A small clinical trial published in 2017 suggests this is possible. Based on a new unifying theory of pathogenesis for autism called the cell danger response (CDR) hypothesis, this study of 10 boys, ages 5–14 years, showed that all 5 boys who received antipurinergic therapy (APT) with a single intravenous dose of suramin experienced improvements in all the core symptoms of autism that lasted for 5–8 weeks. Language, social interaction, restricted interests, and repetitive movements all improved. Two children who were non-verbal spoke their first sentences. None of these improvements were observed in the placebo group. Larger and longer studies are needed to confirm this promising discovery. This review introduces the concept of M2 (anti-inflammatory) and M1 (pro-inflammatory) mitochondria that are polarized along a functional continuum according to cell stress. The pathophysiology of the CDR, the complementary functions of M1 and M2 mitochondria, relevant gene-environment interactions, and the metabolic underpinnings of behavior are discussed as foundation stones for understanding the improvements in ASD behaviors produced by antipurinergic therapy in this small clinical trial.

1. Background

In over 20 years of modern clinical trial efforts (McPheeters et al., 2011) and 75 years since the first description of autism (Kanner, 1943), no drug has been FDA approved to treat the core symptoms of autism spectrum disorder (ASD). I believe this is because the root cause of ASD is not yet understood. This has made it impossible to develop a unifying theory of pathogenesis that might help to guide new drug development.

2. The cell danger response hypothesis

The Suramin Autism Treatment 1 (SAT1) study (Naviaux et al., 2017) was the first clinical trial to test a new unifying theory for the root cause and a new treatment of autism. The cell danger response hypothesis represents a paradigm shift in how scientists think about the cause of autism. Instead of focusing on a particular behavior, cell type, genes, the microbiome, synapses, or the connectivity of neural circuits in the brain, the cell danger hypothesis states that the root cause of autism is a universal cellular response to stress that shifts normal cell function to a new state. Severe and/or prolonged stress forces a re-allocation of cellular resources for survival. This universal response to stress traces to mitochondria and is called the cell danger response (CDR) (Naviaux, 2014). Aspects of the CDR are also referred to as the integrated stress response (Green et al., 2011; Nikkanen et al., 2016; Silva et al., 2009). The CDR gives the appearance of mitochondrial dysfunction, but is actually a normal, necessary, and highly regulated change in mitochondrial function from oxidative phosphorylation to cellular defense. This shift is needed to respond to a threat, and to heal after an injury. Mitochondria that defend the cell in danger can no longer function the same as they do under unstressed conditions (Naviaux et al., 2009). This programmed change in mitochondrial function is needed for innate immunity and inflammation (West, 2017), which in turn are required for establishing the adaptive immune response and healing.

3. M1 and M2 mitochondria

To emphasize the importance and dynamic nature of this programmed change in mitochondrial function, I have designated these as M1 and M2 mitochondria (Fig. 1). M1 and M2 mitochondria represent two poles on a functional continuum (Sander and Garaude, 2017) regulated by the CDR. M2 mitochondria are devoted to ophosph and are anti-inflammatory. In contrast, M1 mitochondria are pro-inflammatory. M1 mitochondria are specialized for creating the oxidative shielding response (Naviaux, 2012b). M1 mitochondria are tasked for cellular defense and increase cellular redox (are pro-oxidants) and perform dozens of other functions needed for anti-viral and anti-microbial defense. The shift from M2 to M1 mitochondrial functions is an intrinsic feature of an activated CDR. Within a given cell, this shift creates a spectrum from 100% M2 mitochondria when stress is minimum, to
Metabolites:
cADPR: cyclic ADP ribose. NAADP: nicotinic acid adenine dinucleotide phosphate. IP3: inositol trisphosphate.

Fig. 1. Metabolic control of purinergic signaling. The availability of purinergic effectors in the unstirred water layer where receptors and ligands meet is controlled by a suite of metabolic proteins and solute channels. A simplified summary of their actions, and the dynamic capacity for mitochondrial functional changes that are associated with the CDR are illustrated. Cellular zones: bulk flow zone (BFZ), unstirred water layer (UWL), cell membrane, cytoplasm, ER-mitochondria-associated membranes (MAMs).

Organelles: M1 mitochondria are pro-inflammatory and dedicated to helping to orchestrate the cell danger response (CDR). M2 mitochondria are anti-inflammatory and dedicated to oxidative phosphorylation (oxphos). Lysosomes contain an acidic pool of calcium gated by NAADP acting on TCP. Endoplasmic reticulum (ER) contains a neutral pool of calcium gated by cADPR acting on the ryanodine receptor (RyR). Exosomes are sphingolipid-enriched nanovesicles that are used for cell-to-cell signaling and the removal and exchange of intracellular materials.

Proteins: Integral Membrane-associated enzymes (purple), Non-Integral membrane enzymes (green), Receptors and Ligand-gated channels (orange), and Non-ligand-gated Transport materials.

Cytoplasm

Bulk Flow Zone (BFZ)

Unstirred Water Layer (UWL)

50:50 M1:M2 and intermediate forms at medium-stress conditions, up to 100% M1 when the survival of the cell is threatened. When the fusion-fission cycle of mitochondria in a particular cell type is rapid (minutes to hours), as occurs in rapidly dividing cells in the bone marrow and gut epithelium, this transition comes to a new steady-state within minutes to hours. When the fusion-fission cycle of mitochondria is slow (for example, it is 2 weeks in the cardiac myocytes of adult mice (Song and Dorn II, 2015)), the M2 to M1 transition occurs more slowly, and the M1 state lasts longer after the danger has passed. Other differentiation states of mitochondria exist. For example, the mitochondria in brown adipose tissue (BAT) and beige/bright cells in white adipose tissue (WAT) have distinct developmental origins (Kajimura and Saito, 2014). Pluripotential M0 mitochondria are present in stem cells (Folmes et al., 2012) and primary oocytes (Van Blerkom, 2011).

The shift from M2 (anti-inflammatory) to M1 (pro-inflammatory) mitochondria that occurs when a cell becomes threatened is not unlike the analogous shift in the functional state of macrophages from resting...
M0 or polarized M2, to M1. The M1 phenotype of macrophages is pro-
flammatory and needed for cell defense, while M2 macrophages are
anti-inflammatory and needed to facilitate the resolution of in-
flammation and healing. This cellular polarization is strongly correlated
with oxidative phenotype of the mitochondria within macrophages
(Chen et al., 2017). When the choreographed sequence of metabolic
steps in the healing cycle encounters a roadblock for any reason, a
persistent form of the CDR results, and M1 pro-inflammatory mito-
chondria persist past the time they are needed. This changes the
trajectory of child development, and can lead to ASD and several other
disorders.

4. ASD genetics, the CDR, and inflammation

Each of the common genes known to strongly increase the risk of
ASD can be shown to play a role in CDR signaling or maintenance. Fragile X is just one of several examples. The Fragile X gene FMRI
codes a protein that normally inhibits the translation of proin-
flammatory cytokines like TNFa (Garnon et al., 2005). Decreased ex-
pression of the Fragile X protein results in persistent activation of the
CDR in the form of a low-grade inflammatory response in the brain (Di
Marco et al., 2016). Could therapy directed at the CDR be effective in
Fragile X, and other genetic causes of ASD? Antipirunigric therapy
(APT) directed at the CDR has already proven effective in correcting
ASD-like behaviors in the Fragile X mouse model (Naviaux et al., 2015).

Rett syndrome is another example of a genetic cause of autism
spectrum disorder that is tied to the cell danger response and in-
flammation (Cortelazzo et al., 2014). Most cases of Rett syndrome trace
to new mutations in the MeCP2 gene, which codes for a methyl-CpG
binding protein. Mutations in MeCP2 alter chromatin structure and lead
to retroelement mobilization (Muotri et al., 2010), genetic instability,
and profound changes in the innate immune response (Derecki et al.,
2012). The CDR coordinates retroelement mobilization and innate im-
munity (Naviaux, 2014). Animal models of Rett syndrome are an im-
portant reminder that even in some genetic causes of autism, the core
behavioral features of ASD are not permanent. Behaviors can be re-
versed by treating the cell danger response that underlies oxidative
changes and inflammation (Derecki et al., 2013).

Other examples include Angelman and Smith-Magenis syndrome.
Angelman syndrome is usually caused by a de novo maternal deletion or
mutation of a gene called ubiquitin-protein ligase E3A (UBE3A) located
on chromosome15q11-q13. UBE3A is involved in the unfolded protein
response. Mutations in UBE3A result in the accumulation of unfolded
proteins (Mishra et al., 2009), which are in turn known to activate the
CDR (Smith, 2014). Smith-Magenis syndrome is usually caused by
chromosomal copy number variation (CNV) resulting in a deletion of a
patch of DNA on chromosome 17p11.2 containing the retinoic acid
induced 1 (RAI1) gene (Huang et al., 2016). This is not to be confused
with the retinoic acid induced gene 1 (RGI1), a helicase on chromosome
9. Defects in RAI1 result in increased childhood infections and im-
munologic abnormalities (Perkins et al., 2017) that result in repeated
activation of the CDR. Future studies will be required to test therapies
directed at the CDR in children with Fragile X, Rett, Angelman, and
Smith-Magenis syndromes.

5. Cellular order, metabolism, defense, and immunity

5.1. Mitochondria and the CDR

The daily operations of the cell require protein-protein and many
other macromolecular interactions that rely critically on cellular spatial
order—packing—for efficient function. When order is disrupted, func-
tion suffers. Any kind of physical or biological injury to the cell de-
creases electrons shuttled from nutrients to mitochondria. Mitochondrial electron flow acts as a barometer of cellular health. When mitochondrial electron transfer is disrupted a cellular metabolic
syndrome is produced. This new cellular metabolic state is needed for
healing. This starts locally at the site of injury, but propagates to
neighboring cells as they adopt a change in function to contain the
injury. If the injury cannot be contained locally, systemic signals are
sent by neuroendocrine and autonomic nervous systems that ultimately
produce changes in systemic metabolism and behavior. Disruptions in
molecular order or the organization of cytoskeleton and organelles
within cells is perhaps one of the most fundamental signals of danger.
Increasing cellular disorder is the biologic equivalent of increasing
thermodynamic entropy.

5.2. The importance of water

The decrease in the ordered state of macromolecules and solutes
forces a change in the distribution, behavior, and thermodynamic
properties of water molecules (H2O) in and around cells (Chaplin, 2006;
Pollack, 2013; Prigogine and Nicolis, 1971). The partial positive and
negative charge on a molecule of water, and other forces, constrain its
movement by interacting with the surface charges around proteins,
membranes, and cytoskeleton creating a fraction of bound or “vicinal”
water that covers all biological surfaces. The more polymers or mem-
branes in solution, the greater the fraction of bound to unbound water.
The net effect of increased acidity and increased dissolved oxygen in
cells and tissues is to inhibit macromolecular (polymer) synthesis re-
actions. Polymer synthesis reactions include the condensation of amino
acids to make proteins and nucleotides to make RNA and DNA. This
decreases the differentiated functional capacity of the cell, but is re-
quired to initiate healing after injury. Mitochondrial fusion-fission dy-
namics shift toward fission to permit increased quality control under
stress (Voule and van der Bliek, 2012). Metabolic synapses between
mitochondria and the endoplasmic reticulum known as mitochondrial-
associated membranes (MAMs) also change under stress, further al-
tering the ordered intracellular structure of organelar networks. MAMs
regulate calcium, phospholipid, sphingolipid exchange, and many other
key physiologic processes (Sano et al., 2009). Changes in mitochondrial
dynamics during cell stress in tissues link increasing cytoplasmic dis-
order with increasing disorder of water molecules, and an increase in
CDR-associated functions. The monitoring of cellular disorder is fun-
damental for normal immune system function (Cunliffe, 1997).

6. The CDR, redox, M1 mitochondria, and ASD

Oxidative changes in autism have been well-studied (James et al.,
2006; Rose et al., 2017). Single cells make reactive oxygen species
(ROS) to harden themselves when they come under attack by patho-
ogenic organisms or environmental stress (Naviaux, 2012b). Indeed, the
mitochondria in cells make the very ROS that inhibit their own bioe-
ergetic functions. This seems self-destructive, but it is not. The adap-
tive function of the ROS-response cannot be understood within a single-
cell frame of reference. The relevant frame of reference is the host
considered as a collective system of many cells and tissues. Local ROS
are responsible for activating a normal, but latent, alternative function
of mitochondria in threatened cells. Under baseline conditions, tissue
mitochondria exist mostly in an M2, or anti-inflammatory state dedi-
cated to oxphos. When ROS are increased, mitochondria take on a new
job. They become polarized to M1 mitochondria, become an important
source of ROS themselves, increase the rate of damaged organelle re-
moval via intracellular quality control methods, and become the ini-
itators and coordinators of the antiviral response (Seth et al., 2005)
and cellular defense (West et al., 2011). To do this, mitochondria must
temporarily drop their “day job” as the hub of oxidative phosphoryla-
tion served by their M2 polarized state. The cell-autonomous inhibition
of mitochondrial oxphos by ROS decreases both the production of cel-
lar building blocks and the exchange of building blocks with other cells.
The ROS-response and M1 polarization of mitochondria is adap-
tive because it decreases the chances that a virus, or pathogenic
organism, or damage from a traumatic or chemical injury or toxin can spread to kill the host. A line of cells in which mitochondrial oxphos is decreased, and lactic acid and ROS are increased, creates the cellular equivalent of sealing the bulkheads that separate the compartments on a damaged ship or submarine to prevent the spread of more water to undamaged sections. Furthermore, when the metabolic rate of a single cell is decreased relative to neighboring cells, the local clock of biological time within that cell slows, permitting it to resist maturation and outlast the cells unable to use fewer resources for survival. For this and other reasons, the host benefits strongly from the ability of single cells to shift nimblly from peacetime M2 metabolism to defensive M1 metabolism needed for damage containment in response to environmental stress. When viewed contextually, it can be understood that this is not “mitochondrial dysfunction”. The M1 state is an adaptive, new function of mitochondria that is produced when cells come under stress. Chronic disease results when this cell danger response cannot be turned off when its job is done.

7. The CDR, exosomes, and the immune response in ASD

Stressed cells increase the number and diversity of lipid nanovesicles called exosomes that they release into the extracellular space (Fig. 1) (Nemeth et al., 2017). Exosomes are enriched in stress- and danger-signaling sphingolipids, self-antigens that include metabolic enzymes from internal compartments of the cell, micro-RNAs, mitochondrial DNA (mtDNA), and partially processed materials from the mitophagy and autophagy pathways (Pellegrino and Haynes, 2015). Exosomes help to remove non-infectious aggregates of proteins like β-amyloid, α-synuclein, and tau that might otherwise accumulate inside the cell and become toxic (Rajendran et al., 2006; Wang et al., 2017; Yang et al., 2017). Exosomes are also critical for many forms of cell-to-cell communication involved in fundamental biological processes like fertilization (Machtinger et al., 2016) and neurotransmission (Lachenal et al., 2011). Viruses and microbial pathogens are known to hijack exosomes for cell-to-cell transmission. To combat this, certain interferon-induced genes like ISG15 have evolved that decrease total cell protein synthesis and exosome release from infected cells. This creates a reduction in cell-to-cell communication through exosome release, but permits more efficient disposal of pathogens within the cell by fusion with lysosomes (Villarroya-Beltri et al., 2017).

Another function of exosomes is to permit the export and recycling of biochemical building blocks produced during normal cell function (Fig. 1). Exosome release and reuptake into neighboring or distant cells occurs naturally during the turnover of billions of cells that occurs daily by apoptosis. Naturally occurring molecules like mtDNA, α-galactosylceramide in lipid rafts, formy-methionine containing mitochondrial peptides, released ATP and UTP, and other molecules can stimulate toll-like receptors (TLRs) and related stress-sensing receptors on B1 cells and support the production of naturally occurring, low-affinity, IgM antibodies. These natural autoantibodies (NAAs) are present from birth, are produced by T-cell independent, TLR-stimulated B1 cells, and have antibodies. These natural autoantibodies (NAAs) are present from birth, are produced by T-cell independent, TLR-stimulated B1 cells, and have potent anti-inflammatory effects (Lobo, 2017). Low-titer IgM antibodies to self-antigens are increased after surgery and other traumas (Raad et al., 2014) because of increased release of material from stressed or damaged cells (Oka et al., 2012). These natural autoantibodies play an important protective role, limiting inflammation (Andaluz-Ojeda et al., 2013). Once the trauma or cellular damage is healed, exosome production, and other cellular sources of antigens are diminished, and autoantibody production is returned to background levels. If antigen presentation continues because of ongoing stress or infection, then high-affinity IgG antibodies can be stimulated, selected, and amplified.

Autoantibodies to the folate receptor (Frye et al., 2016a), and maternal antibodies to brain proteins (Edmiston et al., 2017) are associated with ASD risk. Complex neuroimmune syndromes like pediatric acute-onset neuropsychiatric syndrome (PANS), pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections (PANDAS), and autonomic disturbances like postural orthostatic tachycardia syndrome (POTS) are also risks in ASD. The chronically activated CDR can also lead to sleep disturbances, seizures, leaky gut, gut inflammation, and dysmotility. Thyroid abnormalities reflected by an increase in the rT3 also occur (Frye et al., 2017). This may be a consequence of stress induction of the selenoproteins, deiodinases 2 and 3 (DIO2 and 3), that are responsible for inactivating T4 and producing reverse T3 (rT3) (Lamirand et al., 2008). The CDR also regulates Th17 cells through purinergic signaling (Sullivan et al., 2014). Th17 cells and Th17 receptor expression on monocytes play several important roles in regulating breaches in immune tolerance (Peefle et al., 2017), and inflammation in autism (Nadeem et al., 2017).

8. The CDR, natural infections, and vaccinations

The CDR is a normal and universal feature of any stress. This means that it is normally activated by both natural infections and vaccination. The CDR is needed to establish cellular and humoral immunity. Since the large majority of children and adults who receive vaccinations, or are exposed to common natural viral infections like Epstein Barr Virus (EBV), are able to recover without incident, the biological question is, “Why are some children and adults unable to moderate or turn off the CDR when its job is done and immunity is established?” We do not have an answer to this question yet. However, relatively simple measures like distributing vaccinations over time, instead of giving a large number at once would decrease the chances of triggering an excessive CDR in individual children deemed to be at increased risk. In addition, future research into the metabolomic phenotypes of children before and after vaccinations may begin to shine some light on differences in natural metabolic and physiologic states, that might permit us to predict the risk and develop treatments to prevent the rare complications like post-immunization, febrile seizures (MacDonald et al., 2014).

9. Gene-environment interactions in ASD

9.1. Managing environmental risks

The CDR is triggered by both genes and environmental factors. Genes, and the proteins they make, can be thought of as providing adaptive resilience, like stretch in a homeostatic safety net, to a large number of stressors. When new, more frequent, or more severe exposures are encountered, the adaptive and healing capacity of cells can be pushed to, and beyond its homeostatic limits. This creates roadblocks to healing that result in a persistent form of the CDR. Environmental factors that can test the resilience of any given genotype include physical, chemical, nutritional, microbial, and psychological traumas. Infections during pregnancy (Zerbo et al., 2013), prenatal maternal psychological stress (Kinney et al., 2008; Ronald et al., 2010), early life stress (Cameron et al., 2017; Heun-Levitt and Levitt, 2016; Rutter et al., 2001), and exposure to a variety of toxins (Braun et al., 2014), metals (Kalkbrenner et al., 2014; Palmer et al., 2009), or traffic-related air pollution (Volk et al., 2011; Volk et al., 2013) have each been shown to contribute to ASD risk. Combinations of all these factors in a particular home, neighborhood, city, or rural environment contribute to the concept of total toxic load (Herbert et al., 2013). If the exposure happens during critical periods in early child development, ASD and several other childhood disorders can result (Landrigan et al., 2012). When avoidable risks are managed, pregnancy outcomes and child health can be improved (Adams et al., 2016; Schmidt et al., 2011).

9.2. Ecogenetics, ecoalles, and ASD

Recent twin studies show that environmental factors are responsible for about 60% (mean = 58%; 95% CI = 30–80%) of ASD. The collective contribution of all genes was about 40% (mean = 37%; 95% CI
8–84%) (Hallmayer et al., 2011), but no single gene accounts for more than 1–2% of all of ASD (Talkowski et al., 2014). The term ecogenetics describes the interaction between genes and environment. Many genes show strong differences in function depending on exposure to different environmental factors. These “ecoalleles” are common gene variants—polymorphisms with allelic frequencies of about 2%-50%—in enzymes, receptors, transporters, and transcription factors that have different activities depending on environmental factors. Some of these environmental factors include seasonal and diurnal temperature fluctuations, or the availability of calories, fats or carbohydrates, trace metals, redox, critical cofactors like thiamine (B1), niacin (B3), riboflavin (B2), folic acid (B9), B12, lipic acid, tetrahydrobiopterin (BH4), biotin, pantothenic acid, vitamin D, C, or pyridoxine (B6), or exposure to drugs, pesticides, or toxins.

The prevalence of ecoalleles in different populations around the world differs significantly according to different climatic, dietary, infectious disease, and cultural conditions. For example, the ecoallele c.677T in methylene tetrahydrofolate reductase (MTHFR) is rare in populations from sub-Saharan Africa (5%), but more common in Mexican, Italian, and Ashkenazi Jewish populations where it has an allelic frequency of about 50% (Karban et al., 2016). The risk of disease associated with the c.677T ecoallele is context dependent. Despite being more common in Ashkenazi Jewish populations, the c.677T allele in MTHFR was a risk factor for autism, inflammatory bowel disease, and certain other diseases in non-Ashkenazi populations but not in Ashkenazi populations (Frye and James, 2014; Karban et al., 2016). If ecoalleles were always harmful in all world contexts at all ages, they would eventually be removed from the ancestral gene pool, or reduced to frequencies well below 1%. Alleles that cause disease in post-reproductive adults can be maintained by advantages to children or young adults. In the case of MTHFR, it has been hypothesized that the c.677T variant confers resistance to malaria (Meadows et al., 2014). If ecoalleles were always harmful in all world contexts at all ages, they would eventually be removed from the ancestral gene pool, or reduced to frequencies well below 1%. Alleles that cause disease in post-reproductive adults can be maintained by advantages to children or young adults. In the case of MTHFR, it has been hypothesized that the c.677T variant confers resistance to malaria (Meadows et al., 2014).

As discussed above, M1 mitochondria use ROS to activate their latent/moonlighting function as coordinators of the cell danger response under conditions of environmental stress. Many metabolic enzymes also have moonlighting functions that are induced by new environmental conditions (Sriram et al., 2005). These moonlighting functions often seem self-destructive unless understood in terms of the cell danger response (CDR) (Naviaux, 2014). One important example is the mitochondrial enzyme dihydrolipoamide dehydrogenase (DLD), also known as the E3 protein. This protein is shared by 5 different mitochondrial enzyme systems that are critical for regulating cellular bioenergetics, redox, and amino acid metabolism. The enzyme systems catalyze NAD→ oxidation and decarboxylation reactions. They are: pyruvate dehydrogenase complex (PDH), alpha-keto glutarate dehydrogenase (AKDH, also known as 2-OGDH), branched chain ketoacid dehydrogenase complex (BCKDH), 2-oxoadipate dehydrogenase (2-OADH), and the glycine cleavage system. Each of these 5 key enzyme systems can be affected when DLD changes from its canonical function to its moonlighting function under conditions of environmental stress. This leads to CDR-associated chromatin remodeling because alpha ketoglutarate released from mitochondria is an essential cofactor for Jun molecules (Kang et al., 2017), and NAD→ build-up activates histone deacetylation and DNA transcriptional silencing by sirtuins (Simoneau et al., 2016). The net result is to slow gene expression and metabolism in stressed cells. Over 90 DNA variants of DLD are currently listed in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar?term = 238331 [MIM]). Thirty-one of 92 variants (34%) are currently classified as benign or likely benign. Some of these may in fact be ecoalleles of DLD that have not yet been fully characterized. Several DLD variants are strongly inhibited by valproate, creating an ecogenetic risk for drug-induced liver toxicity (Kudin et al., 2017).

Under conditions of low mitochondrial matrix pH produced by ischemia-reperfusion, high salt concentration, and other stresses, DLD changes from its normal dimeric conformation and adopts an oligomeric or monomeric structure. The normal DLD activity is lost as the moonlighting functions of the E3 protein are activated by stress. The first new activity to emerge is reactive oxygen species (ROS) production (Ambrus and Adam-Vizi, 2017) using NADH and oxygen for oxidative shielding in response to microbial infection or other stress (Naviaux, 2012a). This accompanies the shift from M2 anti-inflammatory to M1 pro-inflammatory mitochondria. Progressive stress leads to the transformation to monomer configuration and unmasks a cryptic protease activity. The emergent E3 protease cleaves several mitochondrial substrates, including the iron-sulfur cluster biogenesis protein frataxin (Babady et al., 2007). This leads to a prolonged shift from M2 to M1 mitochondria after transient but severe stress (Klyachko et al., 2005). Disruptions in iron-sulfur cluster assembly can have profound affects on dozens of proteins in key pathways of the cell danger response. Among these are viperin and ABCE1 used in the antiviral response, aconitase in the Krebs cycle, subunits of the mitochondrial respiratory chain complexes I, II, and III needed for energy production, and DNA repair proteins like XPD and FANCJ (Braymer and Lill, 2017).

9.4. Emergent phenotypes, epigenetics, and metabolic treatments

Mixtures of ecoalleles, with and without moonlighting functions, produce new phenotypes and patterns of disease risk and resilience that represent latent traits that are revealed by exposure to specific environmental triggers. While single ecoalleles can have predictable consequences like common pharmacogenomic variants (Schuck and Grillo, 2016), mixtures of ecoalleles are conditional and have emergent phenotypes that cannot be predicted from genomic analysis alone. Ecoalleles create resilience in the homeostatic safety net that helps life manage environmental infections, toxins, famine, vascular and tissue injury, and other stressors. The combined effect of unique mixtures of ecoalleles is to create metabolic phenotypes that are key targets for natural selection and evolution. Emergent metabolic traits are the result of real-time interaction of genes and environment. Their fitness depends on the environmental context. What permits survival under harsh conditions may slow reproduction or development under mild conditions.

When environmental conditions change over the course of child development, and harsh conditions alternate with mild, or harsh conditions begin to be more common than mild, recovery from the survival or defensive cellular state can be delayed or persist. Some of the
Several genetic disorders of purine and pyrimidine (Micheli et al., 2011; Page and Coleman (2000); Smiraglia et al. (2008); Novarino et al. (2012); Tirouvanziam et al. (2012)) are associated with autistic behaviors. Bernie Rimland, the founder of the Autism Research Institute (ARI), pioneered the metabolic approach to treatment in the first clinical trial of pyridoxine in children with ASD (Rimland et al., 1978). When cells detect genetic or environmental threats, mitochondrial metabolism allows threatened cells surrounding the injury to better survive dangerous conditions. On the other hand, when these changes become widespread and occur during pregnancy or the first 3 years of life, and are severe or sustained, they can alter the trajectory of normal persistence of these traits can be driven by durable epigenetic changes that trace to mitochondrial function (Minocherhomji et al., 2012; Naviaux, 2008; Wallace and Fan, 2010), but produce changes in gene expression that can persist beyond their utility because of time lags between frequent activation in a harsh environment, and recovery. Under these changing environmental conditions, mixtures of ecoalleles and epigenetic changes that were once advantageous may become a disadvantage. When this happens in ASD, cofactor and metabolic therapies directed at ecoallele-driven phenotypes in ASD can help strengthen resilience in the homeostatic safety net and improve behavioral symptoms (Frye et al., 2013a, 2016b).

10. Metabolism and ASD behavior

The idea that behaviors in autism are caused by a change in metabolism is not new. The first organic abnormalities reported in ASD were metabolic (Rimland, 1964; Sutton and Read, 1958) (Table 1). Several genetic disorders of purine and pyrimidine (Micheli et al., 2011; Nyhan et al., 1969; Page and Coleman, 2000) and energy metabolism (Stockler-Ipsiroglu and van Karnebeek, 2014) are associated with autistic behaviors. Bernie Rimland, the founder of the Autism Research Institute (ARI), pioneered the metabolic approach to treatment in the first clinical trial of pyridoxine in children with ASD (Rimland et al., 1978). When cells detect genetic or environmental threats, mitochondrial function changes in a predictable way. These changes produce the CDR and act as a two-edged sword. On the one hand, the change in cell metabolism allows threatened cells surrounding the injury to better survive dangerous conditions. On the other hand, when these changes become widespread and occur during pregnancy or the first 3 years of life, and are severe or sustained, they can alter the trajectory of normal

![Table 1](Image)

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Metabolic abnormality</th>
<th>Authors</th>
<th>Dates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decreased tryptophan conversion to serotonin; increased kynurenine pathway</td>
<td>H. Eldon Sutton</td>
<td>1958</td>
<td>Sutton and Read (1958)</td>
</tr>
<tr>
<td>2</td>
<td>Increased tryptophan and platelet serotonin</td>
<td>Daniel Freedman</td>
<td>1961</td>
<td>Mulder et al. (2004); Schain and Freedman (1961)</td>
</tr>
<tr>
<td>4</td>
<td>Pyridoxine metabolism</td>
<td>Bernard Rimland, James Adams</td>
<td>1978, 2006</td>
<td>Adams et al. (2006); Rimland et al. (1978)</td>
</tr>
<tr>
<td>5</td>
<td>Increased sphingolipids and gangliosides</td>
<td>Chris Gillberg</td>
<td>1998</td>
<td>Nordin et al. (1998); Schengrund et al. (2012)</td>
</tr>
<tr>
<td>6</td>
<td>Decreased sulfation, and plasma sulfate; Increased plasma cysteine, urine sulfate</td>
<td>Rosemary Waring</td>
<td>1999</td>
<td>Alberti et al. (1999)</td>
</tr>
<tr>
<td>8</td>
<td>Mitochondrial respiratory chain complex overactivity</td>
<td>William Graf et al., Luigi Palmieri and Tony Persico, Richard Frye and Robert Naviaux, Shannon Rose, Richard Frye</td>
<td>2000</td>
<td>Frye and Naviaux (2011); Graf et al. (2000); Palmieri et al. (2010); Rose et al. (2014a); Rose et al. (2014b)</td>
</tr>
<tr>
<td>9</td>
<td>Decreased cholesterol/sterols</td>
<td>Elaine Tierney, Richard Kelley</td>
<td>2000</td>
<td>Tierney et al. (2000)</td>
</tr>
<tr>
<td>10</td>
<td>Microbiome dysbiosis</td>
<td>Richard Sandler, Sydney Finegold</td>
<td>2000, 2002</td>
<td>Finegold et al. (2002); Sandler et al. (2000)</td>
</tr>
<tr>
<td>12</td>
<td>Cysteine, glutathione, SAM/SAH</td>
<td>Jill James</td>
<td>2006</td>
<td>James et al. (2006)</td>
</tr>
<tr>
<td>13</td>
<td>Reactive oxygen metabolism</td>
<td>Jill James</td>
<td>2006</td>
<td>Frustaci et al. (2012); James et al. (2006)</td>
</tr>
<tr>
<td>14</td>
<td>Pyrimidines—increased uridine, BAIB</td>
<td>W. Brussel, James Adams</td>
<td>2006, 2011</td>
<td>Adams et al. (2011); Brussel et al. (2006); Micheli et al. (2011)</td>
</tr>
<tr>
<td>18</td>
<td>Increased VLCFA PE lipids</td>
<td>Dayan Goodenowe</td>
<td>2009</td>
<td>Pastural et al. (2009)</td>
</tr>
<tr>
<td>19</td>
<td>Decreased biotin</td>
<td>Richard Frye</td>
<td>2010</td>
<td>Frye et al. (2010)</td>
</tr>
<tr>
<td>20</td>
<td>Decreased plasma biotin</td>
<td>James Adams</td>
<td>2011</td>
<td>Adams et al. (2011)</td>
</tr>
<tr>
<td>21</td>
<td>Decreased plasma ATP, increased adenosine</td>
<td>James Adams</td>
<td>2011</td>
<td>Adams et al. (2011)</td>
</tr>
<tr>
<td>22</td>
<td>Increased plasma glutamate</td>
<td>James Adams</td>
<td>2011</td>
<td>Adams et al. (2011)</td>
</tr>
<tr>
<td>23</td>
<td>Decreased branched chain amino acids</td>
<td>James Adams</td>
<td>2011, 2012</td>
<td>Adams et al. (2011); Novarino et al. (2012); Tirouvanziam et al. (2012)</td>
</tr>
<tr>
<td>24</td>
<td>Increased plasma and urine oxalate</td>
<td>Jerry Konstantynowicz</td>
<td>2012</td>
<td>Konstantynowicz et al. (2012)</td>
</tr>
<tr>
<td>25</td>
<td>Propionic amino acid metabolism</td>
<td>Derrick MacFabe, M. Al-Owain</td>
<td>2007, 2012</td>
<td>Al-Owain et al. (2013); MacFabe et al. (2007)</td>
</tr>
<tr>
<td>26</td>
<td>Decreased carnitine synthesis</td>
<td>Art Beaudet</td>
<td>2012</td>
<td>Celestino-Soper et al. (2012)</td>
</tr>
<tr>
<td>27</td>
<td>Eicosanoids</td>
<td>Afaf El-Ansary</td>
<td>2012</td>
<td>Beaulieu (2013); El-Ansary and Al-Ayadhi (2012); Gorrindo et al. (2012)</td>
</tr>
<tr>
<td>28</td>
<td>Oxidative shielding and metabolic memory</td>
<td>Robert Naviaux</td>
<td>2012</td>
<td>Naviaux (2012b)</td>
</tr>
<tr>
<td>29</td>
<td>Decreased fatty acid oxidation</td>
<td>Richard Frye</td>
<td>2013</td>
<td>Frye et al. (2013b)</td>
</tr>
<tr>
<td>30</td>
<td>Decreased plasma choline and betaine</td>
<td>Jill James</td>
<td>2013</td>
<td>Hamlin et al. (2013)</td>
</tr>
<tr>
<td>31</td>
<td>Increased rT3/TSH</td>
<td>Richard Frye</td>
<td>2017</td>
<td>Frye et al. (2017)</td>
</tr>
<tr>
<td>32</td>
<td>Cell danger response metabolism</td>
<td>Robert Naviaux</td>
<td>2012, 2014</td>
<td>Naviaux et al. (2014); Naviaux et al. (2015); Naviaux et al. (2015a); Naviaux et al. (2016); Naviaux et al. (2017); Naviaux et al. (2013)</td>
</tr>
</tbody>
</table>
child development. The CDR produces effects on purinergic signaling that change how neural circuits are selected and how synapses are formed and pruned in the brain (Sipe et al., 2016). Many other organ systems are also affected by the CDR. These include the immune system, the gut microbiome, and the autonomic nervous system. Each of these is documented to be dysfunctional in autism.

Over 30 metabolic abnormalities have been described in ASD over the past 60 years (Table 1). All are known markers of the cell danger response (Naviaux, 2014; Naviaux et al., 2016). Interestingly, this set of about 30 different metabolic pathways is shared with the conserved cellular response to danger or threat regardless of whether the trigger was a virus (Wikoff et al., 2009), a bacterium (Degtyar et al., 2009), genetic forms of mitochondrial disease (Nikkanen et al., 2016), or neurodevelopmental disorders with complex gene-environment pathogenic mechanisms like autism (James et al., 2004). The hopeful message behind the CDR hypothesis is that the root cause of the communication difficulties, social anxiety, sensory abnormalities, GI problems, seizures, allergies, and many other comorbidities in autism, is a treatable metabolic syndrome. This means that contrary to classical teaching in medical schools around the world for the past 70 years, autism may not be permanent in some children. By treating the root cause, the CDR hypothesis gives hope that longstanding roadblocks to development can be removed and the children can make remarkable progress, despite a great heterogeneity in the causes of ASD. Future clinical trials will be needed to test this hypothesis rigorously.

11. Purinergic signaling and ASD

11.1. Purinergic signaling maintains the CDR

If the CDR is the problem, what is the cellular signal that keeps it turned on after it is no longer needed for healing? To answer this question, researchers had to weave together several apparently unrelated threads. These threads included research on mitochondria and healing (Naviaux et al., 2009), genetic forms of mitochondrial dysfunction in autism (Graf et al., 2000), genetic forms of autism associated with increased purine metabolism (Nyhan et al., 1969), and the paradoxical improvement with fever that proved that the core behaviors of autism could be dynamically regulated by metabolism (Curran et al., 2007). The author hypothesized that the root cause of pathological persistence of the CDR was continued excessive or unbalanced purinergic signaling, called hyperpurinergia (Naviaux et al., 2013), and dyspurinergia, respectively.

Hyperpurinergia is a universal and normal feature of the immediate and subacute cellular response to injury. Stressed cells release ATP and other small molecules less than about 800 Da in size through specialized membrane channels. The pannexin/PX27 porin is an example of one of these stress-gated channels (Burnstock and Knight, 2017; Naviaux, 2012b). This phenomenon is illustrated in the whiteboard animation available at: https://www.youtube.com/watch?v= zd1UuY8Lks. When ATP, UTP, and other mitokines (signaling molecules traceable to mitochondria) are released through the stress-gated channels in the cell membrane, they bind to receptors on the cell surface to signal danger. Nineteen (19) purinergic receptors have been cloned. There are 8 P2Y receptors, 7 P2X receptors, and 4 P1 (adenosine) receptors. Extracellular ATP, ADP, adenosine, and UDP-glucose are important regulators of mast cell degranulation (Lazarowski and Harden, 2015; Ospichuk and Cahanal, 1992), neutrophils and T-cell function (Ledderose et al., 2015). Many different disease processes are regulated by purinergic signaling (Burnstock, 2014). Once the danger has passed, the release of ATP decreases, the CDR turns off, cells can complete the healing cycle, and return to normal “peaceetime” function. Mixtures of CDR triggers can be synergistic. This contributes to the concept of total toxic load. Sequential exposures during critical developmental windows can stack to create a “perfect storm” of events that can derail the healing process and lead to pathological persistence of the CDR.

11.2. Nucleotide metabolism regulates purinergic signaling

In principle, hyperpurinergia can be produced by increased release of ATP and related receptor ligands, increased nucleotide dwell time caused by decreased metabolism or inactivation of purinergic effectors, a failure of receptors to desensitize once their job is done, or a combination of each. The dwell time of extracellular nucleotides in the pericellular halo is tightly regulated by cell-specific expression of CD39 (ectonucleotide triphosphate diphosphohydrolase 1) and CD73 (ecto-5′-nucleotidase) on the cell membrane. These proteins convert extracellular ATP and ADP to AMP (CD39), and AMP to adenosine (CD73) in calcium- and magnesium-dependent reactions (Antonioli et al., 2013) (Fig. 1). Adenosine is then either taken up by the cell through the equilibrative nucleoside transporter 1 (ENT1, SLC29A1), or metabolized to inosine by adenosine deaminase (ADA). Inosine is hydrolyzed to yield hypoxanthine and ribose-1-phosphate by purine nucleoside phosphorylase (PNP). PNP does not accept adenosine as a substrate and is not a source of adenine. Adenine base can be produced by methylthioadenosine phosphorylase (MTAP) during polyamine synthesis and methionine salvage (Mavrakis et al., 2016). Free adenine can be released or taken up by cells via the equilibrative nucleobase transporter (ENT1, SLC43A3). When taken up, adenine is used for salvage synthesis of AMP by adenine phosphoribosyl transferase (APRT). Hypoxanthine can be taken up by cells for salvage synthesis of purines via membrane transporters like the concentrative sodium-dependent nucleobase transporter 1 (SNBT1, SLC23A4), then condensed with phosphoribosylpyrophosphate (PRPP) by the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRPT) to make IMP. Hypoxanthine can also be oxidized in the extracellular space to xanthine and uric acid, with the production of superoxide (O2−) by the molybdändependent flavoprotein xanthine oxidase (XO). Extracellular superoxide is converted to hydrogen peroxide (H2O2) by the copper and zinc-dependent, extracellular superoxide dismutase (SOD3). Extracellular and intracellular NAD+ and NADP+ are converted by CD38 to cADPR and NAADP, respectively. Both cADPR and NAADP activate calcium influx via the TRPM2 membrane channels. Inside the cell, cADPR releases calcium from the ER through the ryanodine receptor (RyR), and NAADP releases calcium from lysosomes through the two pore channel (TPC) proteins. In anti-inflammatory, M2 polarized mitochondria the flux of NAD+ and NAADP through the nicotinamide nucleotide transhydrogenase (NNT) favors NAADP and NADP+ production. In M1 (pro-inflammatory) mitochondria, the flux through NNT favors NADPH and NAD−. NADPH and oxygen are then used by mitochondrial outer membrane-associated NADPH oxidase 4 (NOX4) to produce H2O2. Uric acid is transported into the cell by the cytokine-regulated uric acid transporter SLC2A9 (So and Thorens, 2010) and can stimulate inflammation directly by triggering the assembly of the NLRP3 inflammasome (Ghaemi-Oskouie and Shi, 2011) (Fig. 1).

UTP, UDP, and UDP-glucose are also released from cells under stress and act as signaling molecules that bind to purinergic receptors. CD39 and CD73 can also dephosphorylate UTP and UDP to produce extracellular uridine. Uridine can be metabolized by uridine phosphorylase (UPase) to produce the free nucleobase uracil and ribose-1-phosphate. Uracil can be imported as a free nucleobase into the cell by SNBT1. Uridine is transported into the cell through ENT1. Inside the cell, uridine is salvaged by phosphorylation by uridine-cytidine kinase 1 and 2 (UCK1/2). By regulating the relative expression of CD39, CD73, ADA, ENT1, SNBT1, ENBT1, PNP, XO, SOD3, CD38, TRPM2, APRT, HGPRPT, SLC2A9, and UCK1/2, the nuanced informational content of the unstimulated water layer (UWL) produced by the release of extracellular ATP and UTP can be precisely calibrated in accordance with the functional states of each responding cell type (Fig. 1).
11.3. Purinergic signaling, the CDR, and the symptoms of ASD

When healing is incomplete, cells can be left in a state of hyper- or hypo-responsiveness to new threats. Chronic changes in purinergic signaling alter pain perception (Magni et al., 2017), and the processing of other sensory stimuli (Brea and Traverson, 2016; Dietz et al., 2012). This is not unlike a cellular form of post-traumatic stress disorder (PTSD) resulting in durable changes in behavior after exposure to a transient, but serious stress. Cells cannot heal if a significant fraction of ATP is exported for purposes of signaling instead of being kept in the cell for normal energy metabolism. The use of antipurinergic drugs like suramin to treat a misfiring CDR has been called “molecular armistice therapy” because it sends a signal that “the war is over”. This decreases losses of ATP through stress-gated membrane channels, and decreases purinergic autocrine and paracrine signaling of danger (https://www.youtube.com/watch?v=zIdUufy8Lks) so cells and mitochondria can return to peacetime metabolism needed for healing and development. The concept that purinergic signaling abnormalities are involved in ASD and can alter behavior is not just theoretical. Evidence of purinergic signaling abnormalities was found in children with ASD in a recent gene expression study (Ginsberg et al., 2012). Purinergic signaling has been shown to regulate a number of the cellular comorbidities and functional abnormalities associated with ASD (Table 2).

12. Preclinical studies of antipurinergic therapy

The idea that purinergic signaling might be involved in autism was born in 2008 (Naviaux research supported by Mr. Dan Wright). In 2010, the Naviaux Lab received a “Trailblazer” award from Autism Speaks (https://autismspeaksblog.wordpress.com/tag/mitochondria/) to test this idea. Suramin has many actions (Liu and Zhang, 2011; Voogd et al., 1993). One of its most studied actions is as a non-selective purinergic antagonist (Burnstock, 2006a). The 2013 paper (Naviaux et al., 2013) describing the results of the first suramin treatment studies in ASD mouse models showed that abnormal persistence of extracellular ATP signaling could cause ASD-like behaviors. It also produced excitotoxicity that led to the death of Purkinje cells in the cerebellum. Re-balancing the CDR with suramin restored normal behavior and prevented the loss of these cells (Naviaux et al., 2013). Two additional studies confirmed that antipurinergic therapy with the non-selective purinergic inhibitor suramin improved both the core behaviors and the metabolic syndrome underlying autism-like symptoms in both the Fragile X genetic model and the environmental maternal immune activation (MIA) models (Naviaux et al., 2014; Naviaux et al., 2015). The mouse models also showed that high doses were not necessary. Low-dose suramin that produced blood levels of just 5–15 μM was both safe and effective in treating the symptoms of autism in these models.

13. Results of the SAT1 clinical trial

13.1. Metabolic abnormalities in ASD were improved by low-dose suramin

Using mass spectrometry, the metabolic pathways that were disturbed at baseline and changed by suramin were characterized in two mouse models of ASD-like behavior. Suramin treatment improved 17 of 18 (94%) biochemical pathways that were abnormal in the MIA mouse model (Naviaux et al., 2014) and 20 of 20 (100%) pathways disturbed in the Fragile X mouse model (Naviaux et al., 2015). Metabolomic analysis was also performed in the 10 children with ASD in the SAT1 study (Naviaux et al., 2017). This study showed that 21 of 28 (75%) of the pathways disturbed in children with autism were also abnormal in the mouse models. These included improvements in purines, 1-carbon/ folate, S-adenosylmethionine (SAME), glutathione, microbiome, branched chain amino acids, fatty acid metabolism, and others (Naviaux et al., 2017) (Fig. 2). These improvements in metabolism were associated with similar improvements in each of the core symptoms of autism. There was a flowering of interest in social communication, new language, new social activities on the playground like playing tag, and at home like playing catch and other games with neurotypical siblings. The half-life of suramin after a single-dose was 14.7 ± 0.7 days. Studies in African sleeping sickness have shown that the plasma half-life of suramin can increase to 1 or 2 months after multiple doses (Hawking, 1940). As the single dose of suramin in the SAT1 study gradually wore off over 5–8 weeks, metabolism drifted back toward baseline, and most of the behavioral gains were lost. It is not yet known if regular suramin given every month or so could support continued developmental gains. These studies strongly underscore the hopeful message that the symptoms of autism might be caused by a treatable metabolic syndrome and that antipurinergic therapy with low-dose suramin is a powerful tool in treating these fundamental metabolic abnormalities.

13.2. Core symptoms of ASD were improved by low-dose suramin

Low-dose of suramin used in the SAT1 study (Naviaux et al., 2017) improved the core symptoms of ASD measured by ADOS2 (autism diagnostic observation schedule, 2nd edition) score by 1.6 ± 0.55 points in 6 weeks (p < 0.0028; Fig. 3). Language, social interaction, and

<table>
<thead>
<tr>
<th>No.</th>
<th>Feature</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Innate immunity, allergies, and inflammation</td>
<td>West et al. (2011)</td>
</tr>
<tr>
<td>2</td>
<td>Autoimmunity</td>
<td>Savio and Coutinho-Silva (2016)</td>
</tr>
<tr>
<td>3</td>
<td>Microglial and astroglial activation</td>
<td>Butt (2011)</td>
</tr>
<tr>
<td>4</td>
<td>T-cell proliferation</td>
<td>Yu et al. (2010)</td>
</tr>
<tr>
<td>5</td>
<td>Th17 cells</td>
<td>Sullivan et al. (2014)</td>
</tr>
<tr>
<td>6</td>
<td>Treg cells</td>
<td>Cortes-Garcia et al. (2016)</td>
</tr>
<tr>
<td>7</td>
<td>NK cells</td>
<td>Raskova et al. (2005)</td>
</tr>
<tr>
<td>8</td>
<td>Mast cell activation</td>
<td>Peng et al. (2004)</td>
</tr>
<tr>
<td>9</td>
<td>Eosinophil activation</td>
<td>Ferrari et al. (2006)</td>
</tr>
<tr>
<td>10</td>
<td>Neuronal migration</td>
<td>Liu et al. (2008)</td>
</tr>
<tr>
<td>11</td>
<td>Brain injury and repair</td>
<td>Burnstock (2016)</td>
</tr>
<tr>
<td>12</td>
<td>Glutathione, ROS, and redox</td>
<td>Zhang et al. (2005)</td>
</tr>
<tr>
<td>13</td>
<td>Nitric oxide synthesis</td>
<td>Silva et al. (2006)</td>
</tr>
<tr>
<td>14</td>
<td>Apoptosis</td>
<td>Davicki et al. (1997)</td>
</tr>
<tr>
<td>15</td>
<td>Gliovascular coupling</td>
<td>Pelligrino et al. (2011)</td>
</tr>
<tr>
<td>16</td>
<td>Synaptogenesis and neuronal plasticity</td>
<td>Pankratov et al. (2009)</td>
</tr>
<tr>
<td>17</td>
<td>cMet/mTOR signaling</td>
<td>Gerasimovskaya et al. (2005)</td>
</tr>
<tr>
<td>18</td>
<td>PI3/AKT signaling</td>
<td>Katz et al. (2011)</td>
</tr>
<tr>
<td>19</td>
<td>Sensory perception and sensory integration</td>
<td>Pain (Burnstock, 2006b)</td>
</tr>
<tr>
<td>20</td>
<td>Epilepsy and the seizure threshold</td>
<td>Sigh (Houley et al., 2009)</td>
</tr>
<tr>
<td>21</td>
<td>Oxytocin and vasopressin secretion</td>
<td>Sound (Houley et al., 2002)</td>
</tr>
<tr>
<td>22</td>
<td>Obsessive compulsive behaviors</td>
<td>Touch (Wang et al., 2010)</td>
</tr>
<tr>
<td>23</td>
<td>Depression and affect</td>
<td>Taste (Huang et al., 2009)</td>
</tr>
<tr>
<td>24</td>
<td>Cortisol secretion and the HPA axis</td>
<td>Smell (Houley et al., 2009)</td>
</tr>
<tr>
<td>25</td>
<td>Appetite and feeding behaviors</td>
<td>Vestibular (Lee et al., 2001)</td>
</tr>
<tr>
<td>26</td>
<td>Anxiety and retention of aversive memories</td>
<td>Mastrandello et al. (2012)</td>
</tr>
<tr>
<td>27</td>
<td>Self-injurious behavior</td>
<td>Estrella and Abraham (2011)</td>
</tr>
<tr>
<td>28</td>
<td>Gut Inflammation and the microbiome</td>
<td>Matsus et al. (2007)</td>
</tr>
<tr>
<td>29</td>
<td>Gut permeability</td>
<td>Leng et al. (2008)</td>
</tr>
<tr>
<td>30</td>
<td>Food allergen reactivity</td>
<td>Jimenez et al. (2014)</td>
</tr>
<tr>
<td>31</td>
<td>GI motility, constipation, diarrhea, irritable bowel</td>
<td>Passamani et al. (2011)</td>
</tr>
<tr>
<td>32</td>
<td>Parasympathetic autonomic nervous system</td>
<td>Campos et al. (2014)</td>
</tr>
<tr>
<td>33</td>
<td>Blood pressure control</td>
<td>Campos et al. (2014)</td>
</tr>
<tr>
<td>34</td>
<td>Sleep</td>
<td>Halassa (2011)</td>
</tr>
</tbody>
</table>
restricted interests, and repetitive movements all improved. Two children who were previously non-verbal spoke their first sentences. Suramin treatment was synergistic with regular school, educational enrichment programs, applied behavioral analysis (ABA), speech, and occupational therapy. None of these improvements were observed in the placebo group. The authors reported that the maximum benefit from a single dose of suramin occurred after 3 weeks then decreased slowly. Even after 6 weeks, three children had improved by 2 points and two children improved by 1 point, compared to baseline. No children were unimproved in the treatment group. In comparison, three children who received placebo were unchanged, and two improved by 1 point each. This gave rise to an estimate of the placebo effect of 0.4 ± 0.55 points (Fig. 3; p = 0.18; ns). ADOS comparison scores of 7–9 are used as a gold standard for the diagnosis of autism spectrum disorder (ASD). An ADOS score of 10 meets criteria for classical autism. If a few doses of suramin given over 3 months produce improvements at the same rate of 1 point/month, then children with symptoms that were initially severe enough to be on the spectrum (ASD = ADOS comparison scores of 7–9), might be able to come off the autism spectrum (dotted red box), and those with more severe forms of autism might improve significantly (Fig. 3). Does this mean suramin might be the first effective drug treatment for autism in nearly 75 years of research efforts? It is too early to say. Some biomedical treatments of ASD show benefits for a few weeks or months, then lose effectiveness over time. There is no evidence this could happen with suramin, but more clinical trials are needed. We need to know if a few doses given over a few months are safe and are able to maintain the same rates of ADOS score improvement of about 1 point per month of treatment. If this is true, then we are one step closer to the goal.

13.3. Low-dose suramin safety

Low-dose suramin that produced blood levels of just 5–15 μM, was safe and produced significant improvement in ASD symptoms at 6 weeks in the SAT1 trial (Naviaux et al., 2017) (Fig. 4). This low dose of suramin has never been studied before. The side effect profile of high-dose suramin (150–270 μM) is known from cancer chemotherapy studies (Stein, 1993). One author has expressed concern about the safety of high-dose suramin (Theoharides, 2013) citing a review of cancer studies (Kaur et al., 2002) that used prolonged exposure to high-doses of suramin that produced 25-times higher blood levels than those needed...
to treat autism (Naviaux et al., 2017). Cancer studies typically used a dose and schedule of suramin designed to produce blood levels of 250 μM compared to 10 μM used in the SAT1 study. High doses of most drugs have toxicities that are not seen at lower doses. The safety and side effect profile from medium-dose suramin (50–100 μM) is well known from nearly 100 years of study in African sleeping sickness (Hawking, 1940, 1978). This work showed that when a cumulative dose of 2.5–3 g/m² was divided into five, weekly intravenous infusions over a month, the elimination half-life increased from 2 weeks to 1.5–2 months, and suramin concentrations ≥ 4 μM (≥ 5 mg/L; MW = 1297 g/mol) were safely maintained for at least 6 months. About 10% of patients treated were rapid excretors and did not maintain these concentrations for as long (Hawking, 1978). These studies were done in Africa before the era of pharmacogenomics, so future studies in more ethnically diverse patient populations may reveal genetic differences in the handling and response to suramin that cannot yet be predicted. The side effect profile of low-dose suramin, given for several months is unknown. Future studies are needed to answer four big questions: 1) Do all children with ASD benefit, or just a fraction? 2) Does suramin lose effectiveness after a few months, or do children continue to benefit for as long as the drug levels in the blood are above 5 μM? 3) Does suramin need to be given for life, or are 4–8 doses over 6–12 months sufficient for normal child development to become self-sustaining? and 4) How long can low-dose suramin be used safely?

14. Sparking a Renaissance in drug development

14.1. Suramin as the first antipurinergic drug

Like the first antibiotic, or first beta-blocker for high blood pressure, suramin is the first antipurinergic drug (APD). APDs represent a class of medicines that is completely new to the world’s pharmacopeia. Soon other drugs that work like suramin will be developed (Jacobson and Müller, 2016). Eventually, the goal of this new Renaissance would be to create a shelf-full of APDs, each with slightly different pharmacologic properties that would allow doctors to pick and choose the best match for each patient. The recent discovery that suramin prevents Zika, Ebola, Chikungunya, Coxsackievirus A16, and Enterovirus A71 (Albulescu et al., 2017; Henss et al., 2016; Ren et al., 2017) from infecting cells may prompt additional clinical trials and further interest in APD development. Currently however, suramin is the only non-selective APD available for human use. Research into the role of purinergic signaling in autism is so new that we do not yet know which of the 19 purinergic receptors are most relevant. Suramin is a broad-spectrum inhibitor of most purinergic signaling systems.

Several P2Y12-selective antagonists like Plavix (clopidogrel) are used as antiplatelet agents to prevent blood clots, strokes, and heart attacks. However, their safety and activity in autism is unknown. Brilliant Blue G (BBG) is a P2X7 inhibitor and protein binding dye that has been used successfully in animal models to prevent excessive inflammation after spinal cord injury (Peng et al., 2009), Parkinson disease (Ferrazzi et al., 2017), and acetaminophen-associated liver injury (Abdelaziz et al., 2017). BBG is also widely used by ophthalmologists during retinal surgery (Azuma et al., 2016). Several experimental APDs are in clinical trials for rheumatoid arthritis and pain that target the P2X7 receptor, but none are yet available to prescribing physicians. It is likely that novel antipurinergic activities will be found in herbs, fungi, and other natural products distributed throughout the biosphere (Faria et al., 2012; Soares-Bezerra et al., 2013). Some may already be in use but their essential pharmacologic action as purinergic inhibitors is not yet known. Alternatively, knowledge of the synthetic chemical additives in our food chain that activate or inhibit purine and pyrimidine signaling (Ferreira et al., 2016), may shed new light on why some food colorings and additives are a problem in some children (Weiss, 2012).

14.2. Current clinical trials of antipurinergic drugs

In 2017, a search of the keyword “purinergic” among interventional trials in clinicaltrials.gov returned 418 studies in the US. Currently, over 90% of these studies are focused on platelets and heart disease. However, the broad involvement of purinergic signaling in nearly every chronic disease in which it has been studied (Burnstock, 2017) suggests great potential for the development of this new class of medications.

15. Conclusions

Over $1 billion has been spent on genetic research in autism over the past 10 years by the NIH, Autism Speaks, and the Simons Foundation. This work has shown that hundreds of genes play a role in different children, and that no single gene accounts for more than 1–2% of autism (Talkowski et al., 2014). While most genetic studies conclude that each genetic cause of ASD must be treated differently, the CDR hypothesis suggests that one mechanism—a unified cellular response—might be at the root of all the different causes of autism. In addition, the CDR hypothesis comes with a detailed molecular mechanism and a treatment. This new theory has already been rigorously tested in the lab since 2011 and found successful in classical animal models of autism. It also showed promise in 10 children with ASD as a unifying theory of pathogenesis in the SAT1 clinical trial (Naviaux et al., 2017).

15.1. The economic impact of a treatment for ASD

The average family caring for a child with ASD in the US spends over $17,000 annually in extra costs not covered by the health care and educational systems (Lavelle et al., 2014). About 3.5 million Americans today live with ASD (Buescher et al., 2014). Using the current estimates of 1 in 68 (Developmental Disabilities Monitoring Network Surveillance Year Principal et al., 2014) to 1 in 45 (Zablotsky et al., 2015) children in the US with ASD and a birthrate of 4 million children per year, about 75,000 ± 15,000 children will be diagnosed with ASD this year in the United States. The national economic cost of autism in the US is estimated to be $268 billion annually, or close to $75,000 per year per patient with ASD. This could rise to $461 billion by 2025 if the rising prevalence of ASD is not stopped (Leigh and Du, 2015). If a new treatment could help just 10% of patients come off the autism spectrum, it would bring back over $26 billion into the US economy each year ($268 billion × 10% = $26.8 billion). The financial return from this
discovery in a single year would be enough to support over 100 years of autism research funded by the National Institutes of Health (NIH). The 2016 budget for autism research projects at NIH was $232 million (https://report.nih.gov/categorical_spending.aspx; $26.8 billion saved + $0.232 billion/year NIH budget = 115 years).

15.2. Human impact

If autism is proven to be a treatable metabolic syndrome in some children, it means that some children now living with disabling forms of ASD, whose parents fear might never be able to live independently, could have a chance for independence and live happy, self-reliant lives. In addition, ASD often affects children who have shown early gifts and might otherwise grow up to become some of the best and brightest of their generation. If new science can lift their disabling symptoms without touching the unique gifts that make them special, the children with ASD today could grow up to become the young men and women of tomorrow who can think creatively to crack the problems that no one else can—to solve our technological problems, to ease social unrest, protect the environment, and help create a healthier future for us all.

16. Special note from the author

Until recently, the public has not heard the name of a new drug until it has been approved by the FDA to treat a particular disorder and it is ready to be marketed by its manufacturer. This has the beneficial effect of protecting patients from asking for, or trying a drug that has not yet been proven safe and effective for their disease. A growing number of drugs are experiencing new interest as researchers discover new uses for old drugs. This is called “drug repurposing.” Drug repurposing is not as simple as using an old drug “off-label” to treat a new disorder. Many drugs are not safe or effective when used this way. Many times the dose and schedule, and even the fundamental pharmacology, like the half-life and volume of distribution, of a drug are different in different patient populations. Careful clinical trials are needed to establish safety and efficacy for each new indication.

Suramin is approved to treat African sleeping sickness (trypanosomiasis). It is not approved for the treatment of autism. There is currently no approved use of suramin in the United States. It is illegal to import suramin into the US for human use without FDA approval. Like many intravenous drugs, when administered improperly by untrained personnel, at the wrong dose and schedule, without careful measurement of drug levels and monitoring for toxicity, suramin can cause harm. Careful clinical trials will be needed over several years at several sites to learn how to use low-dose suramin safely in autism, and to identify drug-drug interactions and rare side effects that cannot currently be predicted. The author strongly cautions against the unauthorized use of suramin. Ultimately, clinical trials may show that suramin is not the final answer for autism. Its effects may be limited to a small number of children, or they may not last, or side effects may emerge. However, the discovery that the cell danger response and purinergic signaling are fundamental features of ASD is now stimulating new research around the world. New antipurinergic drugs, and the rediscovery of old ones, will not be far behind.

Funding

All funding for these studies was philanthropic. This work was supported in part by gifts from the UCSD Christini Fund, the William Wright Family Foundation, the Autism Research Institute (ARI), the Lennox Foundation, the Gupta Family and Satya Fund, the Agrawal Family, Linda Clark, the N of One Autism Research Foundation, the Rodakis Family, the It Takes Guts Foundation, the UCSD Mitochondrial Disease Research Fund, Dr. Elizabeth Mumper Cooper, the Daniel and Kelly White Family, the Brent Kaufman Family, Fred and Sylvia Fogel, the David Cannistraro Family, Ian and Rochelle Yankwitt, George and Caryn Harb, the Francis Clougherty Charitable Trust, and the Heritage Youth Foundation. Funding for the mass spectrometers was provided by a gift from the Jane Botsford Johnson Foundation.

Conflicts of interest

RKN is a scientific advisory board member for the Autism Research Institute (ARI) and the Open Medicine Foundation (OMF), a consultant for Stealth Biotherapeutics, and has submitted a technology disclosure to UCSD describing antipurinergic therapy for autism and related spectrum disorders.

Acknowledgements

RKN thanks Danielle Sternberg for creating the visualization of nucleotide metabolism and transport illustrated in Fig. 1. RKN thanks Mr. Dan Wright for his support of the MRL mouse studies on healing that created the foundation for the CDR hypothesis, and for the phone call one winter day in January 2008 that began a new trail of discovery in mitochondrial medicine and autism, and John Green, Steve Edelson, Nancy O’Hara, Neil Nathan, and A. Taylor Bright for comments on the manuscript, and Richard Haas, Eric Gordon, Paul Hardy, Vicki Kobliner, Maya Shetreat-Klein, Mauro Lins, and Caio Scocco for helpful discussions. RKN thanks the United Mitochondrial Disease Foundation (UMDF) and NIH for a conference grant in 2010 that first brought together investigators to focus their interests on the crossroads of mitochondria and autism. RKN also thanks the Autism Research Institute (ARI) for their invitation to many high-level scientific, medical, and family conferences, think tanks, and topical focus groups over the years. These events, the professional collaborations that they fostered, and many families and children affected by autism around the world, have helped to refine the concepts of the CDR, purinergic signaling, and new approaches to treatment discussed in this review.

References

Villarroya-Beltri, C., Guerra, S., Sanchez-Madrid, F., 2017. ISGylation - a key to lock the cell gates for preventing the spread of threats. J. Cell Sci. 130 (18), 2961–2969.

